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Abstract

It is shown how Weyl’s geometry and Mach’s Holographic principle
furnishes both the magnitude and sign (towards the sun) of the Pioneer
anomalous acceleration aP ∼ −c2/RHubble firstly observed by Anderson
et al. Weyl’s Geometry can account for both the origins and the value
of the observed vacuum energy density (dark energy). The source of
dark energy is just the dilaton-like Jordan-Brans-Dicke scalar field that is
required to implement Weyl invariance of the most simple of all possible
actions. A nonvanishing value of the vacuum energy density of the order
of 10−123M4

Planck is found consistent with observations. Weyl’s geometry
accounts also for the phantom scalar field in modern Cosmology in a very
natural fashion.

Keywords: Dark Energy, Weyl Geometry, Brans-Dicke-Jordan Gravity, Pioneer
Anomaly, Cosmology.

The problem of dark energy is one of the most challenging problems facing
Cosmology today with a vast numerable proposals for its solution, we refer to
the recent monograph [1], [3] and references therein. In [4] we have shown how
Weyl’s geometry (and its scaling symmetry) is instrumental to solve this dark
energy riddle. In this letter we will show how Weyl’s geometry in an elegant
fashion can account for both the magnitude and sign of the Pioneer anomalous
acceleration [5]. Before starting we must emphasize that our procedure [4] was
quite different than previous proposals [2] to explain dark matter ( instead of
dark energy ) in terms of Brans-Dicke gravity. It is not only necessary to include
the Jordan-Brans-Dicke scalar field φ but it is essential to have a Weyl geometric
extension and generalization of Riemannian geometry ( ordinary gravity ).

Weyl’s geometry main feature is that the norm of vectors under paral-
lel infinitesimal displacement going from xµ to xµ + dxµ change as follows
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δ||V || ∼ ||V ||Aµdxµ where Aµ is the Weyl gauge field of scale calibrations
that behaves as a connection under Weyl transformations :

A′
µ = Aµ − ∂µ Ω(x). gµν → e2Ω gµν . (1)

involving the Weyl scaling parameter Ω(xµ) . The Weyl covariant derivative
operator acting on a tensor T is defined by DµT = ( ∇µ + ω(T ) Aµ ) T;
where ω(T) is the Weyl weight of the tensor T and the derivative operator
∇µ = ∂µ + Γµ involves a connection Γµ which is comprised of the ordinary
Christoffel symbols {ρ

µν} plus the Aµ terms

Γρ
µν = {ρ

µν} + δρ
µ Aν + δρ

ν Aµ − gµν gρσ Aσ (2)

The Weyl gauge covariant operator ∂µ + Γµ + w(T)Aµ obeys the condition

Dµ (gνρ) = ∇µ (gνρ) + 2 Aµ gνρ = 0. (3)

where ∇µ(gνρ) = −2 Aµ gνρ = Qµνρ is the non-metricity tensor. Torsion can
be added [17] if one wishes but for the time being we refrained from doing so.
The connection Γρ

µν is Weyl invariant so that the geodesic equation in Weyl
spacetimes is Weyl-covariant under Weyl gauge transformations (scalings)

ds → eΩ ds;
dxµ

ds
→ e−Ω dxµ

ds
;

d2xµ

ds2
→ e−2Ω [

d2xµ

ds2
− dxµ

ds

dxν

ds
∂νΩ ].

gµν → e2Ω gµν ; Aµ → Aµ − ∂µΩ; Aµ → e−2Ω (Aµ − ∂µΩ); Γρ
µν → Γρ

µν . (4)

thus, the Weyl covariant geodesic equation transforms under Weyl scalings as

d2xρ

ds2
+ Γρ

µν

dxµ

ds

dxν

ds
− Aµ

dxµ

ds

dxρ

ds
= 0 →

e−2Ω [
d2xρ

ds2
+ Γρ

µν

dxµ

ds

dxν

ds
− Aµ

dxµ

ds

dxρ

ds
] = 0. (5)

The Weyl weight of the metric gνρ is 2. The meaning of Dµ(gνρ) = 0 is
that the angle formed by two vectors remains the same under parallel transport
despite that their lengths may change. This also occurs in conformal mappings
of the complex plane. The Weyl covariant derivative acting on a scalar φ of
Weyl weight ω(φ) = −1 is defined by

Dµφ = ∂µ φ + ω(φ)Aµ φ = ∂µ φ − Aµ φ. (6)

The Weyl scalar curvature in D dimensions and signature (−,+,+,+....) is 1

RWeyl = RRiemann − (D − 1)(D − 2)AµAµ − 2(D − 1)∇µAµ. (7)

1Some authors define their Aµ field with the opposite sign as −Aµ which changes the sign
in the last term of the Weyl scalar curvature (7)
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Having introduced the basics of Weyl geometry our starting action is the Weyl-
invariant Jordan-Brans-Dicke-like action involving the scalar φ field and the
scalar Weyl curvature RWeyl

S[gµν , Aµ, φ] = S[g′µν , A′
µ, φ′] ⇒

1
16π

∫
d4x

√
|g| [ φ2 RWeyl(gµν , Aµ) − 1

2
gµν (Dµφ)(Dνφ) − V (φ) ] =

1
16π

∫
d4x

√
|g′| [ (φ′)2 R′

Weyl(g
′
µν , A′

µ) − 1
2
g′µν (D′

µφ′)(D′
νφ′) − V (φ′) ] (8)

where under Wey scalings one has

φ′ = e−Ω φ; g′µν = e2Ω gµν ; R′
Weyl = e−2Ω RWeyl; V (φ′) = e−4Ω V (φ)√

|g′| = e4Ω
√
|g|; D′

µφ′ = e−Ω Dµφ; A′
µ = Aµ − ∂µΩ. (9)

The effective Newtonian coupling G is defined as φ−2 = G(φ), it is spacetime
dependent in general and has a Weyl weight equal to 2. Despite that one has
not introduced any explicit dynamics to the Aµ field (there are no FµνFµν

terms in the action (9)) one still has the constraint equation obtained from the
variation of the action w.r.t to the Aµ field and which leads to the pure-gauge
configurations provided φ 6= 0

δS

δAµ
= 0 ⇒ 6 ( 2 Aµφ2 − ∂µ(φ2) ) +

1
2

( 2 Aµφ2 − ∂µ(φ)2 ) =

−(6 +
1
2
) Dµ φ2 = − 2 (6 +

1
2
) φ Dµ φ = 0 ⇒ Aµ = ∂µ log (φ). (10)

Hence, a variation of the action w.r.t the Aµ field leads to the pure gauge solu-
tions (10) which is tantamount to saying that the scalar φ is Weyl-covariantly
constant Dµ = 0 in any gauge Dµφ = 0 → e−ΩDµφ = D′

µφ′ = 0 (for non-
singular gauge functions Ω 6= ±∞). Therefore, the scalar φ does not have true
local dynamical degrees of freedom from the Weyl spacetime perspective. Since
the gauge field is a total derivative, under a local gauge transformation with
gauge function Ω = log φ, one can gauge away (locally) the gauge field and
have A′

µ = 0 in the new gauge. Globally, however, this may not be the case
because there may be topological obstructions. Therefore, the last constraint
equation (10) in the gauge A′

µ = 0, forces ∂µφ′ = 0 ⇒ φ′ = φo = constant.
Consequently G′ = φ′−2 is also constrained to a constant GN and one may set
GN φ2

o = 1, where GN is the observed Newtonian constant today.
The pure-gauge configurations leads to the Weyl integrability condition Fµν =

∂µAν − ∂νAµ = 0 when Aµ = ∂µΩ, and means physically that if we parallel
transport a vector under a closed loop, as we come back to the starting point,
the norm of the vector has not changed; i.e, the rate at which a clock ticks
does not change after being transported along a closed loop back to the initial
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point; and if we transport a clock from A to B along different paths, the clocks
will tick at the same rate upon arrival at the same point B. This will ensure,
for example, that the observed spectral lines of identical atoms will not change
when the atoms arrive at the laboratory after taking different paths ( histories )
from their coincident starting point. If Fµν 6= 0 the Weyl geometry is no longer
integrable.

With the Weyl-invariant action (9) at hand one may find a realization of
dark energy (the observed cosmological constant ) as it was shown in [4] and
the Pioneer anomaly (as we will show next) by choosing two different gauges.
The cosmological gauge Aµ in spherical coordinates is defined by

Ar = − 1
RHubble

; At = Aϕ = Aθ = 0. (11)

and is associated with the present day Hubble scale RHubble ∼ 1028 cm. The
other gauge is the Einstein gauge

A′
µ = 0 = Aµ − ∂µΩ ⇒ Ar = − 1

RH
= ∂rΩ ⇒ Ω = − r

RH
. (12)

From eq- (10) we learned that

Aµ = ∂µ log φ ⇒ Ar = − 1
RH

⇒ φ = e−r/RH φo. (13)

such that the Newtonian couplings in the two different gauges ”scale-frames of
reference” are related as follows

φ2

φ2
o

=
GN

G(φ)
⇒ G(φ) = GN e2r/RH . (14)

the effective Newtonian coupling in the cosmological gauge (cosmological ”scale-
frame of reference” ) increases with distance : it has an anti− screening effect
which is also compatible with the findings in the asymptotic safety scenario of
Quantum Gravity [11] and the lattice approach to Quantum Gravity as well
[12].

In the Einstein gauge A′
µ = 0, using the Weyl covariant constraint of eq-

(10) stating that the scalar field φ is Weyl-covariantly constant (without true
dynamics) and for non-singular gauge functions Ω 6= ±∞, one can deduce that

D′
µφ′ = ∂µφ′ −A′

µφ′ = ∂µφ′ = e−Ω Dµφ = 0 ⇒ φ′ = φo. (15)

Hence, the action (9) in the gauge A′
µ = 0 ⇔ φ′ = φo = constant becomes

1
16π

∫
d4x

√
|g′| [ (φo)2 RRiemann(g′µν) − V (φo) ] (15)

which is just the ordinary Einstein-Hilbert action with a cosmological constant
Λ given by 2Λ ≡ GNV (φo) because φ2

o = 1/GN . The equations of motion
associated with the action (15) are
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R′
µν − 1

2
g′µν R′ + Λ g′µν = 0. (16)

and which admit the static spherically symmetric solutions corresponding to
(Anti) de Sitter-Schwarzschild metrics

ds2 = − (1−2GNM

r
−Λ

3
r2) dt2 + (1− 2GNM

r
−Λ

3
r2)−1 dr2 + r2 (sin2θ dϕ2 + dθ2 ).

(17)
It is known that de Sitter-Schwarzschild metric solutions (17) for very large
values of r (discarding the 2GNM/r terms) leads to the static spherically sym-
metric reparametrized version of the standard temporal dependent de Sitter
metrics ds2 = −dt2 + R2

H cosh2(t/RH) (dΩ3)2 (c = 1), after a judicious change
of coordinates is performed where Ω3 is the 3-dim solid angle associated with
the 3-sphere S3.

The metric solutions in the cosmological gauge Ar = − 1
RH

are simply ob-
tained by a conformal transformation

gµν = e−2Ω g′µν ⇒ gtt = e−2Ω g′tt = − e2r/RH (1− 2GNM

r
− Λ

3
r2), etc ....

(18)
The conformal scalings of the (Anti) de Sitter-Schwarzschild metrics are so-
lutions to equations of motion based on the action S[gµν , Aµ, φ] as a direct
consequence of the Weyl symmetry invariance of the action : the equations of
motion in one gauge are related to the equations of motion in another gauge by a
simple gauge transformation (scaling) of the field variables. Hence, a conformal
scaling of the equations of motion (16) yields the following equations of motion
in terms of the new variables gµν , Aµ, φ, (with Aµ = ∂µlog φ)

Gµν = Rµν − 1
2

gµν R =
8π Tmatter

µν

φ2
+ Tµν(φ) (19)

where in our case Tmatter
µν = − 2√

|g|
δSmatter

δgµν = 0. The effective stress

energy tensor Tµν(φ) is

Tµν(φ) = − 4
φ2

(∇µφ) (∇νφ) +
1
φ2

gµν (∇ρφ) (∇ρφ) +

2
φ

(∇µ ∇ν φ) − 2
φ

gµν (∇ρ ∇ρ φ) − gµν
V (φ)
2φ2

. (20).

The ∇µ are the ordinary covariant derivatives involving solely the Levi-Civita
connection (without Aµ terms) and Rµν , R are the Riemannian Ricci curvature
tensor and Ricci curvature scalar, respectively. The effective stress energy
tensor Tµν(φ) turns out to coincide precisely with the effective stress energy
tensor of a Brans-Dicke-Jordan (BDJ) scalar field Φ = φ2 whose ω parameter
is ω = −3/2 and U(Φ = φ2) = V (φ) given by
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TBDJ
µν (Φ = φ2;ω = −3

2
) = − 3

2φ4
[ (∇µφ2) (∇νφ2) − 1

2
gµν (∇ρφ2) (∇ρφ

2) ] +

1
φ2

[ (∇µ ∇ν φ2) − gµν (∇ρ ∇ρ φ2) ] − gµν
U(φ2)
2φ2

. (21).

One recognizes that ω = −3/2 is the critical value of the ω parameter in BDJ
scalar theories of gravity [6] based on the action

SBDJ(Φ; ω) =
1

16π

∫
d4x

√
|g| [ Φ RRiemann −

ω

Φ
gµν (∇µΦ) (∇νΦ) − U(Φ) ].

(22)
whose gµν field equations coincide with (19,20) when ω = −3/2 and Φ = φ2. A
variation of SBDJ(Φ;ω) w.r.t the BDJ scalar Φ = φ2, and after taking the trace
of the field equations (19,20) in order to eliminate the Riemannian curvature
scalar R yields after some algebra the following

∇µ ∇µ Φ =
1

2ω + 3
[ Φ

dU(Φ)
dΦ

− 2 U(Φ) ]. (23)

when ω = −3/2 ⇒ 2ω + 3 = 0 the denominator of (23) becomes zero leading
to an unacceptable singularity in (23) unless the numerator is also zero which
then determines uniquely the nontrivial potential to be U(Φ) = λΦ2 = λφ4.
Performing a Weyl scaling of the latter potential and recurring to the scaling
relations (9) yields the constant vacuum energy density λ e−4Ωφ4 = λφ4

o = Vo.
In the case of an expanding de Sitter universe with Ho = 1/RH ( c = 1 ) where
RH is the Hubble radius related to the throat size of the 4-dim hyperboloid
of constant scalar curvature ( R = 12/R2

H) embedded in flat pseudo-Euclidean
5-dim space, one has Λ ≡ 3H2

o = 3/R2
H so that

2Λ =
6

R2
H

= GN Vo = 16 π GN ρ ⇒

ρ =
3
8π

1
GN R2

H

=
3
8π

(
LP

RH
)2 M4

Planck ∼ 10−123 M4
Planck. (24)

and which is the correct value for the observed vacuum energy density after
identifying φ−2

o = GN = L2
P and MPlanck = L−1

P in terms of the Planck scale
LP (in natural h̄ = c = 1 units) and setting the present-day Hubble radius to
be of the order RH ∼ 1061 LP . A Jordan-Brans-Dicke gravity model within the
context of ordinary Riemannian geometry with the parameter ω = − 3

2 yields
the observed vacuum energy density (cosmological constant) to very high pre-
cision because the temporal flow of the scalar field φ(t) in ordinary Riemannian
geometry, from t = 0 to t = to (today), has the same numerical effects (as
far as the vacuum energy density is concerned) as if there were Weyl scalings
from the variable field configuration φ(t) to the constant field configuration φo.
Hence, Weyl scalings in Weyl geometry can recapture the flow of time which
is consistent with Segal’s Conformal Cosmology [14], in such a fashion that an
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expanding universe may be visualized as Weyl scalings of a static universe. This
temporal flow of the vacuum energy density, from very high values in the past,
to very small values today, is not a numerical coincidence but is the signal of
an underlying Weyl geometry (conformal invariance) operating in cosmology,
combined with the dynamics of a Brans-Dicke-Jordan scalar field.

The value of the dimensionless parameter λ is then λ = 6GNH2
o = (6H2

o/φ2
o)

so that the potential can be rewritten as U(Φ = φ2) = (6H2
oφ2

o) (φ/φo)4. By
scaling φ to the constant φo one recovers then Vo = 6H2

oφ2
o as expected. The key

point that we wish to advance here is that the observed vacuum energy density
(24) is consistent with the critical value of the BDJ parameter ω = −3/2
determined from the Weyl scaling symmetry properties of the action (8) and that
uniquely fixes the nontrivial potential to be of the form U(Φ) = λΦ2 = λφ4. A
variable potential that will afterwards scale to the constant Vo 6= 0 value related
to the observed vacuum energy density via the relations in (24) because Weyl’s
symmetry allows us to set φ−2

o = GN = L2
P . A trivial potential U(φ2) = 0

would have lead to the trivial solution Vo = 0 yielding a zero vacuum energy
density.

Above we have pointed out that the scalar φ does not have true local dynam-
ical degrees of freedom from the Weyl spacetime perspective as a result of the
Weyl-covariant constancy condition (9). However from the Riemannian point
of view one can see by inspection from the BDJ action (22) when ω = −3/2
and Φ = φ2 that the term 6(∇µφ)(∇µφ) has the wrong sign for a kinetic term
when the signature is (−,+,+,+) and behaves then like a phantom-scalar field
in modern Cosmology. However this is not a problem because from the Weyl
spacetime perspective the scalar φ is devoid of true dynamics Dµφ = 0 and
behaves like Dirac’s gauge function scalar field [17] : it is a compensator scalar
field required to implement Weyl invariance in the action (8). Therefore, Weyl’s
geometry accounts for the phantom scalar field in a very natural fashion.

After this discussion we turn finally to the Pioneer anomaly. Upon expanding
the exponential conformal factor of (18) in a power series yields

−gtt = ( 1 +
2 r

RH
+

1
2

(
2 r

RH
)2 + ....) (1 − 2GNM

r
− Λ

3
r2) =

1− 2GNM

r
− Λ

3
r2 +

2r

RH
− 4GNM

RH
− 2 Λ r3

3 RH
+ ........ (25)

For scales r << RH corresponding to the Pioneer-Sun’s distance one may ne-
glect the higher order corrections in the expansion. From the gtt component one
can read-off the corrections to the Newtonian potential in natural units c = 1
from the Newtonian limit of Einstein’s gravity : −gtt ∼ 1 + 2V leading to

Veffective(r) = − GNM

r
− Λ

6
r2 +

r

RH
− 2GNM

RH
− Λ r3

3 RH
+ ..... (26)

Therefore the acceleration (radial force per unit mass) acting on the Pioneer
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spacecraft after reinserting the speed of light c in its proper units and by setting
Λ = 3/R2

H is given by

Fr

m
= a = − ∂Veff

∂r
= − GNM

r2
− c2

RH
( 1 − r

rH
− 3(

r

RH
)2 ) + .... (27)

Concluding : one recovers the correct order of magnitude and sign (point-
ing towards the sun) of the Pioneer anomalous acceleration aP = −c2/RH =
−8.98×10−8cm/sec2 which is given exactly by the first term of the corrections
to the Newtonian (radial) acceleration (−GN M

r2 ) in eq-(27 ). The experimental
value [5] of the magnitude is |aP | = (8.74 ± 1.33) × 10−8cm/sec2. The other
terms of eq-(27) correspond to the contribution of the cosmological constant
and further corrections stemming from the conformal factor in eq-(18).

One can also explain the Pioneer anomaly from the Weyl covariant geodesic
equation (5 ). In the Einstein gauge A′

µ = 0 one recovers the ordinary geodesic in
Riemannian spacetime with the (Anti ) de Sitter-Schwarzschild (AdSS) metric
g′µν of eq-(17); however in another gauge Aµ 6= 0, gµν = e2r/RH gAdSS

µν the
additional contributions to the connection Γρ

µν in the geodesic equation (5)
(stemming from the Aµ terms in eq-(2)) would appear from the Riemannian
geometry perspective as if there were an extra ”force” (a pseudo force, a ”fifth
force” ) involving terms of the form (gµν − V µV ν) Aν (where Aν = ∂ν log(φ)
) acting on a test particle and endowing it with an (apparent) non-geodesic
motion. In the non-relativistic Newtonian limit, for purely radial motions with
values of r such RH >> r >> 2GNM ; ds ∼ cdt; (V r)2 ∼ v2

c2 , the term (grr −
V rV r) Ar ∼ − 1

RH
. The extra contribution to the radial acceleration becomes

∆(d2xr

ds2 ) ∼ ∆( 1
c2

d2xr

dt2 ) = − 1
RH

so that ∆(d2xr

dt2 ) ∼ − c2

RH
as expected. Notice

however that this anomalous acceleration (non-geodesic motion in Riemannian
spacetime) is just a gauge artifact because from the Weyl spacetime geometry
perspective the test particle always follows a geodesic, prior and after a gauge
transformation is performed since the geodesic equation (5) is covariant under
Weyl scalings.

Let us try to answer the poignant question posed by many : Why planets
revolving around the sun in elliptical orbits don′t experience such anomalous
acceleration ?. Since the planets are bound to the solar system they are not mov-
ing freely along the hyperbolas (geodesics) of the 4-dim hyperboloid represented
by the asymptotically de Sitter space. The geodesics (hyperbolic paths) from
the point of view of the de Sitter metric are not ”straight lines” (geodesics) from
the point of view a flat Minkowski metric, and hence, this could be the physical
meaning of the anomalous Pioneer acceleration w.r.t the sun (solar system). The
sun (solar system) is not a truly inertial system within the background de Sitter
space perspective. The solar system can be seen as a non−expanding penny on
an expanding balloon (de Sitter universe). Since the path traced by the Pioneer
spacecraft is indeed a hyperbola [5] , one can view the Pioneer spacecraft after
it has left the outer edge of the solar system as it were a free particle (devoid
of external forces ) moving on a 4-dim hyperboloid de Sitter space, because the
present universe is in an accelerated expansion de Sitter phase.
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This is not the end of the story. Firstly, one must also invoke Mach’s princi-
ple within the context of BDJ scalar theories of gravity: the effective spacetime
dependent Newtonian coupling G(φ) = φ−2 is determined by the distribution of
masses of the universe. The authors [9] have implemented a precise formulation
of Mach’s principle (the so-called ”Mach’s Holographic Principle”) where iner-
tial frames can be fully determined by the metric if one specifies the bulk stress
energy tensor plus boundary conditions, and where the latter can be replaced
(mimic) by the appropriate boundary stress energy on a hypersurface. This
boundary matter plays the same role of the distant stars for bulk observers and
selects a frame with respect to which inertial and accelerated motion have a
meaning. Secondly, one can view this boundary as a hypersurface separating an
interior region (the solar system) where Weyl’s symmetry is broken from an ex-
terior region where Weyl’s symmetry is preserved. A Gauss-Mainardi-Codazzi
(GMC) formalism has been used by [10] to facilitate the study of thin shells of
matter in gravity. It allows the possibility of sewing together two spacetime
regions with different conformal properties. This GMC boundary-value problem
in Weyl spacetime has been studied [10] to show how to construct an interior do-
main (the solar system in our case, an atom in their case ) where Weyl invariance
is broken, while in the exterior region Weyl invariance is fully preserved. There-
fore, the interior domain corresponds to our solar system (where no anomaly
occurs), while the exterior geometry (where the Pioneer spacecraft is located) is
conformally invariant and is subjected to the anomalous acceleration. Thirdly,
the boundary matter separating these two regions can be physically realized by
the Edgeworth-Kuiper main-belt stretching from roughly 30 to 55 AU (Astro-
nomical Units) and which is a region of the Solar System beyond the planets
[21], while the scattered objects of the belt reach past Uranus at approximately
20 AU 2.

One may extend Weyl’s scaling symmetry to the full-fledged conformal group
SO(4, 2) by adding the conformal boost generators [8] and by constructing
SO(4, 2) invariant actions. Conformal boosts bestow a massive particle with
a constant acceleration, whereas ordinary momentum transformations amount
to translations. This explains why there is an interplay between large cosmo-
logical scales ( Hubble radius RH) and small microscopic scales ( Planck scale
LP ) in the value of the observed vacuum energy density ρ = 3

8π L−2
P R−2

H in
eq-(24) : it stems from the fact that the canonical conjugate variable to the
conformal-boost-momentum generator is the inverse of the position coordinate
zµ = xµ

xµxµ [8]. Since under inversions large and small scales are interchanged
this explains the interplay between large and small scales in the value of the
vacuum energy density ρ (24) and the expression for aP = − c2

RH
.

Boundary conditions are crucial when one integrates by parts and may not
allow discarding total derivative terms in the action. Nontrivial topologies like
wormholes R× S1 × S2, toruses R× S1 × S1 × S1 and topological defects like
cosmic strings and Nielsen-Olesen vortices will furnish different results as well

2We thank Frank (Tony) Smith for pointing out the relevance of Uranus orbit in the
physical measurements by Anderson et al [5]
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because one may not be able to gauge to zero globally a pure gauge configuration
Aµ = ∂µlog(φ) found in eq-(10). A thorough discussion of these effects and the
breaking of Weyl scaling symmetry can be found in [7]. The role of dilatation
symmetry in higher dimensions and the vanishing of the cosmological constant
from the Renormalization Group perspective has been studied by [19]. Weyl-
conformally invariant light-like p-brane Theories have been constructed by [20].
For a current monograph on Wey’s geometry and its applications in Physics
see [16]. Furthermore, one should work with most general Lagrangian involving
dynamics for Aµ and adding spinorial matter fields, etc...

L = φ2RWeyl(gµν , Aµ)− 1
4
FµνFµν − 1

2
gµν(Dµφ)(Dνφ)− V (φ) + Lmatter + .....

(28)
The Lmatter must involve the full fledged Weyl gauge covariant derivatives acting
on scalar and spinor fields .

Inflationary solutions in Weyl spacetimes based in a pure-gauge ansatz were
investigated long ago by Kao [18]. The inflationary solution by Kao required
a very large cosmological constant, it was argued how this very large value of
the cosmological constant during the inflationary period could be diluted to
the observed very small value as the universe expanded by a 60 e-fold factor
e60 during a very short time interval of the order of 10−35 seconds. In this
respect, Kao’s results agree with ours. The vacuum energy problem from the
Finsler Geometry perspective has been analyzed by [13]. The Pioneer anomaly
has been analyzed within the context of scalar-tensor and nonsymmetric metric
theories of Gravity by [15] but it does not involve Weyl’s geometry and requires
fitting the observed data by tuning the values of two extra parameters.

A different study of the Pioneer anomaly based on the Weyl geometry asso-
ciated with the temporal dependent Friedmann-Robertson-Walker (FRW) met-
rics was made by [14]. Our results differ from [14] in several key aspects.
Firstly, the field equations in [14] were not correct because of the wrongly vari-
ation of the term

√
|g|gµνδ(φ2Rµν) in the action. Only when φ is constant

such variation is a total derivative and can be dropped from the field equa-
tions. When the BDJ scalar field φ is spacetime dependent, it is the varia-
tion of this term which leads precisely to the extra components of the effective
stress energy tensor in eqs-(20,21). Secondly, we have found in the Aµ = 0
gauge, to begin with, (Anti) de Sitter-Schwarzchild solutions such that for large
r >> 2GNM correspond to the static spherically symmetric reparametrization
of the temporal-dependent ( Anti ) de Sitter solutions (17) and which belong to
a special family of FRW metrics whose scaling function is a(t) = cosh(t/RH).
While in the Ar = −1/RH gauge we have conformally rescaled (Anti) de
Sitter-Schwarzchild solutions (18). These results differ from [14] because his
metric solution in the Aµ = 0 gauge is just the flat Minkowski spacetime met-
ric, while his metric in the At = H(t) gauge is of the FRW type with scaling

factor a(t) = e
∫

H(t)dt. Thirdly, the anomalous acceleration in [14] had for mag-
nitude the value a = Ho vPioneer = c

RH
vPioneer << c2

RH
. This former value is
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several orders of magnitude smaller 3 than the experimental value observed by
Anderson et al [5]. The expression in (27) furnishes the correct magnitude and
sign of the anomalous acceleration.

Other more conventional approaches to the Pioneer anomaly and to the flyby
anomaly can be found in the websites [22]. In particular, differential heating
may account for as much as 1/3 of the observed acceleration (see in [22] the
article by David Harris). If there are other plausible explanations involving
conventional physics these would not necessarily falsify our results here unless
there are strong arguments against integrable Weyl geometry 4.
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