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France U.S.A. Czech Republic

Jean.Dezert@onera.fr smarand@unm.edu milan.daniel@cs.cas.cz

Abstract – This paper presents in detail the generalized pignistic transformation (GPT) succinctly developed in the Dezert-Smarandache
Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any gen-
eralized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the
complete result obtained by the GPT and its validation drawnfrom the probability theory.

Keywords: Dezert-Smarandache Theory (DSmT), Dempster-Shafer Theory,pignistic transformation, subjective probability, pignistic
probability, plausible and paradoxical reasoning, DSm cardinality, hybrid model, data fusion, decision-making, conflict, processing.

1 Introduction
In the recent theory of plausible and paradoxical reasoning(DSmT) developed by Dezert and Smarandache [2, 10], a
new generalized pignistic transformation has been proposed to construct a subjective probability measureP{.} from any
generalized basic belief assignmentm(.) defined over the hyper-power setDΘ. In reference [2], a simple example of
such generalized pignistic transformation has been presented only for the casen = |Θ| = 2. In this paper, we present
the complete derivation of this pignistic transformation for the casen = |Θ| = 3 and we generalize the result. Before
introducing the GPT, it is however necessary to briefly present the DSmT [1, 2, 3, 4, 5, 10] with respect to the Dempster-
Shafer Theory (DST) [9].

2 Foundations of the DST and DSmT
2.1 The DST and the Shafer’s model
The Shafer’s model, denoted hereM0(Θ), on which is based the Dempster-Shafer Theory, assumes an exhaustive and
exclusive frame of discernment of the problem under considerationΘ = {θ1, θ2, . . . , θn}. The model requires actually
that an ultimate refinement of the problem is possible so thatθi can always be well precisely defined/identified in such
a way that we are sure that they are exclusive and exhaustive.From this model, a basic belief assignment (bba)mi(.) :
2Θ → [0, 1] such thatmi(∅) = 0 and

∑

A∈2Θ mi(A) = 1 associated to a given body of evidenceBi is defined, where2Θ

is thepower setof Θ, i.e. the set of all subsets ofΘ. Within DST, the fusion (combination) of two independent sources of
evidenceB1 andB2 is obtained through the Dempster’s rule of combination [9] :[m1 ⊕ m2](∅) = 0 and∀B 6= ∅ ∈ 2Θ:

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(1)

The notation
∑

X∩Y =B represents the sum over allX, Y ∈ 2Θ such thatX ∩ Y = B. The Dempster’s sum
m(.) , [m1⊕m2](.) is considered as a basic belief assignment if and only if the denominator in equation (1) is non-zero.
The termk12 ,

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sourcesB1 andB2. Whenk12 = 1, the
Dempster’s summ(.) does not exist and the bodies of evidencesB1 andB2 are said to be infull contradiction. This rule
of combination can be extended easily for the combination ofn > 2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical ground, presents however several weaknesses and limitations because of
the Shafer’s model itself (which does not necessary hold in some fusion problems involving continuous and ill-defined
concepts), the justification of the Dempster’s rule of combination frequently subject to criticisms, but mainly because
of counter-intuitive results given by the Dempster’s rule when the conflict between sources becomes important. Several
classes of infinite counter-examples to the Dempster’s rulecan be found in [13]. To overcome these limitations, Jean Dez-
ert and Florentin Smarandache propose a new mathematical theory based on other models (free or hybrid DSm models)
with new reliable rules of combinations able to deal with anykind of sources ( imprecises, uncertain and paradoxist, i.e.
highly conflicting). This is presented in next subsections.
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2.2 The DSmT based on the free DSm Model

The foundations of the DSmT (Dezert-Smarandache Theory) isto abandon the Shafer’s model (i.e. the exclusivity con-
straint betweenθi of Θ) just because for some fusion problems it is impossible to define/characterize the problem in
terms of well-defined/precise and exclusive elements. The free DSm model, denotedMf (Θ), on which is based DSmT
allows us to deal with imprecise/vague notions and conceptsbetween elements of the frame of discernmentΘ. The DSmT
includes the possibility to deal with evidences arising from different sources of information which don’t have access to
absolute interpretation of the elementsΘ under consideration.

2.2.1 Notion of hyper-power setDΘ

From this very simple idea and from any frameΘ, a new spaceDΘ = {α0, . . . , αd(n)−1} (free Boolean pre-algebra
generated byΘ and operators∩ and∪), calledhyper-power setis defined [5] as follows:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪ B) ∈ DΘ, (A ∩ B) ∈ DΘ

3. No other elements belong toDΘ, except those, obtained by using rules 1 or 2.

The generation of hyper-power setDΘ is related with the famous Dedekind’s problem on enumerating the set of monotone
Boolean functions. The cardinalityd(n) of DΘ follows the Dedekind sequence. It can be shown, see [4], thatall elements
αi of DΘ can then be obtained by the very simple linear equation [4]

dn = Dn · un (2)

wheredn ≡ [α0 ≡ ∅, α1, . . . , αd(n)−1]
′ is the vector of elements ofDΘ, un is the proper Smarandache’s codification

vector [4] andDn a particular binary matrix build recursively by the algorithm proposed in [4]. The final resultdn is
obtained from the previousmatrix productafter identifying(+, ·) with (∪,∩) operators,0 ·x with ∅ and1 ·x with x). Dn

is actually a binary matrix corresponding to all possible isotone Boolean functions.

2.2.2 Classic DSm rule of combination

By adopting the free DSm model and from any general frame of discernmentΘ, one then defines a mapmi(.) : DΘ →
[0, 1], associated to a given source of evidenceBi such thatmi(∅) = 0 and

∑

A∈DΘ mi(A) = 1. This approach allows us
to model any source which supports paradoxical (or intrinsic conflicting) information. From this very simple free DSm
modelMf(Θ), the classical DSm rule of combinationm(.) , [m1 ⊕ . . . ⊕ mk](.) of k ≥ 2 intrinsic conflicting and/or
uncertain independent sources of information is defined by [1]

mMf (Θ)(A) =
∑

X1,...,Xk∈DΘ

X1∩...∩Xk=A

k
∏

i=1

mi(Xi) (3)

andmMf (Θ)(∅) = 0 by definition. This rule, dealing with uncertain and/or paradoxical/conflicting information is com-
mutative and associative and requires no normalization procedure.

2.3 Extension of the DSmT to hybrid models

2.3.1 Notion of hybrid model

The adoption of the free DSm model (and the classic DSm rule) versus the Shafer’s model (with the Dempster’s rule)
can also be subject to criticisms since not all fusion problems correspond to the free DSm model (neither to the Shafer’s
model). These two models can be viewed actually as the two opposite/extreme and specific models on which are based the
DSmT and the DST. In general, the models for characterizing practical fusion problems do not coincide neither with the
Shafer’s model nor with the free DSm model. They have an hybrid nature (only someθi are truly exclusive).Very recently,
F. Smarandache and J. Dezert have extended the framework of the DSmT and the previous DSm rule of combination for
solving a wider class of fusion problems in which neither free DSm or Shafer’s models fully hold. This large class of
problems corresponds to problems characterized by any hybrid DSm model. A hybrid DSm model is defined from the free
DSm modelMf (Θ) by introducing some integrity constraints on some elementsA ∈ DΘ, if there are some certain facts
in accordance with the exact nature of the model related to the problem under consideration [12]. An integrity constraint

onA ∈ DΘ consists in forcingA to be empty through the modelM, denoted asA
M
≡ ∅. There are several possible kinds

of integrity constraints introduced in any free DSm model:



• Exclusivity constraints: when some conjunctions of elements ofΘ are truly impossible, for example whenθi∩ . . .∩

θk

M
≡ ∅.

• Non-existential constraints: when some disjunctions of elements ofΘ are truly impossible, for example when

θi ∪ . . .∪ θk

M
≡ ∅. The degenerated hybrid DSm modelM∅, defined by constraint according to the total ignorance:

It , θ1 ∪ θ2 ∪ . . . ∪ θn

M
≡ ∅, is excluded from consideration, because it is meaningless.

• Hybrid constraints: like for example(θi ∩ θj)∪ θk

M
≡ ∅ and any other hybrid proposition/element ofDΘ involving

both∩ and∪ operators such that at least one elementθk is subset of the constrained proposition.

The introduction of a given integrity constraintA
M
≡ ∅ ∈ DΘ implies the set of inner constraintsB

M
≡ ∅ for all B ⊂ A.

The introduction of two integrity constraints onA, B ∈ DΘ implies the constraint(A ∪ B) ∈ DΘ ≡ ∅ and this implies
the emptiness of allC ∈ DΘ such thatC ⊂ (A ∪ B).

The Shafer’s model, denotedM0(Θ), can be considered as the most constrained hybrid DSm model including all
possible exclusivity constraintswithout non-existential constraint, since all elements in the frame are forced to be mutually
exclusive.

2.3.2 The hybrid DSm rule of combination

The hybrid DSm rule of combination, associated to a given hybrid DSm modelM 6= M∅ , for k ≥ 2 independent sources
of information is defined for allA ∈ DΘ as [12]:

mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

(4)

whereφ(A) is the characteristic non emptiness function of a setA, i.e. φ(A) = 1 if A /∈ ∅ andφ(A) = 0 otherwise,
where∅ , {∅M, ∅}. ∅M is the set of all elements ofDΘ which have been forced to be empty through the constraints of
the modelM and∅ is the classical/universal empty set.S1(A) ≡ mMf (Θ)(A), S2(A), S3(A) are defined by [12]

S1(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k
∏

i=1

mi(Xi) (5)

S2(A) ,
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
∏

i=1

mi(Xi) (6)

S3(A) ,
∑

X1,X2,...,Xk∈DΘ

(X1∪X2∪...∪Xk)=A

(X1∩X2∩...∩Xk)∈∅

k
∏

i=1

mi(Xi) (7)

with U , u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) whereu(X) is the union of all singletonsθi that composeX and It ,

θ1∪θ2∪ . . .∪θn is the total ignorance.S1(A) corresponds to the classic DSm rule of combination based on the free DSm
model;S2(A) represents the mass of all relatively and absolutely empty sets which is transferred to the total or relative
ignorances;S3(A) transfers the sum of relatively empty sets to the non-empty sets.

2.4 The DSm cardinalityCM(A)

2.4.1 Definition

One important notion involved in the definition of the generalized pignistic transformation (GPT) is theDSm cardinality
[3]. The DSm cardinalityof any elementA ∈ DΘ, denotedCM(A), corresponds to the number of parts ofA in the
Venn diagram of the problem (modelM) taking into account the set of integrity constraints (if any), i.e. all the possible
intersections due to the nature of the elementsθi. This intrinsic cardinalitydepends on the modelM (free, hybrid or
Shafer’s model).M is the model that containsA, which depends both on the dimensionn = |Θ| and on the number of
parts of non-empty intersections present in its associatedVenn diagram. One has1 ≤ CM(A) ≤ 2n − 1. CM(A) must
not be confused with the classical cardinality|A| of a given setA (i.e. the number of its distinct elements) - that’s why a
new notation is necessary here.



It can be shown, see [3], thatCM(A), is exactly equal to the sum of the elements of the row ofDn corresponding
to propositionA in theun basis (see section 2.1.1). ActuallyCM(A) is very easy to compute by programming from the
algorithm of generation ofDΘ given in [4].

If one imposes a constraint that a setB from DΘ is empty (i.e. we choose a hybrid model), then one suppressesthe
columns corresponding to the parts which composeB in the matrixDn and the row ofB and the rows of all elements of
DΘ which are subsets ofB, getting a new matrixD′

n which represents a new hybrid modelM′. In theun basis, one
similarly suppresses the parts that formB, and now this basis has the dimension2n − 1 − CM(B).

2.4.2 A 3D example with the free DSm modelMf

Consider the 3D caseΘ = {θ1, θ2, θ3} with the free DSm modelMf corresponding to the following Venn diagram
(where< i > denotes the part which belongs toθi only,< ij > denotes the part which belongs toθi andθj only, etc; this
is the Smarandache’s codification [4]).
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The elements ofDΘ with their DSm cardinality are given by the following table:

A ∈ DΘ CMf (A)

α0 , ∅ 0

α1 , θ1 ∩ θ2 ∩ θ3 1

α2 , θ1 ∩ θ2 2

α3 , θ1 ∩ θ3 2

α4 , θ2 ∩ θ3 2

α5 , (θ1 ∪ θ2) ∩ θ3 3

α6 , (θ1 ∪ θ3) ∩ θ2 3

α7 , (θ2 ∪ θ3) ∩ θ1 3

α8 , {(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2) 4

α9 , θ1 4

α10 , θ2 4

α11 , θ3 4

α12 , (θ1 ∩ θ2) ∪ θ3 5

α13 , (θ1 ∩ θ3) ∪ θ2 5

α14 , (θ2 ∩ θ3) ∪ θ1 5

α15 , θ1 ∪ θ2 6

α16 , θ1 ∪ θ3 6

α17 , θ2 ∪ θ3 6

α18 , θ1 ∪ θ2 ∪ θ3 7

Table 1: CMf (A) for free DSm modelMf

2.4.3 A 3D example with a given hybrid model

Consider now the same 3D case with the modelM 6= Mf in which we force all possible conjunctions to be empty, but
θ1 ∩ θ2 according to the following Venn diagram.
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Then, one gets the following list of elements (with their DSmcardinal) for the restrictedDΘ taking into account the
integrity constraints of this hybrid model:

A ∈ DΘ CM(A)

α0 , ∅ 0

α1 , θ1 ∩ θ2 1

α2 , θ3 1

α3 , θ1 2

α4 , θ2 2

α5 , θ1 ∪ θ2 3

α6 , θ1 ∪ θ3 3

α7 , θ2 ∪ θ3 3

α8 , θ1 ∪ θ2 ∪ θ3 4

Table 2: CM(A) for the chosen hybrid modelM

2.4.4 A 3D example with the Shafer’s model

Consider now the same 3D case but with all exclusivity constraints onθi, i = 1, 2, 3. This corresponds to the 3D Shafer’s
modelM0 presented in the following Venn diagram.
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Then, one gets the following list of elements (with their DSmcardinal) for the restrictedDΘ, which coincides naturally
with the classical power set2Θ:

A ∈ (DΘ ≡ 2Θ) CM0(A)

α0 , ∅ 0

α1 , θ1 1

α2 , θ2 1

α3 , θ3 1

α4 , θ1 ∪ θ2 2

α5 , θ1 ∪ θ3 2

α6 , θ2 ∪ θ3 2

α7 , θ1 ∪ θ2 ∪ θ3 3

Table 3: CM(A) for the 3D Shafer’s modelM0

3 The pignistic transformations
We follow here the Smets’ point of view [14] about the assumption that beliefs manifest themselves at two mental levels:
the credal level where beliefs are entertained and thepignistic level where belief are used to make decisions. Pignistic
terminology has been coined by Philippe Smets and comes frompignus, a bet in Latin. The probability functions, usually
used to quantify beliefs at both levels, are actually used here only to quantify the uncertainty when a decision is really
necessary, otherwise we argue as Philippe Smets does, that beliefs are represented by belief functions. To take a rational
decision, we propose to transform beliefs into pignistic probability functions through the generalized pignistic transfor-
mation (GPT) which will be presented in the sequel. We first recall the classical pignistic transformation (PT) based on
the DST and then we generalize it within the DSmT framework.

3.1 The classical pignistic transformation

When a decision must be taken, we use the expected utility theory which requires to construct a probability functionP{.}
from basic belief assignmentm(.) [14]. This is achieved by the so-called classical pignistictransformation1 as follows

1We don’t divide herem(X) by 1 − m(∅) as in the P. Smets’ formulation just becausem(∅) = 0 in the DSmT framework, unless
there is a solid necessity to justify to do it.



(see [11] for justification):

P{A} =
∑

X∈2Θ

|X ∩ A|

|X |
m(X) (8)

where|A| denotes the number of worlds in the setA (with convention|∅|/|∅| = 1, to defineP{∅}). P{A} corresponds
to BetP (A) in the Smets’ notation [14]. Decisions are achieved by computing the expected utilities of the acts using the
subjective/pignisticP{.} as the probability function needed to compute expectations. Usually, one uses the maximum of
the pignistic probability as decision criterion. The max. of P{.} is often considered as a prudent betting decision criterion
between the two other alternatives (max of plausibility or max. of credibility). It is easy to show thatP{.} is indeed a
probability function (see [11]).

3.2 The generalized pignistic transformation

3.2.1 Definition

To take a rational decision within the DSmT framework, it is then necessary to generalize the classical pignistic trans-
formation in order to construct a pignistic probability function from any generalized basic belief assignmentm(.) drawn
form the DSm rule of combination (the classic or hybrid rule). This generalized pignistic transformation (GPT) is defined
by: ∀A ∈ DΘ,

P{A} =
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X) (9)

whereCM(X) denotes the DSm cardinal of propositionX for the DSm modelM of the problem under consideration.

The decision about the solution of the problem is usually taken by the maximum of pignistic probability function
P{.}. Let’s remark the close ressemblance of the two pignistic transformations (8) and (9). It can be shown that (9)
reduces to (8) when the hyper-power setDΘ reduces to classical power set2Θ if we adopt the Shafer’s model. But (9)
is a generalization of (8) since it can be used for computing pignistic probabilities for any models (including the Shafer’s
model).

3.2.2 P{.} is a probability measure

It is important to prove thatP{.} built from GPT is indeed a (subjective/pignistic) probability measure satisfying the
following axioms of the probability theory [7, 8]:

• Axiom 1 (nonnegativity): The (generalized pignistic) probability of any eventA is bounded by 0 and 1, i.e.0 ≤
P{A} ≤ 1

• Axiom 2 (unity): Any sure event (the sample space) has unity (generalized pignistic) probability, i.e.P{S} = 1

• Axiom 3 (additivity over mutually exclusive events): IfA, B are disjoint (i.e.A ∩ B = ∅) thenP (A ∪ B) =
P (A) + P (B)

The axiom 1 is satisfied because, by the definition of the generalized basic belief assignmentm(.), one has∀αi ∈ DΘ,
0 ≤ m(αi) ≤ 1 with

∑

αi∈DΘ m(αi) = 1 and since all coefficients involved within GPT are bounded by0 and 1, it fol-
lows directly that pignistic probabilities are also bounded by 0 and 1.

The axiom 2 is satisfied because all the coefficients involvedin the sure eventS , θ1 ∪ θ2 ∪ ... ∪ θn are equal to one
becauseCM(X ∩ S)/CM(X) = CM(X)/CM(X) = 1, so thatP{S} ≡

∑

αi∈DΘ m(αi) = 1.

The axiom 3 is satisfied. Indeed, from the definition of GPT, one has

P{A ∪ B} =
∑

X∈DΘ

CM(X ∩ (A ∪ B))

CM(X)
m(X) (10)

But if we considerA andB exclusive (i.e.A ∩ B = ∅), then it follows:

CM(X ∩ (A ∪ B)) = CM((X ∩ A) ∪ (X ∩ B))

= CM(X ∩ A) + CM(X ∩ B)



By substitutingCM(X ∩ (A ∪ B)) by CM(X ∩ A) + CM(X ∩ B) into (10), it comes:

P{A ∪ B} =
∑

X∈DΘ

CM(X ∩ A) + CM(X ∩ B)

CM(X)
m(X)

=
∑

X∈DΘ

CM(X ∩ A)

CM(X)
m(X)

+
∑

X∈DΘ

CM(X ∩ B)

CM(X)
m(X)

= P{A} + P{B}

which completes the proof. From the coefficientsCM(X∩A)
CM(X) involved in (9), it can also be easily checked thatA ⊂ B ⇒

P{A} ≤ P{B}. One can also easily prove the Poincaré’ equality:P{A ∪ B} = P{A} + P{B} − P{A ∩ B} because
CM(X ∩ (A∪B) = CM((X ∩A)∪ (X ∩B)) = CM(X ∩A) + CM(X ∩B)−CM(X ∩ (A∩B)) (one has substracted
CM(X ∩ (A ∩ B)), i.e. the number of parts ofX ∩ (A ∩ B) in the Venn diagram, due to the fact that these parts were
added twice: once inCM(X ∩ A) and second time inCM(X ∩ B).

4 Examples of GPT

4.1 Example for the 2D case

• With the free DSm model: Let’s considerΘ = {θ1, θ2} and the generalized basic belief assignmentm(.) over the
hyper-power setDΘ = {∅, θ1∩θ2, θ1, θ2, θ1∪θ2}. It is easy to construct the pignistic probabilityP{.}. According
to the definition of the GPT given in (9), one gets:

P{∅} = 0

P{θ1} = m(θ1) +
1

2
m(θ2) + m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1) + m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ1 ∩ θ2} =
1

2
m(θ2) +

1

2
m(θ1)+

m(θ1 ∩ θ2) +
1

3
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = P{Θ} = m(θ1) + m(θ2)+

m(θ1 ∩ θ2) + m(θ1 ∪ θ2) = 1

It is easy to prove that0 ≤ P{.} ≤ 1 andP{θ1 ∪ θ2} = P{θ1} + P{θ2} − P{θ1 ∩ θ2}

• With the Shafer’s model: If one adopts the Shafer’s model (we assumeθ1 ∩ θ2
M0

≡ ∅), then after applying the
hybrid DSm rule of combination, one gets a basic belief assignment with non null masses only onθ1, θ2 andθ1∪θ2.
By applying the GPT, one gets:

P{∅} = 0 P{θ1 ∩ θ2} = 0

P{θ1} = m(θ1) +
1

2
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

which naturally corresponds in this case to the pignistic probability built with the classical pignistic transformation
(8).



4.2 Example for the 3D case

• With the free DSm model: Let’s considerΘ = {θ1, θ2, θ3}, its hyper-power setDΘ = {α0, . . . , α18} (with αi,
i = 0, . . . , 18 corresponding to propositions explicated in table 1 of section 2.4), and the generalized basic belief
assignmentm(.) over the hyper-power setDΘ. The six tables presented in the appendix show the full derivations
of all pignistic probabilitiesP{αi} for i = 1, . . . , 18 (P{∅} always equals zero) according to the GPT formula (9).

Note thatP{α18} = 1 because(θ1 ∪ θ2 ∪ θ3) corresponds to the sure event in our subjective probabilityspace and
∑

αi∈DΘ m(αi) = 1 by the definition of any generalized basic belief assignmentm(.) defined onDΘ.

It can be verified (as expected) on this example, although being a quite tedious task, that the Poincaré’ equality
holds:

P{A1 ∪ . . . ∪ An} =
∑

I⊂{1,...,n}

I 6=∅

(−1)
|I|+1

P{
⋂

i∈I

Ai}

It is also easy to verify that∀A ⊂ B ⇒ P{A} ≤ P{B} holds. By example, for(α6 , (θ1∪θ3)∩θ2) ⊂ α10 , θ2)
and from the expressions ofP{α6} andP{α10} given in appendix, we directly conclude thatP{α6} ≤ P{α10}

because for allX ∈ DΘ, CM(X∩α6)
CM(X) ≤ CM(X∩α10)

CM(X) as shown in the following table

X CM(X∩α6)
CM(X) ≤ CM(X∩α10)

CM(X)

α1 1 ≤ 1
α2 1 ≤ 1
α3 (1/2) ≤ (1/2)
α4 1 ≤ 1
α5 (2/3) ≤ (2/3)
α6 1 ≤ 1
α7 (2/3) ≤ (2/3)
α8 (3/4) ≤ (3/4)
α9 (2/4) ≤ (2/4)
α10 (3/4) ≤ 1
α11 (2/4) ≤ (2/4)
α12 (3/5) ≤ (3/5)
α13 (3/5) ≤ (4/5)
α14 (3/5) ≤ (3/5)
α15 (3/6) ≤ (4/6)
α16 (3/6) ≤ (3/6)
α17 (3/6) ≤ (4/6)
α18 (3/7) ≤ (4/7)

• Example with a given hybrid DSm model: Consider now the hybrid modelM 6= Mf in which we force all
possible conjunctions to be empty, butθ1 ∩ θ2 according to the second Venn diagram presented in section 2.4.
In this case the hyper-power setDΘ reduces to 9 elements{α0, . . . , α8} explicated in table 2 of section 2.4.The
following tables present the full derivations of the pignistic probabilitiesP{αi} for i = 1, . . . , 8 from the GPT
formula (9) applying to this hybrid model.

P{α1} = P{α2} = P{α3} =
(1/1)m(α1) (0/1)m(α1) (1/1)m(α1)
+(0/1)m(α2) +(1/1)m(α2) +(0/2)m(α2)
+(1/2)m(α3) +(0/2)m(α3) +(2/2)m(α3)
+(1/2)m(α4) +(0/2)m(α4) +(1/2)m(α4)
+(1/3)m(α5) +(0/3)m(α5) +(2/3)m(α5)
+(1/3)m(α6) +(1/3)m(α6) +(2/3)m(α6)
+(1/3)m(α7) +(1/3)m(α7) +(1/3)m(α7)
+(1/4)m(α8) +(1/4)m(α8) +(2/4)m(α8)

Table 4: Derivation ofP{α1 , θ1 ∩ θ2}, P{α2 , θ3} andP{α3 , θ1}



P{α4} = P{α5} = P{α6} =
(1/1)m(α1) (1/1)m(α1) (1/1)m(α1)
+(0/1)m(α2) +(0/1)m(α2) +(1/1)m(α2)
+(1/2)m(α3) +(2/2)m(α3) +(2/2)m(α3)
+(2/2)m(α4) +(2/2)m(α4) +(1/2)m(α4)
+(2/3)m(α5) +(3/3)m(α5) +(2/3)m(α5)
+(1/3)m(α6) +(2/3)m(α6) +(3/3)m(α6)
+(2/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(2/4)m(α8) +(3/4)m(α8) +(3/4)m(α8)

Table 5: Derivation ofP{α4 , θ2}, P{α5 , θ1 ∪ θ2} andP{α6 , θ1 ∪ θ3}

P{α7} = P{α8} =
(1/1)m(α1) (1/1)m(α1)
+(2/2)m(α2) +(2/2)m(α2)
+(1/2)m(α3) +(2/2)m(α3)
+(2/2)m(α4) +(2/2)m(α4)
+(2/3)m(α5) +(3/3)m(α5)
+(2/3)m(α6) +(3/3)m(α6)
+(3/3)m(α7) +(3/3)m(α7)
+(3/4)m(α8) +(4/4)m(α8)

Table 6: Derivation ofP{α7 , θ2 ∪ θ3} andP{α8 , θ1 ∪ θ2 ∪ θ3}

• Example with the Shafer’s model: Consider now the Shafer’s modelM0 6= Mf in which we force all possible
conjunctions to be empty according to the third Venn diagrampresented in section 2.4. In this case the hyper-
power setDΘ reduces to the classical power set2Θ with 8 elements{α0, . . . , α7} explicated in table 3 of section
2.4. Applying, the GPT formula (9), one gets the following pignistic probabilitiesP{αi} for i = 1, . . . , 7 which
naturally coincide, in this particular case, with the values obtained directly by the classical pignistic transformation
(8):

P{α1} = P{α2} = P{α3} =
(1/1)m(α1) (0/1)m(α1) (0/1)m(α1)
+(0/1)m(α2) +(1/1)m(α2) +(0/1)m(α2)
+(0/1)m(α3) +(0/1)m(α3) +(1/1)m(α3)
+(1/2)m(α4) +(1/2)m(α4) +(0/2)m(α4)
+(1/2)m(α5) +(0/2)m(α5) +(1/2)m(α5)
+(0/2)m(α6) +(1/2)m(α6) +(1/2)m(α6)
+(1/3)m(α7) +(1/3)m(α7) +(1/3)m(α7)

Table 7: Derivation ofP{α1 , θ1}, P{α2 , θ2} andP{α3 , θ3}

P{α4} = P{α5} = P{α6} =
(1/1)m(α1) (1/1)m(α1) (0/1)m(α1)
+(1/1)m(α2) +(0/1)m(α2) +(1/1)m(α2)
+(0/1)m(α3) +(1/1)m(α3) +(1/1)m(α3)
+(2/2)m(α4) +(1/2)m(α4) +(1/2)m(α4)
+(1/2)m(α5) +(2/2)m(α5) +(1/2)m(α5)
+(1/2)m(α6) +(1/2)m(α6) +(2/2)m(α6)
+(2/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)

Table 8: Derivation ofP{α4 , θ1 ∪ θ2}, P{α5 , θ1 ∪ θ3} andP{α6 , θ2 ∪ θ3}

P{α7} =
(1/1)m(α1)
+(1/1)m(α2)
+(1/1)m(α3)
+(2/2)m(α4)
+(2/2)m(α5)
+(2/2)m(α6)
+(3/3)m(α7)

Table 9: Derivation ofP{α7 , θ1 ∪ θ2 ∪ θ3} = 1



5 Conclusion

A generalization of the classical pignistic transformation developed originally within the DST framework has been pro-
posed in this work. This generalization is based on the new theory of plausible and paradoxical reasoning (DSmT) and
provides a new mathematical issue to help the decision-making under uncertainty and paradoxist (i.e. highly conflict-
ing) sources of information. The generalized pignistic transformation (GPT) proposed here allows to build a subjec-
tive/pignistic probability measure over the hyper-power set of the frame of the problem under consideration or any kind
of model (free, hybrid or Shafer’s model). The GPT coincidesnaturally with the classical pignistic transformation when-
ever the Shafer’s model is adopted. It corresponds with assumptions of classical pignistic probability generalized tothe
free DSm model. A relation of GPT on general hybrid models to assumptions of classical PT is still in the process of
investigation. Several examples for the 2D and 3D cases for different kinds of models have been presented to illustrate
the validity of the GPT.
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Appendix: Derivation of the GPT for the 3D free DSm model
P{α1} = P{α2} = P{α3} =
m(α1) m(α1) m(α1)
+(1/2)m(α2) +m(α2) +(1/2)m(α2)
+(1/2)m(α3) +(1/2)m(α3) +m(α3)
+(1/2)m(α4) +(1/2)m(α4) +(1/2)m(α4)
+(1/3)m(α5) +(1/3)m(α5) +(2/3)m(α5)
+(1/3)m(α6) +(2/3)m(α6) +(1/3)m(α6)
+(1/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(1/4)m(α8) +(2/4)m(α8) +(2/4)m(α8)
+(1/4)m(α9) +(2/4)m(α9) +(2/4)m(α9)
+(1/4)m(α10) +(2/4)m(α10) +(1/4)m(α10)
+(1/4)m(α11) +(1/4)m(α11) +(2/4)m(α11)
+(1/5)m(α12) +(2/5)m(α12) +(2/5)m(α12)
+(1/5)m(α13) +(2/5)m(α13) +(2/5)m(α13)
+(1/5)m(α14) +(2/5)m(α14) +(2/5)m(α14)
+(1/6)m(α15) +(2/6)m(α15) +(2/6)m(α15)
+(1/6)m(α16) +(2/6)m(α16) +(2/6)m(α16)
+(1/6)m(α17) +(2/6)m(α17) +(2/6)m(α17)
+(1/7)m(α18) +(2/7)m(α18) +(2/7)m(α18)

P{α10} = P{α11} = P{α12} =
m(α1) m(α1) m(α1)
+m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +m(α5)
+m(α6) +(2/3)m(α6) +m(α6)
+(2/3)m(α7) +(2/3)m(α7) +m(α7)
+(3/4)m(α8) +(3/4)m(α8) +m(α8)
+(2/4)m(α9) +(2/4)m(α9) +(3/4)m(α9)
+m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +m(α11) +m(α11)
+(3/5)m(α12) +(4/5)m(α12) +m(α12)
+(4/5)m(α13) +(3/5)m(α13) +(4/5)m(α13)
+(3/5)m(α14) +(3/5)m(α14) +(4/5)m(α14)
+(4/6)m(α15) +(3/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(4/6)m(α17) +(4/6)m(α17) +(5/6)m(α17)
+(4/7)m(α18) +(4/7)m(α18) +(5/7)m(α18)

Table 10: Derivation ofP{α1}, P{α2} andP{α3} Table 13: Derivation ofP{α10}, P{α11} andP{α12}

P{α4} = P{α5} = P{α6} =
m(α1) m(α1) m(α1)
+(1/2)m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +(1/2)m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +(2/3)m(α5)
+(2/3)m(α6) +(2/3)m(α6) +m(α6)
+(1/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(2/4)m(α8) +(3/4)m(α8) +(3/4)m(α8)
+(1/4)m(α9) +(2/4)m(α9) +(2/4)m(α9)
+(2/4)m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +(3/4)m(α11) +(2/4)m(α11)
+(2/5)m(α12) +(3/5)m(α12) +(3/5)m(α12)
+(2/5)m(α13) +(3/5)m(α13) +(3/5)m(α13)
+(2/5)m(α14) +(3/5)m(α14) +(3/5)m(α14)
+(2/6)m(α15) +(3/6)m(α15) +(3/6)m(α15)
+(2/6)m(α16) +(3/6)m(α16) +(3/6)m(α16)
+(2/6)m(α17) +(3/6)m(α17) +(3/6)m(α17)
+(2/7)m(α18) +(3/7)m(α18) +(3/7)m(α18)

P{α10} = P{α11} = P{α12} =
m(α1) m(α1) m(α1)
+m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +m(α5)
+m(α6) +(2/3)m(α6) +m(α6)
+(2/3)m(α7) +(2/3)m(α7) +m(α7)
+(3/4)m(α8) +(3/4)m(α8) +m(α8)
+(2/4)m(α9) +(2/4)m(α9) +(3/4)m(α9)
+m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +m(α11) +m(α11)
+(3/5)m(α12) +(4/5)m(α12) +m(α12)
+(4/5)m(α13) +(3/5)m(α13) +(4/5)m(α13)
+(3/5)m(α14) +(3/5)m(α14) +(4/5)m(α14)
+(4/6)m(α15) +(3/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(4/6)m(α17) +(4/6)m(α17) +(5/6)m(α17)
+(4/7)m(α18) +(4/7)m(α18) +(5/7)m(α18)

Table 11: Derivation ofP{α4}, P{α5} andP{α6} Table 14: Derivation ofP{α13}, P{α14} andP{α15}

P{α7} = P{α8} = P{α9} =
m(α1) m(α1) m(α1)
+m(α2) +m(α2) +m(α2)
+m(α3) +m(α3) +m(α3)
+(1/2)m(α4) +m(α4) +(1/2)m(α4)
+(2/3)m(α5) +m(α5) +(2/3)m(α5)
+(2/3)m(α6) +m(α6) +(2/3)m(α6)
+m(α7) +m(α7) +m(α7)
+(3/4)m(α8) +m(α8) +(3/4)m(α8)
+(3/4)m(α9) +(3/4)m(α9) +m(α9)
+(2/4)m(α10) +(3/4)m(α10) +(2/4)m(α10)
+(2/4)m(α11) +(3/4)m(α11) +(2/4)m(α11)
+(3/5)m(α12) +(4/5)m(α12) +(3/5)m(α12)
+(3/5)m(α13) +(4/5)m(α13) +(3/5)m(α13)
+(3/5)m(α14) +(4/5)m(α14) +(4/5)m(α14)
+(3/6)m(α15) +(4/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(3/6)m(α17) +(4/6)m(α17) +(3/6)m(α17)
+(3/7)m(α18) +(4/7)m(α18) +(4/7)m(α18)

P{α16} = P{α17} = P{α18} =
m(α1) m(α1) m(α1)
+m(α2) +m(α2) +m(α2)
+m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+m(α5) +m(α5) +m(α5)
+m(α6) +m(α6) +m(α6)
+m(α7) +m(α7) +m(α7)
+m(α8) +m(α8) +m(α8)
+m(α9) +(3/4)m(α9) +m(α9)
+(3/4)m(α10) +m(α10) +m(α10)
+m(α11) +m(α11) +m(α11)
+m(α12) +m(α12) +m(α12)
+(4/5)m(α13) +m(α13) +m(α13)
+m(α14) +(4/5)m(α14) +m(α14)
+(5/6)m(α15) +(5/6)m(α15) +m(α15)
+m(α16) +(5/6)m(α16) +m(α16)
+(5/6)m(α17) +m(α17) +m(α17)
+(6/7)m(α18) +(6/7)m(α18) +m(α18)

Table 12: Derivation ofP{α7}, P{α8} andP{α9} Table 15: Derivation ofP{α16}, P{α17} andP{α18}
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