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Abstract — This paper presents in detail the generalized pignistingfarmation (GPT) succinctly developed in the Dezert-@mdache
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Keywords: Dezert-Smarandache Theory (DSmT), Dempster-Shafer ¥jpégmistic transformation, subjective probability, pigtic
probability, plausible and paradoxical reasoning, DSndicatity, hybrid model, data fusion, decision-making, ftich, processing.

1 Introduction

In the recent theory of plausible and paradoxical reaso(@®mT) developed by Dezert and Smarandathé [2, 10], a
new generalized pignistic transformation has been praptaseonstruct a subjective probability measig } from any
generalized basic belief assignment.) defined over the hyper-power sB. In referencel[2], a simple example of
such generalized pignistic transformation has been predemly for the case = |©| = 2. In this paper, we present
the complete derivation of this pignistic transformation the case: = |©| = 3 and we generalize the result. Before
introducing the GPT, it is however necessary to briefly prettee DSmTI[L| 2, 13,14.1%. 10] with respect to the Dempster-
Shafer Theory (DST)]9].

2 Foundations of the DST and DSMT
2.1 The DST and the Shafer’'s model

The Shafer's model, denoted hekd”(©), on which is based the Dempster-Shafer Theory, assumeshaugive and
exclusive frame of discernment of the problem under comatdn © = {6,,0-,...,60,}. The model requires actually
that an ultimate refinement of the problem is possible softhaan always be well precisely defined/identified in such
a way that we are sure that they are exclusive and exhaustieen this model, a basic belief assignment (blaj.) :

29 — [0, 1] such thatn;(0) = 0 andy_ , ..o m;(A) = 1 associated to a given body of eviderigeis defined, where®

is thepower sebf O, i.e. the set of all subsets 6f. Within DST, the fusion (combination) of two independeniszes of
evidenceB; andB, is obtained through the Dempster’s rule of combination [8}i @ m»](0) = 0 andvB # ) € 2°:

> xny=p M (X)ma(Y)
L= xny—pmi(X)ma(Y)

The notationy_ yy-_ 5 represents the sum over all, Y € 2° such thatX N Y = B. The Dempster's sum
m(.) £ [m1 ©mo](.) is considered as a basic belief assignment if and only if émchinator in equatiofif1) is non-zero.
The termk £ > xny—p M1 (X)ma(Y) is called degree of conflict between the sourBeaindB>. Whenk;» = 1, the
Dempster’'s sumn(.) does not exist and the bodies of evidenBgsndB; are said to be ifull contradiction This rule
of combination can be extended easily for the combination of2 independent sources of evidence. The DST, although
very attractive because of its solid mathematical grounesgnts however several weaknesses and limitations =ctus
the Shafer's model itself (which does not necessary holdmesfusion problems involving continuous and ill-defined
concepts), the justification of the Dempster’s rule of camakion frequently subject to criticisms, but mainly be@us
of counter-intuitive results given by the Dempster’s ruleen the conflict between sources becomes important. Several
classes of infinite counter-examples to the Dempster'saahebe found in[13]. To overcome these limitations, Jean Dez
ert and Florentin Smarandache propose a new mathematitaltbased on other models (free or hybrid DSm models)
with new reliable rules of combinations able to deal with &md of sources ( imprecises, uncertain and paradoxist, i.e
highly conflicting). This is presented in next subsections.
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2.2 The DSmMT based on the free DSm Model

The foundations of the DSmT (Dezert-Smarandache Theotg)abandon the Shafer's model (i.e. the exclusivity con-
straint betweer; of ©) just because for some fusion problems it is impossible findé&haracterize the problem in
terms of well-defined/precise and exclusive elements. TéeDSm model, denoteti/ (©), on which is based DSmT
allows us to deal with imprecise/vague notions and condegitseen elements of the frame of discernnt&ntThe DSMT
includes the possibility to deal with evidences arisingrrdifferent sources of information which don’t have access t
absolute interpretation of the elemeftsinder consideration.

2.2.1 Notion of hyper-power s&®

From this very simple idea and from any frar®e a new spacé® = {ay,... ,aq(n)—1} (free Boolean pre-algebra
generated by and operators) andu), calledhyper-power seis defined[[5] as follows:

1. 0,91,...,9n e D®
2.YAeD® BeD® (AUB)e D® (ANB) € D®
3. No other elements belong 10°, except those, obtained by using rules 1 or 2.

The generation of hyper-power sef is related with the famous Dedekind’s problem on enumegatia set of monotone
Boolean functions. The cardinalitifn) of D® follows the Dedekind sequence. It can be shown,[See [4]athalements
«a; of D® can then be obtained by the very simple linear equalibn [4]

whered,, = [ag = 0, a1,...,aqm)—1]" is the vector of elements dd®, u,, is the proper Smarandache’s codification
vector [4] andD,, a particular binary matrix build recursively by the alghrit proposed in[J4]. The final resut, is
obtained from the previousatrix productafter identifying(+, -) with (U, N) operators() - z with §) and1 - z with z). D,

is actually a binary matrix corresponding to all possibt#dse Boolean functions.

2.2.2 Classic DSm rule of combination

By adopting the free DSm model and from any general framesafesihmen®, one then defines a map;(.) : D® —

[0, 1], associated to a given source of evidefigauch thatn;(0) = 0 and}_ , . ,e mi(A) = 1. This approach allows us
to model any source which supports paradoxical (or intriesinflicting) information. From this very simple free DSm
model M/ (), the classical DSm rule of combinatiam(.) £ [m; & ... @ my](.) of k > 2 intrinsic conflicting and/or

uncertain independent sources of information is definedby [

k
murey(A) = Y J]mi(X) 3)
X1,...,X,eD® =1
X1N..NX,=A

andm s (e () = 0 by definition. This rule, dealing with uncertain and/or mhrgical/conflicting information is com-
mutative and associative and requires no normalizatioogatare.

2.3 Extension of the DSmT to hybrid models
2.3.1 Notion of hybrid model

The adoption of the free DSm model (and the classic DSm rw@dejus the Shafer's model (with the Dempster’s rule)
can also be subject to criticisms since not all fusion pnaisieorrespond to the free DSm model (neither to the Shafer's
model). These two models can be viewed actually as the twosifgextreme and specific models on which are based the
DSmT and the DST. In general, the models for characteriziagtjzal fusion problems do not coincide neither with the
Shafer’s model nor with the free DSm model. They have an kytature (only someé; are truly exclusive).\Very recently,

F. Smarandache and J. Dezert have extended the framewdr& BESmT and the previous DSm rule of combination for
solving a wider class of fusion problems in which neitheeff2Sm or Shafer's models fully hold. This large class of
problems corresponds to problems characterized by anychp®m model. A hybrid DSm model is defined from the free
DSm modelM/(©) by introducing some integrity constraints on some elemdntsD®, if there are some certain facts

in accordance with the exact nature of the model relatede@tbblem under consideratidn [12]. An integrity constrain

on A € D® consists in forcingd to be empty through the modgH, denoted as! 4 (). There are several possible kinds
of integrity constraints introduced in any free DSm model:



e EXxclusivity constraintswhen some conjunctions of elementsére truly impossible, for example whém...N
M

¢ Non-existential constraintswhen some disjunctions of elements @fare truly impossible, for example when
0;U...Ub 4 (). The degenerated hybrid DSm modef, defined by constraint according to the total ignorance:
M . : . :
I, 20, U6, U... U0, = 0, is excluded from consideration, because it is meaningless

¢ Hybrid constraintslike for example(6; N 6;) U b, 4 () and any other hybrid proposition/elementf involving
bothn anduU operators such that at least one elengkris subset of the constrained proposition.

The introduction of a given integrity constraiAtX () € D® implies the set of inner constraing £ (¢ forall B C A.
The introduction of two integrity constraints oh B € D® implies the constraintA U B) € D® = () and this implies
the emptiness of all' € D® such thaC C (AU B).

The Shafer's model, denotettt®(©), can be considered as the most constrained hybrid DSm muclatling all
possible exclusivity constraimgthout non-existential constrairgince all elements in the frame are forced to be mutually
exclusive.

2.3.2 The hybrid DSm rule of combination

The hybrid DSm rule of combination, associated to a giverridyBSm modelM # My , for k > 2 independent sources
of information is defined for ald € D® as [12]:

o) (4) £ $(A)[S1(4) + Sa(4) + Ss(A)] (4)

where¢(A) is the characteristic non emptiness function of asete. ¢(A) = 1if A ¢ @ andg(A) = 0 otherwise,
where® £ {0, 0}. O is the set of all elements d@© which have been forced to be empty through the constraints of
the modelM and( is the classical/universal empty s€t.(A) = m s (e)(A), S2(A), S3(A) are defined by [12]

k
S1(A) 2 Z Hmi(Xi) %)

X1,X2,...,X,eD® =1
(XlﬁXQQ...ﬂXk):A

k
$5(A) 2 > T m(x) ©
X1,X2,...,X€0 =1
U=AN{HEB N (A=1,))

S3(4) = > H mi(Xi) (@)

(X1UX2U...UX)=A
(X1NX2N...NX})ED

with U = w(X;) Uu(X2) U ... U u(X}y) whereu(X) is the union of all singletons; that composeX andI; =

61 Ub,U. .. U8, is the total ignoranceS; (A) corresponds to the classic DSm rule of combination baseldeofiee DSm
model; S2(A) represents the mass of all relatively and absolutely ermgts/which is transferred to the total or relative
ignorancesSs(A) transfers the sum of relatively empty sets to the non-emgity s

2.4 The DSm cardinalityCa (A)
2.4.1 Definition

One important notion involved in the definition of the getieeal pignistic transformation (GPT) is tfi@Sm cardinality
[B]. The DSm cardinalityof any elementd € D®, denotedCp(A), corresponds to the number of partsAfin the
Venn diagram of the problem (modgl) taking into account the set of integrity constraints (ifan.e. all the possible
intersections due to the nature of the eleméhtsThis intrinsic cardinality depends on the modelt (free, hybrid or
Shafer's model).M is the model that containgd, which depends both on the dimension= |©| and on the number of
parts of non-empty intersections present in its associ#®ed diagram. One hals < Cyp(A) < 2™ — 1. Caq(A) must
not be confused with the classical cardinality of a given set4 (i.e. the number of its distinct elements) - that's why a
new notation is necessary here.



It can be shown, se&l[3], th&f((A4), is exactly equal to the sum of the elements of the roDgf corresponding
to propositionA in theu,, basis (see section 2.1.1). Actuadly,(A) is very easy to compute by programming from the
algorithm of generation aD® given in [4].

If one imposes a constraint that a $2from D® is empty (i.e. we choose a hybrid model), then one suppréisses
columns corresponding to the parts which compBda the matrixD,, and the row ofB and the rows of all elements of
D® which are subsets @B, getting a new matridD’,, which represents a new hybrid model’. In theu,, basis, one
similarly suppresses the parts that foBnand now this basis has the dimens®n— 1 — Ca(B).

2.4.2 A 3D example with the free DSm magdiéf

Consider the 3D cas® = {6, 0,05} with the free DSm modelM/ corresponding to the following Venn diagram
(where< ¢ > denotes the part which belongsttoonly, < ij > denotes the part which belongstoandd; only, etc; this
is the Smarandache’s codificatian [4]).

01 02

o)
A
4

03

The elements oD® with their DSm cardinality are given by the following table:

Ae De Cois (A)
ap =0 0
a1 £ 01 N6y N O3 1
Qo £ 01 N0y 2
as £ 01N o3 2
Oy £ 02 N O3 2
a5é(91U92)093 3
agé(91U93)092 3
a7é(92U93)091 3
agé{(Hl ﬂ@g)U93}ﬂ(91 U92) 4
Q9 £ 91 4
10 £ 6‘2 4
11 £ 6‘3 4
19 £ (91 n 92) U 03 5
13 é (91 N 93) U 92 5
Q14 é (92 N 93) U 91 5
Q15 é 91 @] 92 6
16 = 91 U 93 6
ar7 £ 6, U6 6
O[lgéolLJ@QU@g 7
Table 1: Cpqs (A) for free DSm modeivt/

2.4.3 A 3D example with a given hybrid model

Consider now the same 3D case with the motie£ M/ in which we force all possible conjunctions to be empty, but
6, N B, according to the following Venn diagram.

01 62

v

03



Then, one gets the following list of elements (with their D8andinal) for the restricted® taking into account the
integrity constraints of this hybrid model:

Ae D®
Oéoé(b
N
a1 =01 N0,
N
042:93
Oégéel
a4é92
Oé5é91U92
a6é91U93
Oé7é92U93
agé91U92U93

~—

<
B W W N Rk O
b

Table 2: Cxq(A) for the chosen hybrid modeWt

2.4.4 A 3D example with the Shafer's model

Consider now the same 3D case but with all exclusivity camsts ond;, ¢ = 1, 2, 3. This corresponds to the 3D Shafer’s
model M presented in the following Venn diagram.

o

03

Then, one gets the following list of elements (with their D&andinal) for the restricte®®, which coincides naturally
with the classical power sef:
Ae(D®=29) Cupp(A)
ap @
61

(1> {1>

0
a1 1
OLQéOQ 1
043293 1
Oé4é91U92 2
Oé5é91U93 2
agét%u@g 2
a7é91U92U93 3

Table 3: Cpq(A) for the 3D Shafer's modeit®

3 The pignistic transformations

We follow here the Smets’ point of view [IL4] about the assuompthat beliefs manifest themselves at two mental levels:
the credallevel where beliefs are entertained and lignistic level where belief are used to make decisions. Pignistic
terminology has been coined by Philippe Smets and comesgignus a bet in Latin. The probability functions, usually
used to quantify beliefs at both levels, are actually usad baly to quantify the uncertainty when a decision is really
necessary, otherwise we argue as Philippe Smets doeselledstare represented by belief functions. To take a ration
decision, we propose to transform beliefs into pignistichability functions through the generalized pignisticstor-
mation (GPT) which will be presented in the sequel. We firstlighe classical pignistic transformation (PT) based on
the DST and then we generalize it within the DSmT framework.

3.1 The classical pignistic transformation

When a decision must be taken, we use the expected utiliyyyhvehich requires to construct a probability functiByg. }
from basic belief assignment(.) [14]. This is achieved by the so-called classical pignistmsformatioh as follows

'We don't divide heren(X) by 1 — m(0) as in the P. Smets’ formulation just becausé)) = 0 in the DSmT framework, unless
there is a solid necessity to justify to do it.



(seel[11] for justification):

piay= Y K04 x ®)

Xe2© |)(|

where| A| denotes the number of worlds in the ge{with convention|()|/|0| = 1, to defineP{0}). P{A} corresponds

to BetP(A) in the Smets’ notatiori[14]. Decisions are achieved by cdinguhe expected utilities of the acts using the
subjective/pignistid’{.} as the probability function needed to compute expectatidssaally, one uses the maximum of
the pignistic probability as decision criterion. The mak .} is often considered as a prudent betting decision criterion
between the two other alternatives (max of plausibility @xnof credibility). It is easy to show thd®{.} is indeed a
probability function (see [11]).

3.2 The generalized pignistic transformation
3.2.1 Definition

To take a rational decision within the DSmT framework, ithen necessary to generalize the classical pignistic trans-
formation in order to construct a pignistic probability filion from any generalized basic belief assignmeft) drawn
form the DSm rule of combination (the classic or hybrid rulEis generalized pignistic transformation (GPT) is define
by: VA € D®,

R A ©
XeD®

whereC (X ) denotes the DSm cardinal of propositiénfor the DSm modeM of the problem under consideration.

The decision about the solution of the problem is usuallgmaky the maximum of pignistic probability function
P{.}. Let’s remark the close ressemblance of the two pignistinsgformations[{8) and}(9). It can be shown tiiht (9)
reduces to[{8) when the hyper-power £ reduces to classical power 2t if we adopt the Shafer's model. Bi (9)
is a generalization ofI8) since it can be used for computiggiptic probabilities for any models (including the Shafe
model).

3.2.2 P{.}is a probability measure

It is important to prove thaP{.} built from GPT is indeed a (subjective/pignistic) probapimeasure satisfying the
following axioms of the probability theory[¥] 8]:

e Axiom 1 (nonnegativity): The (generalized pignistic) probailif any eventA is bounded by 0 and 1, i.€) <
P{A} <1

e Axiom 2 (unity): Any sure event (the sample space) has unity (géimedhpignistic) probability, i.eP{S} =1

e Axiom 3 (additivity over mutually exclusive events): K, B are disjoint (i.,e. AN B = (}) thenP(A U B) =
P(A)+ P(B)

The axiom 1 is satisfied because, by the definition of the gdized basic belief assignmeny.), one hag/a; € D®,
0 <m(a;) < 1with}"  pem(a;) = 1and since all coefficients involved within GPT are bounde®ayd 1, it fol-
lows directly that pignistic probabilities are also bouddby O and 1.

The axiom 2 is satisfied because all the coefficients invoinéde sure evenf = 6, U6, U ... U 6, are equal to one
becaus€n (X N S)/Cm(X) = Cm(X)/Cm(X) = 1,s0 thatP{S} = >, cpe m(a;) = 1.

The axiom 3 is satisfied. Indeed, from the definition of GPE bas

Crm(X N (AU B))

P{AUB}= > el

XeD®

m(X) (10)

But if we considerd andB exclusive (i.e.A N B = (), then it follows:

CM(XN(AUB))=Cm((XNA)U(XNB))
=Cm(XNA)+Cm(XNB)



By substitutingCy((X N (AU B)) by Cam(X N A) + Ca(X N B) into (), it comes:

Cm(XNA) +Cm(XNB)

P{AUB}= > )

XeD®

. Cm(XNA)
= Xg@ 70/\/[ ) m(X)

Cu(XnB)
+X§@ Cm(X) -

— P{A} + P{B}

m(X)

which completes the proof. From the coefficie A(jg;;‘) involved in [9), it can also be easily checked tatc B =

P{A} < P{B}. One can also easily prove the Poincaré’ equaityA U B} = P{A} + P{B} — P{A N B} because
CMm(XN(AUB)=Cm((XNAU(XNB))=Cm(XNA) +Cm(XNB)—Cm(XN(ANB)) (one has substracted
Cm(X N (AN B)), ie. the number of parts of N (A N B) in the Venn diagram, due to the fact that these parts were
added twice: once ii,((X N A) and second time i@,((X N B).

4 Examples of GPT

4.1 Example for the 2D case

o With the free DSm model Let’s conside© = {61, 6} and the generalized basic belief assignmef) over the
hyper-power seD® = {0, 0, N6, 0, 02,6,Ub}. Itis easy to construct the pignistic probabilfy.}. According
to the definition of the GPT given ill(9), one gets:

P{0}=0
P{Hl} = m(@l) + %m(oz) + m(91 n 92) + gm(ﬂl @] 92)
P{02} = m(92) + %m(@l) + m(91 n 92) + gm(ﬂl U 92)

1 1
P{91 N 92} = 5771(92) + 5m(91)+
1
m(6‘1 n 92) + gm(91 U 92)

m(91 n 92) + m(91 U 92) =1
It is easy to prove thdt < P{.} < 1andP{6; U} = P{6:} + P{62} — P{61 N0}
e With the Shafer’'s model: If one adopts the Shafer's model (we assuine 6 = (), then after applying the
hybrid DSm rule of combination, one gets a basic belief asagnt with non null masses only ép, 05 andf; U6-.

By applying the GPT, one gets:
P{0}=0 P{61nb} =0

P{0:} =m(6,)+ %m(@l Ubs)

P{0:} = m(62) + %m(@l Ubs)
P{91 U 92} = m(b’l) + m(b’g) + m(91 U 92) =1

which naturally corresponds in this case to the pignistabpbility built with the classical pignistic transformarti

@.



4.2 Example for the 3D case

e With the free DSm model Let's considel© = {6, 0,03}, its hyper-power seD® = {aq, ..., a1} (with «,
1 =0,...,18 corresponding to propositions explicated in table 1 ofisac2.4), and the generalized basic belief
assignmentn(.) over the hyper-power sé2®. The six tables presented in the appendix show the full dttors
of all pignistic probabilitiesP{«;} fori = 1,...,18 (P{0} always equals zero) according to the GPT formlla (9).

Note thatP{a15} = 1 becaus€d; U 62 U 03) corresponds to the sure event in our subjective probalsjiice and
> a,epe m(a;) = 1 by the definition of any generalized basic belief assignmef} defined onD®.

It can be verified (as expected) on this example, althoughgb&iquite tedious task, that the Poincaré’ equality

holds:
P{AU.UA = > ()P 4}
I1c{1,...,n} el
1#£0

Itis also easy to verify thatA ¢ B = P{A} < P{B} holds. By example, fofas £ (61 Uf3)N6s) C a1g = 62)
and from the expressions &f{«as} and P{«10} given in appendix, we directly conclude th@{as} < P{a10}
because for alX € D®, &uXnas) o Cm(XNai0) 55 shown in the following table

Cm(X) —  Cm(X)
(651 1 S 1
(65) 1 S 1
o | 12 <
(6%} 1 S 1
o | @3 < @)
(675 1 S 1
% (2/3) < (2/3)
s (3/4) < (3/4)
g (2/4) < (2/4)
a1 (3/4) < 1
aiy (2/4) < (2/4)
a1z (3/5) < (3/5)
Qi3 (3/5) < (4/5)
014 (3/5) < (3/5)
a5 | (3/6) < (4/6)
ag | (3/6) < (3/6)
a7 | (3/6) < (4/6)
as | (3/7) < (4/7)

e Example with a given hybrid DSm model Consider now the hybrid mode\t # M7 in which we force all
possible conjunctions to be empty, ljtn 6 according to the second Venn diagram presented in sectibn 2.
In this case the hyper-power sBf reduces to 9 elemen{sy, ..., ag} explicated in table 2 of section 2.4.The
following tables present the full derivations of the pigitiprobabilitiesP{«;} fori = 1,...,8 from the GPT
formula [9) applying to this hybrid model.

Plaa} = Plag} = Plaz} =

(1/D)m(aa (0/Dm(a1) | (1/1)m(on)
+(0/1)ym(a2) | +(1/1)m(az) | +(0/2)m(az)
+(1/2)ym(az) | +(0/2)m(asz) | +(2/2)m(az)
+(1/2)m(ay) | +(0/2)m(ay) | +(1/2)m(cy)
+(1/3)m(as) | +(0/3)m(as) | +(2/3)m(as)
+(1/3)m(as) | +(1/3)m(as) | +(2/3)m(ae)
+(1/3)ym(az) | +(1/3)m(ar) | +(1/3)m(ar)
+(1/4)m(as) | +(1/4)m(as) | +(2/4)m(as)

Table 4: Derivation of P{a; £ 6, N6}, P{as £ 05} andP{az £ 6}



Play} = Plas} = Plag} =
(1/Dm(ar) | (1/Dmlaq) | (1/1)m(a1)
+(0/1)ym(a2) | +(0/1)m(az) | +(1/1)m(az)
+(1/2)m(as) | +(2/2)m(as) | +(2/2)m(as)
+(2/2)m(ay) | +(2/2)m(ayq) | +(1/2)m(cy)
+(2/3)m(as) | +(3/3)m(as) | +(2/3)m(as)
+(1/3)m(as) | +(2/3)m(as) | +(3/3)m(as)
+(2/3)ym(az) | +(2/3)m(ar) | +(2/3)m(ar)
+(2/4)m(as) | +(3/4)m(as) | +(3/4)m(as)
Table 5: Derivation of P{ay £ 6}, P{as £ 6, U6y} andP{ag = 0, U 63}
P{lar} = Plag} =
(1/D)m(aa) | (1/1)m(an
+(2/2)m(a2) | +(2/2)m(a2)
+(1/2)m(as) | +(2/2)m(as)
+(2/2)m(ay) | +(2/2)m(cy)
+(2/3)m(as) | +(3/3)m(as)
+(2/3)m(as) | +(3/3)m (o)
+(3/3)m(az) | +(3/3)m(ar)
+(3/4)m(as) | +(4/4)m(as)

Table 6: Derivation of P{a; £ 6 U3} andP{ag £ 6, U6, U 63}

e Example with the Shafer's model Consider now the Shafer's mod#t® # M/ in which we force all possible
conjunctions to be empty according to the third Venn diagpaesented in section 2.4. In this case the hyper-
power setD® reduces to the classical power 88twith 8 elements ay, . . ., ar} explicated in table 3 of section
2.4. Applying, the GPT formuld19), one gets the followingmistic probabilitiesP{«a;} fori = 1,..., 7 which
naturally coincide, in this particular case, with the valobtained directly by the classical pignistic transfoiiorat

@):

Plon} = Plag} = Plaz} =

(1/1)m(a1) | (0/)m(a1) | (0/1)m(cy

+(0/1)ym(az) | +(1/1)m(az) | +(0/1)m(az)
+(0/1)m(as) | +(0/)m(as) | +(1/1)m(as)
+(1/2)m(ay) | +(1/2)m(ay) | +(0/2)m(cy)
+(1/2)m(as) | +(0/2)m(as) | +(1/2)m(as)
+(0/2)ym(ag) | +(1/2)m(ag) | +(1/2)m(as)
+(1/3)ym(ar) | +(1/3)m(ar) | +(1/3)m(ar)

Table 7: Derivation of P{a; £ 0.}, P{as £ 65} andP{as £ 63}

Ploy} = Plas} = P{lag} =

(1/Dm(eq) | (1/1)m(ar) | (0/1)m(an)
+(1/D)m(a2) | +(0/1)m(az) | +(1/1)m(az)
+(0/)ym(asz) | +(1/1)m(asz) | +(1/1)m(az)
+(2/2)ym(as) | +(1/2)m(as) | +(1/2)m(ay)
+(1/2)m(as) | +(2/2)m(as) | +(1/2)m(as)
+(1/2)m(ae) | +(1/2)m(as) | +(2/2)m(ae)
+(2/3)m(az) | +(2/3)m(ar) | +(2/3)m(ar)

Table 9: Derivation of P{a; £ 6; U, U3} =1



5 Conclusion

A generalization of the classical pignistic transformatieveloped originally within the DST framework has been-pro
posed in this work. This generalization is based on the newrthof plausible and paradoxical reasoning (DSmT) and
provides a new mathematical issue to help the decisionimgaknder uncertainty and paradoxist (i.e. highly conflict-
ing) sources of information. The generalized pignistiasfarmation (GPT) proposed here allows to build a subjec-
tive/pignistic probability measure over the hyper-powatraf the frame of the problem under consideration or any kind
of model (free, hybrid or Shafer’'s model). The GPT coincidagurally with the classical pignistic transformation whe
ever the Shafer's model is adopted. It corresponds withmagsans of classical pignistic probability generalizedte
free DSm model. A relation of GPT on general hybrid modelsssuanptions of classical PT is still in the process of
investigation. Several examples for the 2D and 3D casesiffereht kinds of models have been presented to illustrate
the validity of the GPT.
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Plon} = Plag} = Plas} =

m(ay) m(ay) m(ay)

+(1/2)m(az) | +m(az) +(1/2)m(az)
1/2)m(as) | +(1/2)m(as) | +m(as)
1/2)m(as) | +(1/2)m(as) | +(1/2)m(0u)
1/3)m(as) | +(1/3)m(as) | +(2/3)m(as)
1/3)m(ag) | +(2/3)m(as) | +(1/3)m(as)
1/3)m(az) | +(2/3)m(az) | +(2/3)m(az)
1/4)m(ag) | +(2/4)m(as) | +(2/4)m(as)
1/4)m(ag) | +(2/4)m(ag) | +(2/4)m(a9)
1/4)m(ano) | +(2/4)m(aro) | +(1/4)m(e10)
1/4)m(ar) | +(1/4m(an) | +(2/4)m(ea1)
1/5)m(asz2) | +(2/5)m(a12) | +(2/5)m(a1z2)
1/5)m(a13) + 2/5)m(oz13) +(2/5)m(a13)
1/5)m(a14) | +(2/5)m(anq) | +(2/5)m(c14)
1/6)m(ass) | +(2/6)m(aqs) | +(2/6)m(ass)
1/6)m(aig) | +(2/6)m(aas) | +(2/6)m(cus)
1/6)m{arr) | +(2/6)m{ar) | +(2/6)m(asr)
(1/T)m(ons) | +(2/T)m(ous) | +(2/T)m(ons)

Appendix: Derivation of the GPT for the 3D free DSm model

P{(Jélo} = P{au} = P{OQQ} =
m(ay) m(ay) m(aq)
+m(as) +(1/2)m(az) | +m(az)
+(1/2)m(asz) | +m(as) +m(as)
+m(ay) +m(ay) +m(ay)
+(2/3)m(as) | +m(as) +m(as)
+m(ag) +(2/3)m(ag) | +m(as)
+(2/3)m(ar) | +(2/3)m(az) | +m(az)
+3/4)m(as) | +(3/4)m(as) | +m(as)
+(2/4)m(ag) | +(2/4)m(ag) | +(3/4)m(ay)
+m(aio) +(2/4)m(a10) | +(3/4)m(aap)
+(2/4)m(a11) | +m(aqr) +m(aq1)
+(3/5)m(a12) | +(4/5)m(a1z) | +m(ai2)
+(4/5)m(ais) | +(3/5)m(ais) | +(4/5)m(ais)
+(3/5)m(a1s) | +(3/5)m(a1s) | +(4/5)m(ai4)
+(4/6)m(azs) | +(3/6)m(ais) | +(4/6)m(ais)
+(3/6)m(aie) | +(4/6)m(aie) | +(4/6)m(aus)
+(4/6)m(az17) | +(4/6)m(car) | +(5/6)m(aar)
+(4/T)ym(ass) | +(4/T)m(ass) | +(5/T)m(aus)

Plog} =
m(aq)
+(1/2)m(az)
+(1/2)m(as)
+m(as)
+(2/3)m(as)
+(2/3)m(as)
+(1/3)m(az)
+(2/4)m(as)
+(1/4)m(ag)
+(2/4)m(a10)
+(2/4)m(a)
+(2/5)m(e12)
+(2/5)m(a13)
+(2/5)m(a14)
+(2/6)m(as)
+(2/6)m(0116)
+(2/6)m(a17)
+(2/T)m(a1s)

Plas} =
m(ar)
(1/2)m(a2)
+m(as)
+m(ay)
+m(as)
+(2/3)m(a)
+2/3)m(ar)
+(3/4)m(as)
+(2/4)m(as)
+(2/4)m(a10)
+(3/4)m(0a1)
+(3/5)m(on2)
+(3/5)m(a13)
+(3/5)m(0n4)
+(3/6)m(01s)
+(3/6)m(a16)
+(3/6)m(ai7)
+(3/T)m(ous)

Plag} =
m(a)
+m(a2)
+(1/2)m(as)
+m(as)
+(2/3)m(as)
+m(a6)
+(2/3)m(az)
+(3/4)m(as)
+(2/4)m(ag)
+(3/4)m(a10)
+(2/4)m(a)
+(3/5)m(a12)
+(3/5)m(a13)
+(3/5)m(a14)
+(3/6)m(a1s)
+(3/6)m(a16)
+(3/6)m(a17)
+(3/T)m(a1s)

Table 10 Derivation of P{a }, P{as} andP{«a3} Table 13 Derivation of P{a10}, P{a11} andP{a12}

P{Oqo} =
m(a)
+m(a2)
+(1/2)m(as)
+m(o)
+(2/3)m(as)
+m(a6)
+(2/3)m(az)
+(3/4)m(as)
+(2/4)m(ag)
+m(a10)
+(2/4)m(a)
+(3/5)m(12)
+(4/5)m(a13)
+(3/5)m(a14)
+(4/6)m(as)
+(3/6)m(0116)
+(4/6)m(a17)
+(4/T)m(a1s)

P{OLH} =
m(ar)
+(1/2)m(az)
+m(as)
+m(ay)
+m(as)
+(2/3)m(a)
+(2/3)m(as)
+(3/4)m(as)
+(2/4)m(as)
+(2/4)m(a10)
+m(our)
+(4/5)m(on2)
+(3/5)m(a13)
+(3/5)m(0n4)
+(3/6)m(01s)
+(4/6)m(a16)
+(4/6)m(a17)
+(4/T)m(oas)

P{alg} =
m(a)
+m(a2)
+m(as)
+m(as)
+m(a6)
+m(ar)
+m(as)
+(3/4)m(ag)
+(3/4)m(a10)
+m(0411)
+m(a12)
+(4/5)m(a13)
4/5)771(0(14)
4/6)771(0[15)
4/6)m(a16)
5/6)7’]@(0{17)
+(5/7)m(a1s)

/\A/—\/—\

Plar} =
m(ay)
+m(a2)
+m(a3)
+(1/2)m(as)
+(2/3)m(as)
+(2/3)m(as)
+7TL(O¢7)
+(3/4)m(as)
+(3/4)m(ag)
+(2/4)m(a10)
+(2/4)m(a)
+(3/5)m(12)
+(3/5)m(a13)
+(3/5)m(a14)
+(3/6)m(us)
+(3/6)m(0116)
+(3/6)m(a17)
+(3/T)m(a1s)

Plas} =
m(a1)
+m(a2)
+m(agz)
+m(ay)
+m(as)
+m(a6)
+m(ar)
+m(as)
+(3/4)m(a)
+(3/4)m(a10)
+(3/4)m(a11)
+(4/5)m(a12)
+(4/5)m(a13)
+(4/5)m(a14)
+(4/6)m(a1s)
+(4/6)m(a16)
+(4/6)m(c17)
+(4/7)m(a1s)

Plag} =
m(a1)
+m(a2)
+m(a3)
+(1/2)m(aa)
+(2/3)m(as)
+(2/3)m(c)
+m(ar)
+(3/4)m(as)
+m(a9)
+(2/4)m(a10)
+(2/4)m(an)
(3/5)m(a12)
(3/5)m(a3)
(4/5)m(c1a)
(4/6)m(as)
(4/6)m(cue)
(3/6)m(au7)
+(4/7)m(a1s)

J’_
+
+
+
+
+

Table 11 Derivation of P{a}, P{as} andP{as} Table 14 Derivation of P{c3}, P{a14} andP{a15}

P{alﬁ} =

m(an)

+(3/4)m
+m(a11)
+m(a12)

+m(a14)

+m(a16)
+(5/6)m

(a10)

+(4/5)m(a13)
+(5/6)m(a1s)

(ear)
+(6/7)m(0518)

+(4/5)m
+(5/6)m
+(5/6)m
+m(aq7)
+(6/7)m

(Q14)
(o15)
(o16)

(au1s)

P{alg} =
m(a)
+m(a2)
+m(as)
+m(ou)
+m(as)
+m(ag)
+m(az)
+m(as)
+m(a9)

+m(0&18)

Table 12 Derivation of P{ar}, P{as} andP{ay} Table 15 Derivation of P{c6}, P{a17} andP{ass}
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