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Abstract If a test body radially approaching a static point mass at near-c speed undergoes the same attractive
gravitational acceleration as a nonrelativistic test body, its speed soon exceeds c. That doesn’t occur because
Einstein’s gravitational acceleration by a static point mass is velocity-dependent; it counterintuitively repels a test
body traveling radially at a speed sufficiently near c. Indeed, a basic feature of the gravitational refraction of light is
that a radially-traveling light packet’s speed increases monotonically toward c with its increasing radial distance from
a static point mass, so a light packet traveling radially away from a static point mass is gravitationally accelerated
toward radial speed c in the outward direction of its travel. Likewise, a test body traveling radially away from a static
point mass at a speed sufficiently near c is counterintuitively gravitationally accelerated in the outward direction of
its travel. The universe expands radially at a speed sufficiently near c to undergo such a counterintuitive gravitational
acceleration in the outward direction of its radial expansion, “dark energy” isn’t needed.

1. Newton’s force of gravity exerted by a static point mass on a radially-moving test body

Newton’s gravitational second-law equation of motion for a mass-m test body is,

mẍ = −∇xV (x), (1.1a)

where V (x) is Newton’s gravitational potential energy of the mass-m test body, which satisfies the equation,

∇2
xV (x) = 4πGmρ(x), (1.1b)

where ρ(x) is the gravitational source’s static mass density. From Eqs. (1.1a) and (1.1b) we see that Newton’s
gravitational acceleration ẍ of the test body is independent of both its mass m and its velocity ẋ, so a test
body traveling at a speed close enough to c can be accelerated to a speed exceeding c. To prevent that from
occurring, Einstein’s gravitational force and acceleration must necessarily be velocity-dependent.

For a gravitational source which is a static point mass M located at the origin x = 0, ρ(x) = Mδ(3)(x),
and solving Eq. (1.1b) yields V (x) = (−GmM/|x|)+V−f ·x, where V and f are arbitrary “gauge constants”.
Imposition of the causal physical “gauge condition” that V (x) must vanish when the gravitational source’s
static mass density ρ(x) vanishes removes this “gauge-constant ambiguity” of V (x), fixing the values of the
“gauge constants” to V = 0 and f = 0. Therefore for a gravitational source which is a static point mass M
located at the origin, Newton’s Eq. (1.1a) for an arbitrary-mass test body is specialized to,

ẍ = −∇x(−GM/|x|) = −
(
GM x

/
|x|3

)
. (1.1c)

We now combine the mathematical fact that d|ẋ|2/dt = d(ẋ · ẋ)/dt = (2ẍ · ẋ) with Eq. (1.1c) to obtain,

d|ẋ|2/dt = (2∇x(GM/|x|) · ẋ) = d(2GM/|x|)/dt =⇒ |ẋ|2 − (2GM/|x|) = ε, (1.1d)

where ε is a constant (of dimension speed-squared), so Eq. (1.1d) is a gravitational conservation relation.
When ε < 0, the test body is gravitationally bound by the static point mass, but when ε ≥ 0,

√
ε is the

asymptotic speed of the test body as |x| → ∞. When the test body moves only radially relative to the static
point mass located at the origin, the Eq. (1.1c) Newtonian gravitational acceleration equation simplifies to,

d2r/dt2 = −
(
GM

/
r2
)
, where r is |x|, (1.1e)

and the Eq. (1.1d) Newtonian gravitational conservation relation simplifies to,

(dr/dt)2 = (2GM/r) + ε, (1.1f)

whose test body speed |dr/dt| has no upper bound. However, Einstein’s gravity theory enforces |dr/dt| ≤ c.

2. Einstein’s force of gravity exerted by a static point mass on a radially-moving test body

Since mass, unlike charge, isn’t exactly conserved (even chemical reactions don’t exactly conserve mass),
but energy and momentum are exactly conserved and as well comprise a Lorentz-covariant four-vector, the
energy-momentum four vector, rather than mass, is regarded as gravity’s source in Einstein’s gravity theory,
which can then be tentatively formulated in a Lorentz-covariant manner that parallels electromagnetic theory.
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Therefore we now review equations of electromagnetism, both equations that connect the Lorentz four-
vector electromagnetic potential Aµ to its Lorentz four-vector source, the density/flux of moving conserved
charge jµ, which, because of local charge conservation, must satisfy ∂µj

µ = 0, and also the equation for the
acceleration of a test body of mass m and charge e by an electromagnetic potential Aµ. One very well-known
equation that connects Aµ to jµ is mathematically inconsistent unless ∂µj

µ = 0, i.e.,

∂ν∂
νAµ − ∂µ(∂σA

σ) = 4πjµ/c. (2.1a)

Since ∂µ
(
∂ν∂

νAµ − ∂µ(∂σA
σ)
)

= 0, Eq. (2.1a) isn’t mathematically consistent unless ∂µj
µ = 0. However,

since for any well-behaved scalar function χ,
(
∂ν∂

ν(∂µχ) − ∂µ(∂σ(∂σχ))
)

= 0, (Aµ + ∂µχ) also solves
Eq. (2.1a); this χ-function gauge covariance of Eq. (2.1a) obviously prevents its having a unique solution.

Among the infinite number of solutions of Eq. (2.1a), there exists one which satisfies the “Coulomb
gauge condition” ∇ ·A′ = 0; this particular A′ = (A +∇χ) corresponds to a scalar function χ that satisfies
the equation −∇2χ = ∇ ·A. Since the Coulomb gauge condition ∇ ·A = 0 violates the Lorentz covariance
of Aµ, we are beginning to realize that Eq. (2.1a) has a plethora of physically unacceptable solutions.

Doubtless the very simplest way to narrow down the solutions of Eq. (2.1a) to ones which definitely are
Lorentz-covariant is to impose on Eq. (2.1a) the supplementary “Lorentz condition” ∂σ(A′)σ = 0, which for
(A′)σ = (Aσ + ∂σχ) requires that χ satisfies the equation ∂σ∂

σχ = −∂σAσ. The upshot of imposing this
supplementary “Lorentz condition” ∂σA

σ = 0 on Eq. (2.1a) is its replacement by the following two equations,

∂σA
σ = 0, (2.1b)

and,

∂ν∂
νAµ = 4πjµ/c. (2.1c)

Eq, (2.1c) still doesn’t have a mathematically unique solution because the differential operator ∂ν∂
ν doesn’t

have a mathematically unique inverse. However, only its “retarded” inverse (∂ν∂
ν)−1R makes causal physical

sense. Thus the unique physically sensible causal solution of Eq. (2.1c) is the “retarded” one [1],

Aµ = (4π/c)(∂ν∂
ν)−1R jµ, (2.1d)

which in addition satisfies Eq. (2.1b) because ∂µj
µ = 0.

We see here that solution nonuniqueness due to a dynamic symmetry such as gauge covariance is resolved
by imposing utterly basic physical requirements on the solution in the simplest way feasible.

We next exhibit the derivation from a simple Lorentz-invariant Lagrangian, which is written in terms of
proper time τ instead of observer time t, of the equation of motion for a mass-m and charge-e test body acted
on by an electromagnetic potential Aµ. For a free mass-m test body, the simplest such Lorentz-invariant
Lagrangian written in terms of proper time τ instead of observer time t is,

Linvr
free (dxµ/dτ) = −(m/2)

(
ηµν(dxµ/dτ)(dxν/dτ)

)
, (2.2a)

where ηµν is the Minkowski metric of Lorentzian space-time,

η00 = +1, η11 = −1, η22 = −1, η33 = −1 and ηµν = 0 when µ 6= ν. (2.2b)

In the nonrelativistic limit τ → t, so the Eq. (2.2a) Lagrangian Linvr
free (dxµ/dτ) → −(mc2/2) + (m|ẋ|2/2),

which, except for the dynamically inert constant term −(mc2/2), is precisely the nonrelativistic Lagrangian
for a free mass-m test body. Of course the Lorentz-invariant action for a free mass-m test body is,

Sfree =
∫
Linvr
free (dxµ/dτ) dτ , (2.2c)

and the equation of motion which follows from Linvr
free (dxµ/dτ) = −(m/2)

(
ηµν(dxµ/dτ)(dxν/dτ)

)
is,

d
[
∂Linvr

free (dxµ/dτ)/∂(dxλ/dτ)
]/
dτ − ∂Linvr

free (dxµ/dτ)/∂xλ = 0 =⇒

d
[
−(m/2)

(
2(dxλ/dτ)

)]/
dτ = 0 =⇒ −m

(
d2xλ/dτ

2
)

= 0, (2.2d)

so the Lorentz-covariant acceleration of the free mass-m test body is zero, as of course is expected.
When the mass-m test body has charge e and is acted on by Aµ, its Lorentz-invariant free Lagrangian

Linvr
free (dxµ/dτ) acquires a Lorentz-invariant add-on term. Since in the static limit the add-on term is −eA0(x),

the Lorentz-invariant add-on term must be −(e/c)Aν(x)(dxν/dτ), so the Lagrangian which includes Aµ is,

Linvr(dxµ/dτ, Aν(x)) = Linvr
free (dxµ/dτ)− (e/c)Aν(x)(dxν/dτ). (2.3a)
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The add-on term is velocity-dependent, and is also gauge covariant since −(e/c)(∂χ(x)/∂xν)(dxν/dτ) =
d[−(e/c)χ(x)]/dτ , which is wholly a derivative with respect to τ , and therefore doesn’t contribute to the
dynamics. It is also directly seen that −(e/c)(∂χ(x)/∂xν)(dxν/dτ) doesn’t contribute to the dynamics,

−(e/c)
{
d
[
∂
(
(∂χ(x)/∂xν)(dxν/dτ)

)
/∂(dxλ/dτ)

]/
dτ − ∂

(
(∂χ(x)/∂xν)(dxν/dτ)

)
/∂xλ

}
=

−(e/c)
{
d
[
(∂χ(x)/∂xλ)

]/
dτ − (∂2χ(x)/∂xν∂xλ)(dxν/dτ)

}
=

−(e/c)
{

(∂2χ(x)/∂xλ∂xν)(dxν/dτ)− (∂2χ(x)/∂xν∂xλ)(dxν/dτ)
}

= 0. (2.3b)

Gauge covariance of the part of the action which describes the coupling of Aµ to charged entities
ensures that the functional derivative with respect to Aµ of that part of the action has vanishing four-
divergence, and therefore is a density/flux jµ of moving conserved charge that is a physically legitimate
source of electromagnetic potential Aµ. Thus gauge covariance is a useful, necessary property of the part
of the action which describes the coupling of Aµ to charged entities, but it is something of a nuisance for
the part of the action which involves Aµ by itself, since gauge covariance of that part of the action produces
an equation of motion for Aµ which, like Eq. (2.1a), has an infinite number of solutions for Aµ, including a
plethora of solutions that violate basic physical requirements such as Lorentz covariance and causality. But,
as Eqs. (2.1b) through (2.1d) show, this issue is resolved by selecting the simplest member of the subset of
the solutions of such a gauge-covariant equation for Aµ which adhere to all basic physical requirements.

The force on the charge e test body produced by the Eq. (2.3a) add-on term −(e/c)Aν(x)(dxν/dτ) is,

(e/c)
{
d
[
∂
(
Aν(x)(dxν/dτ)

)
/∂(dxλ/dτ)

]/
dτ − ∂

(
Aν(x)(dxν/dτ)

)
/∂xλ

}
=

(e/c)
{
d
[
Aλ(x)

]/
dτ − (∂Aν(x)/∂xλ)(dxν/dτ)

}
=

(e/c)
{

(∂Aλ(x)/∂xν)(dxν/dτ)− (∂Aν(x)/∂xλ)(dxν/dτ)
}

=

(e/c)
[
∂Aλ(x)/∂xν − ∂Aν(x)/∂xλ

]
(dxν/dτ), (2.3c)

so the equation of motion of a mass-m and charge-e test body subject to an electromagnetic potential Aµ is,

−m
(
d2xλ/dτ

2
)

= (e/c)
[
∂Aλ(x)/∂xν − ∂Aν(x)/∂xλ

]
(dxν/dτ), (2.3d)

whose standard form of presentation is,

m
(
d2xµ/dτ2

)
= (e/c)

[
∂Aν(x)/∂xµ − ∂Aµ(x)/∂xν

]
(dxν/dτ). (2.3e)

The electromagnetic force here is easily shown to be gauge covariant, and it is obviously velocity-dependent.
Just as local charge conservation implies the vanishing of the four-divergence of the four-vector charge

density/flux jµ, i.e., ∂µj
µ = 0, local energy-momentum conservation implies the vanishing of the four-

divergence of the second-rank-tensor energy-momentum density/flux, a symmetric second-rank tensor that
is called the energy-momentum tensor and is written Tµν , where Tµν = T νµ, and, of course, ∂µT

µν = 0.
Just as the divergence-free charge density/flux four-vector jµ is the source of the four-vector electromagnetic
potential Aµ, we assume that the divergence-free energy-momentum density/flux symmetric second-rank
tensor Tµν entirely analogously is the source of a symmetric second-rank-tensor gravitational potential Hµν .
Furthermore, just as the dynamics of a mass-m and charge-e test body acted on by an electromagnetic
potential Aµ is described by the Eq. (2.3a) Lorentz-invariant Lagrangian, the dynamics of a mass-m test
body acted on by a gravitational potential Hµν is described by a Lorentz-invariant Lagrangian of the form,

Linvr(dxµ/dτ, Hµν(x)) = Linvr
free (dxµ/dτ)−KHµν(x)(dxµ/dτ)(dxν/dτ), (2.4a)

whose Lorentz-invariant add-on term −KHµν(x)(dxµ/dτ)(dxν/dτ) is clearly velocity-dependent. Since the
dimension of a Lagrangian is that of energy, the dimension of the constant K in this add-on term must be
that of mass times the inverse of whatever the dimension of the gravitational potential Hµν(x) is. Therefore
since Linvr

free (dxµ/dτ) = −(m/2)
(
ηµν(dxµ/dτ)(dxµ/dτ)

)
, we can reexpress Eq. (2.4a) as follows,

Linvr(dxµ/dτ, hµν(x)) = −(m/2)
(
ηµν(dxµ/dτ)(dxν/dτ)

)
− (m/2)

(
hµν(x)(dxµ/dτ)(dxν/dτ)

)
, (2.4b)

where hµν(x)
def
= (2/m)KHµν(x) is clearly dimensionless. It is interesting to compare the nonrelativistic limit

of the Eq. (2.4b) Lorentz-invariant gravitational Lagrangian Linvr(dxµ/dτ, hµν(x)) for a mass-m test body
with the nonrelativistic Lagrangian L(ẋ, V (x)) = (m/2)|ẋ|2−V (x) which produces the Eq. (1.1a) Newtonian
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gravitational equation of motion for that test body. If we assume that hµν(x) is time-independent, and we
also assume the nonrelativistic asymptotic relations |ẋ| � c and τ → t, then,

Linvr(dxµ/dτ, hµν(x)) ' −(mc2/2) + (m/2)|ẋ|2 − (mc2/2)h00(x). (2.4c)

The completely constant term −(mc2/2) in Eq. (2.4c) doesn’t contribute to the equation of motion, so,

h00(x) ' 2V (x)/(mc2), (2.4d)

in the nonrelativistic limit, where V (x) is the mass-m test body’s Newtonian gravitational potential energy.
Returning now to the Eq. (2.4b) Lorentz-invariant Lagrangian for a mass-m test body acted on by a

gravitational potential, we immediately see that it can be reexpressed in metric form,

Linvr(dxµ/dτ, gµν(x)) = −(m/2)
(
gµν(x)(dxµ/dτ)(dxν/dτ)

)
, (2.4e)

where gµν(x)
def
= ηµν +hµν(x). The Eq. (2.4e) metric form of the gravitational Lagrangian for a mass-m test

body changes the very concept of gravity to that of effectively being a distortion of Lorentzian space-time
(which is caused by energy-momentum). At the same time, however, our derivation of Eq. (2.4e) absolutely
requires the gravitational space-timel metric gµν(x) to be Lorentz-covariant, which brings on a clash with
the differential-geometry idea that arbitrary transformations of the coordinates used don’t “really” change
the metric. We have, however, already pointed out a similar clash regarding the electromagnetic four-
potential Aµ. It might be claimed that gauge transformations Aµ → Aµ + ∂µχ don’t “really” change the
electromagnetic four-potential Aµ, but gauge-covariant equations obviously fail to have a unique solution for
Aµ, and their solution sets typically include solutions which violate basic physical requirements such as Lorentz
covariance or causality. One therefore seeks the simplest member of the solution subset whose members don’t
violate any basic physical requirement. In practice that implies imposition of the retarded Lorentz gauge
condition, which narrows the solution subset down to a unique solution which definitely is Lorentz-covariant
and causal. Gauge-transformation covariance is an example of a “dynamic symmetry”, which imposes
absolutely crucial structural requirements on the equations of a particular theory, but simultaneously prevents
those equations from having a unique solution, which makes the physical-principle-guided winnowing of the
consequent solution sets down to a unique solution unavoidable and absolutely essential.

When differential geometers say that arbitrary transformations of the coordinates used don’t “really”
change the metric, the idea they are attempting to enunciate is that arbitrary transformations of the co-
ordinates used don’t alter the six field degrees of freedom of the metric which comprise its “Einstein cur-
vature”. The metric, however, has four additional field degrees of freedom, and scientific observationalists
and empiricists never in practice deal with a version of Nature which is other than strictly Lorentz covari-
ant. Three categories of experiments, taken together, confirm or invalidate the physical legitimacy of the
Lorentz transformation: (1) the Michelson-Morley experiment category, (2) the Kennedy-Thorndike experi-
ment category and (3) the Stilwell-Ives experiment category. All three of these experiment categories have
been refined by many orders of magnitude since their original namesake experiments were performed well
over a century ago [2]. Therefore transformations to coordinates which aren’t Lorentz covariant, such as
the Galilean-covariant coordinates introduced to gravity theory by Alexandre Friedmann in 1922, aren’t
physically legitimate unless, of course, transformation to Lorentz-covariant coordinates is carried out on
the results obtained—which is simply never done in practice. In addition to Lorentz covariance, another
condition applies to gravity theory, one which arises from the way that the equation of motion implied by
the Eq. (2.4e) Lagrangian is dealt with. We now work out that equation of motion,

−(m/2)
{
d
[
∂
(
gµν(x)(dxµ/dτ)(dxν/dτ)

)
/∂(dxλ/dτ)

]/
dτ − ∂

(
gµν(x)(dxµ/dτ)(dxν/dτ)

)
/∂xλ

}
= 0 =⇒

−(m/2)
{
d
[
2gλν(x)(dxν/dτ)

]/
dτ − (∂gµν(x)/∂xλ)(dxµ/dτ)(dxν/dτ)

}
= 0 =⇒

−(m/2)
{

2gλν(x)
(
d2xν/dτ2

)
+ 2(∂gλν(x)/∂xµ)(dxµ/dτ)(dxν/dτ)−

(∂gµν(x)/∂xλ)(dxµ/dτ)(dxν/dτ)
}

= 0 =⇒

−mgλν(x)
(
d2xν/dτ2

)
= (m/2)

[
∂gλν(x)/∂xµ + ∂gλµ(x)/∂xν − ∂gµν(x)/∂xλ

]
(dxµ/dτ)(dxν/dτ). (2.4f)

The Eq. (2.4f) equation of motion of a mass-m test body acted on by the gravitational metric potential gλν(x)
tells us that that tensor potential endows the mass-m test body with the inertial mass mgλν(x). Lorentz-
covariant field potentials often modify the inertial masses of test bodies; the Higgs scalar field potential is the
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most famous example of a Lorentz-covariant field potental which modifies the inertial masses of test bodies.
A notable exception is the electromagnetic four-vector field potential Aµ; the fact that it doesn’t modify the
inertial mass of a test body is apparent from the Eq. (2.3e) equation of motion of a mass-m and charge-e test
body acted on by an electromagnetic potential Aµ. In those cases where the gravitational metric potential
gλν(x) possesses a matrix inverse gκλ(x) everywhere in space-time, its modification of the inertial mass m
of the test body is equivalent to a modification of the force which the gravitational metric potential gλν(x)
exerts on the mass-m test body, since in those cases multiplication of both sides of the Eq. (2.4f) result by
the negative of the metric’s matrix inverse, namely by −gκλ(x), produces the modified equation of motion,

m
(
d2xκ/dτ2

)
= −m Γκµν(x) (dxµ/dτ) (dxν/dτ), (2.4g)

where the affine connection Γκµν(x) is defined as,

Γκµν(x)
def
= (1/2) gκλ(x)

[
∂gλν(x)/∂xµ + ∂gλµ(x)/∂xν − ∂gµν(x)/∂xλ

]
. (2.4h)

Because the affine connection is nonlinear in the gravitational potential gλν(x), so is the gravitational force
on a mass-m test body that appears on the right side of Eq. (2.4g). We shall indeed require gλν(x) to possess
a matrix inverse gκλ(x) everywhere in space-time in order to be able to regard the gravitational modification
of a test body’s inertial mass in Eq. (2.4f) as merely a modification of the gravitational force exerted on that
test body, as shown in Eqs. (2.4g) and (2.4h), albeit a modification of that gravitational force which makes
it nonlinear in the gravitational potential gµν(x), as is apparent in the affine connection in Eq. (2.4h).

We therefore require the determinant of gλν(x) to be nonvanishing everywhere in space-time, and of
course we as well require gµν(x) to be Lorentz-covariant, as pointed out at length in the discussion following
Eq. (2.4e) which runs up to Eq. (2.4f). The simplest way by far to simultaneously fulfill both of these
requirements is to merely require that det(gµν(x)) = k everywhere in space-time, where k is a fixed nonzero
constant, because the square of the determinant of a Lorentz transformation is equal to unity. Because
det(ηµν) = −1, k = −1, so the physically correct coordinate condition for metric gravity theory—which has
the dynamic symmetry of general coodinate transformation covariance [3] embedded into both the “geodesic
equation” of Eqs. (2.4g) and (2.4h), and also into Einstein’s field equation—is det(gµν(x)) = −1, which in
addition implies that Γκκλ(x) = 0 as a consequence of the fact that ∂ det(gµν(x))/∂xλ = 0.

Upon applying the coordinate condition det(gµν(x)) = −1 to a second-order approximate calculation
of the metric of a static point mass (the sun) in his landmark November 18, 1915 paper, Einstein at last
obtained a value for Mercury’s perihelion shift which agreed with observation (after the vastly larger effect
of the other planets on Mercury’s perihelion shift is subtracted out). Before he applied the det(gµν(x)) = −1
coordinate condition, Einstein had struggled with perihelion-shift-calculation results which were smaller
than what is observed. In that same November 18, 1915 paper, Einstein found that the coordinate condition
det(gµν(x)) = −1 doubled his previous result for the gravitational deflection of light by the sun; a 1919
solar-eclipse expedition confirmed that doubled result. So Einstein’s November 18, 1915 coordinate condition
det(gµν(x)) = −1 is supported by observation as well as by theory; an English translation of Einstein’s
November 18, 1915 paper is given within the November 21, 2021 preprint “Einstein and the Perihelion
Motion of Mercury” by Michel Janssen and Jürgen Renn [4].

No reason exists to ever deviate from Einstein’s November 18, 1915 coordinate condition det(gµν(x)) =
−1 for all x when making gravitational calculations for which Newtonian gravity is inadequate; Alexandre
Friedmann’s 1922 coordinate condition g00(x) = 1 for all x in particular isn’t capable of yielding results
superior to those of Newtonian gravity. For example, the only way to in general reconcile g00(x) = 1 for all
x with the Eq. (2.4d) fact that g00(x) ' 1+2V (x)/(mc2) in the Newtonian gravitational limit, where V (x) is
the Newtonian gravitational potential energy of a mass-m test body, is to drive c to infinity, which ensures
Newtonian gravitational physics. Furthermore, applying g00(x) = 1 for all x to the exact general expression
for gravitational time dilation, i.e.,[

(the tick rate of the clock at x2)/(the tick rate of the clock at x1)
]

=
√
g00(x2)/g00(x1) , (2.5)

completely eliminates gravitational time dilation, which likewise ensures Newtonian gravitational physics.
Also, the known exact gravitational solutions using g00(x) = 1 for all x display Newtonian-gravity character.

On January 13, 1916 Karl Schwarzschild published the metric whose determinant is−1 and exactly solves
the Einstein field equation whose source is a static point mass M fixed to |x| = 0. Using that exact metric,
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Schwarzschild could confirm and refine Einstein’s second-order approximate metric results of November 18,
1915. Schwarzschild also exhibited the corresponding exact circular-orbit solution of the geodesic equation
given by Eqs. (2.4g) and (2.4h). Regarding the technical detail of Schwarzschild’s solution, it is crucial to
note that just as the Newtonian gravitational potential energy V (x) = −GmM/|x| of a mass-m test body
acted on by a static point mass M fixed to |x| = 0 is nonsingular for all |x| > 0, the nature of the Einstein
equation guarantees that the physically-correct metric for a static point mass M fixed to |x| = 0 is as well
nonsingular for all |x| > 0. Technically this is because the Ricci curvature tensor vanishes at all |x| > 0,
which guarantees that the components of the metric tensor are at least twice differentiable when |x| > 0, but a
coordinate transformation of a physically-correct solution of the Einstein equation, while also a solution of the
Einstein equation, can definitely be physically incorrect because the fixed point |x| = 0 is readily displaced by
a coordinate transformation! Schwarzschild, however, carefully made certain that his metric is nonsingular
for all |x| > 0, and therefore is physically correct. Schwarzschild’s January 13, 1916 paper was translated
into English by S. Antoci and A. Loinger in 1999, and posted by them on arXiv [5].

On May 27, 1916, J. Droste published the following exact metric solution for a static point mass M
fixed to |x| = 0 [6], which is algebraically much simpler than Schwarzshild’s metric, but is physically flawed,

(c dτ)2 = (1− rs/R)(c dt)2 − (1/(1− rs/R))(dR)2 −R2
(
(dθ)2 + (sin θ dφ)2

)
, (2.6a)

where R is |x|, and rs
def
= 2GM/c2 is called the Schwarzschild radius. The famous mathematician David

Hilbert admired the algebraic simplicity of Droste’s Eq. (2.6a) metric, and strongly promoted it in 1918. The
upshot of Hilbert’s promotional effort is that gravity textbooks universally feature Droste’s physically-flawed
Eq. (2.6a) metric, but very mistakenly attribute it to Schwarzschild [7]. In consequence, Schwarzschild’s
physically-correct January 13, 1916 metric has been thrust into almost complete obscurity.

The component (1/(1 − rs/R)) of Droste’s physically-flawed Eq. (2.6a) metric has a singularity at
R = rs which violates the metric smoothness consequence of the Ricci tensor’s being zero at all R > 0.
Schwarzschild’s physically-correct metric has no such singularity, as we have noted in the paragraph preceding
the one that envelops Eq. (2.6a), but since Droste’s metric and Schwarzschild’s metric are solutions of the
same Einstein equation, a radial coordinate transformation R(r) exists which links them. A key property of
that transformation is that R = rs necessarily corresponds to r = 0, so R(r = 0) = rs. Another key fact
is that the determinant of Schwarzschild’s metric is −1, Einstein’s November 18, 1915 coordinate condition.
Inserting R(r) into Droste’s Eq. (2.6a) metric transforms it to Schwarzschild’s metric,

(c dτ)2 = (1− rs/R(r))(c dt)2 − (1/(1− rs/R(r)))(dR(r))2 − (R(r))2
(
(dθ)2 + (sin θ dφ)2

)
, (2.6b)

which is equivalent to,

(c dτ)2 = (1− rs/R(r))(c dt)2− (1/(1− rs/R(r)))(dR(r)/dr)2(dr)2− (R(r)/r)2r2
(
(dθ)2 + (sin θ dφ)2

)
. (2.6c)

The determinant of Schwarzschild’s metric is −1 ⇐⇒ (dR(r)/dr)2(R(r)/r)4 = 1 ⇐⇒ R2dR = ± r2dr. On
selecting ± = +, we obtain (R(r))3 = r3 + (r0)3, where r0 is an arbitrary constant, so R(r) = (r3 + (r0)3)

1
3 .

Since R(r = 0) = rs, r0 = rs =⇒ R(r) = (r3 +r3s)
1
3 , so when r > 0, R(r) > rs. Therefore it is readily shown

that Schwarzschild’s Eq. (2.6c) R(r) = (r3 + (r0)3)
1
3 metric is singularity-free for all r > 0, in agreement

with the metric smoothness consequence of the Ricci tensor’s being zero when r > 0.
The contrast between Droste’s physically-flawed Eq. (2.6a) metric and Schwarzschild’s physically-correct

Eq. (2.6b) R(r) = (r3 + r3s)
1
3 metric is an object lesson in the fact that the coordinate-transformed members

of the solution set of a given Einstein equation aren’t physically equivalent, just as the gauge-transformed
members of the solution set of a given Eq. (2.1a) electromagnetic field equation,

∂ν∂
νAµ − ∂µ(∂σA

σ) = 4πjµ/c,

aren’t physically equivalent. Immensely useful and essential as dynamic symmetries such as gauge transfor-
mation covariance and general coordinate transformation covariance unquestionably are, they nevertheless
cannot alter by a single jot or tittle the fact that an adequately-posed classical-physics problem must, without
exception, have a unique, well-defined solution. Therefore there always are physically-cogent criteria which
winnow dynamic-symmetry solution sets down to a unique single member of that set.

In particular, for a gravitational source which is a static point mass M fixed to |x| = 0, Schwarzschild’s
January 13, 1916 Eq. (2.6b) R(r) = (r3+r3s)

1
3 unique metric solution of determinant −1 that is demonstrably

singularity-free for all r > 0, is the sole physical solution.
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We will now use Schwarzschild’s Eq. (2.6b) R(r) = (r3 + r3s)
1
3 metric in conjunction with the time

component of the geodesic equation given by Eqs. (2.4g) and (2.4h) to work out the Einstein-gravity analog
of the Eq. (1.1f) Newtonian-gravity equation of motion of a test body which moves only radially relative
to the static point mass M that is fixed to r = 0. To carry this out, it will be convenient to temporarily
abbreviate Eq. (2.6b) as follows,

(c dτ)2 = B(R(r))(c dt)2 −A(R(r))(dR(r))2 − (R(r))2
(
(dθ)2 + (sin θ dφ)2

)
, (2.6d)

where R(r) = (r3 + r3s)
1
3 , B(R(r)) = 1 − rs/R(r) and A(R(r)) = 1/B(R(r)). The Eq. (2.6d) metric itself

immediately yields the particular first-order equation of test-body gravitational motion,

c2 = c2B(R(r))(dt/dτ)2 −A(R(r))(dR(r)/dτ)2 − (R(r))2
(
(dθ/dτ)2 + (sin θ(dφ/dτ))2

)
. (2.6e)

Since the test body we consider moves only radially relative to the static point mass M that is fixed to r = 0,
the Eq. (2.6e) angular frequencies dθ/dτ and dφ/dτ are both equal to zero, which reduces Eq. (2.6e) to a
first-order equation of test-body gravitational radial motion,

c2 =
[
c2B(R(r))−A(R(r))(dR(r)/dt)2

]
(dt/dτ)2. (2.6f)

To turn Eq. (2.6f) into a radial equation of motion, namely a differential equation for dr/dt, we need to
evaluate the factor (dt/dτ)2. Evaluating (dt/dτ) requires integrating the time component of the second-order
in τ four-vector geodesic equation which is given by Eqs. (2.4g) and (2.4h). For the particular Eq. (2.6d)
metric, the time component of that geodesic equation is [8],

d2t
dτ2 + dt

dτ
dB(R(r))/dR(r)

B(R(r))
dR(r)
dτ = 0, (2.7a)

which can be written,

1
dt/dτ

d(dt/dτ)
dτ + dB(R(r))/dR(r)

B(R(r))
dR(r)
dτ = 0, (2.7b)

which in turn can be written,

d
(
ln
(
dt/dτ

)
+ ln

(
B(R(r))

))/
dτ = 0, (2.7c)

which implies that,

ln
(
(dt/dτ)(B(R(r)))

)
= −C, (2.7d)

where C is an arbitrary dimensionless constant. Eq. (2.7d) implies that,

dt/dτ = 1/(KB(R(r))), (2.7e)

where K = exp(C) is an arbitrary dimensionless positive constant. Inserting Eq. (2.7e) into Eq. (2.6f) yields,(
A(R(r))

/
(B(R(r)))2

)
(dR(r)/dt)2 −

(
c2
/
B(R(r))

)
= −c2K2. (2.8a)

The object dR(r)/dt in Eq. (2.8a) is of course equal to (dR(r)/dr)(dr/dt), and from R(r) = (r3 + r3s)
1
3 ,

dR(r)/dr = r2(r3 + r3s)
− 2

3 = (r/R(r))2. Inserting this result along with B(R(r)) = 1 − rs/R(r) and
A(R(r)) = 1/B(R(r)) into Eq. (2.8a) yields,(

(r/R(r))4
/

(1− rs/R(r))3
)
(dr/dt)2 −

(
c2
/

(1− rs/R(r))
)

= −c2K2, (2.8b)

where R(r) = (r3 + r3s)
1
3 and rs = (2GM/c2). We are now able to write down the Einstein-gravity analog of

the Eq. (1.1f) Newtonian-gravity equation of motion (dr/dt)2 = (2GM/r) + ε of a test body which moves
only radially relative to the static point mass M that is fixed to r = 0,

(dr/dt)2 = c2
(
(R(r)/r)2(1− rs/R(r))

)
2
[
1−K2(1− rs/R(r))

]
, (2.8c)

where R(r) = (r3 + r3s)
1
3 . Defining the dimensionless variable q as q

def
= (r/rs), we note that (R(r)/r) =(

(q3 + 1)
1
3 /q
)

and (1− rs/R(r)) =
(
1−

(
1/(q3 + 1)

1
3

))
, so Eq. (2.8c) becomes,

(dr/dt)2 = c2
((

(q3 + 1)
1
3 /q
)
2
(
1−

(
1/(q3 + 1)

1
3

)))
2
[
1−K2

(
1−

(
1/(q3 + 1)

1
3

))]
, (2.8d)

where q
def
= (r/rs). In the Newtonian-gravity case, we see from Eq. (1.1f), i.e., (dr/dt)2 = (2GM/r) + ε, that

(dr/dt)2 increases without bound as r → 0. Indeed, in the Newtonian-gravity case the radial speed |dr/dt|
is asymptotic to

√
2GM/r as r → 0.
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To work out the asymptotic behavior of (dr/dt)2 as q → 0 in Eq. (2.8d), we note that as q → 0,
(q3 +1)

1
3 /q ' 1/q and

(
1−
(
1/(q3 +1)

1
3

))
' q3/3, so

(
(q3 +1)

1
3 /q
)
2
(
1−
(
1/(q3 +1)

1
3

))
' q/3, which together

with Eq. (2.8d) yields that ((dr/dt)/c)2 ' (q/3)2 as q → 0. Thus |dr/dt| ' c(q/3) as q → 0, so,

the test body’s radial speed |dr/dt| is asymptotic to (c/(3rs))r as r → 0, (2.8e)

which is precisely the opposite of the unbounded speed of the test body as r → 0 in the Newtonian-gravity
case. In the Einstein-gravity case, the gravitational time-dilation effect of very strong gravity reduces speeds.

We next verify that (dr/dt)2 < c2. We first show that d
((

(q3 + 1)
1
3 /q
)
2
(
1 −

(
1/(q3 + 1)

1
3

)))/
dq > 0

when q > 0. Since d
((

(q3 + 1)
1
3 /q
)
2
(
1−

(
1/(q3 + 1)

1
3

)))/
dq =

[
2 + q3 − 2(q3 + 1)

1
3

]/[
q3(q3 + 1)

2
3

]
, we must

show that 2 + q3 > 2(q3 + 1)
1
3 when q > 0. We do so by exhibiting a chain of inequalities which are logically

equivalent to 2 + q3 > 2(q3 + 1)
1
3 , where the final inequality in the chain is clearly valid when q > 0,

2 + q3 > 2(q3 + 1)
1
3 ⇐⇒ 1 + (q3/2) > (1 + q3)

1
3 ⇐⇒ 1 + 3(q3/2) + 3(q3/2)2 + (q3/2)3 > 1 + q3

⇐⇒ (1/2)q3 + (3/4)q6 + (1/8)q9 > 0 when q > 0. (2.8f)

Therefore
((

(q3 + 1)
1
3 /q
)
2
(
1 −

(
1/(q3 + 1)

1
3

)))
is a strictly increasing function of q when q > 0, so when

q > 0, it is less than its q →∞ limit, which has the value unity. Consequently, from Eq. (2.8d), (dr/dt)2 <
c2
[
1 −K2

(
1 −

(
1/(q3 + 1)

1
3

))]
< c2 when q > 0, because K2 > 0 and

(
1 −

(
1/(q3 + 1)

1
3

)
> 0 when q > 0.

Thus, (dr/dt)2 < c2 when q > 0, and, when q = 0, Eq. (2.8e) implies that (dr/dt)2 = 0, so (dr/dt)2 < c2

under all circumstances; the test body never has a speed as great as c.
We next investigate the radial speed |dr/dt| of the test body as r →∞. From Eq. (2.8d) we see that as

q →∞, (dr/dt)2 → c2
(
1−K2

)
, so,

|dr/dt| → c
√

1−K2 as r →∞. (2.8g)

If K2 > 1, Eq. (2.8g) tells us that the test body is gravitationally bound, so it can’t reach arbitrarily large
values of r. Conversely, the closer K2 is to zero, the closer the test body’s r →∞ asymptotic speed is to c.

Having obtained the radial speed |dr/dt| of the test body as r → ∞, we next work out its radial
acceleration d2r/dt2 as r →∞. To do so, we rewrite Eq. (2.8d) as,

(dr/dt)2 = c2
(
χ(q)−K2ξ(q)

)
, (2.8h)

where,

χ(q) =
(
(q3 + 1)

1
3 /q
)
4
(
1−

(
1/(q3 + 1)

1
3

))
2 and ξ(q) =

(
(q3 + 1)

1
3 /q
)
4
(
1−

(
1/(q3 + 1)

1
3

))
3. (2.8i)

Differentiating both sides of Eq. (2.8h) with respect to t yields,

2(dr/dt)(d2r/dt2) = c2
(
dχ(q)/dq −K2dξ(q)/dq

)
(dq/dr)(dr/dt), (2.8j)

where,

dχ(q)/dq =
(
4/q5

)(
1−

(
1/(q3 + 1)

1
3

))(
1 + (q3/2)− (q3 + 1)

1
3

)
and

dξ(q)/dq =
(
4/q5

)(
1−

(
1/(q3 + 1)

1
3

))
2
(
1 + (3q3/4)− (q3 + 1)

1
3

)
. (2.8k)

Since q = (r/rs) and rs = 2GM/c2, Eq. (2.8j) can be rewritten as follows,

d2r/dt2 = 1
2 (c2/rs)(rs/r)

2q2
(
dχ(q)/dq−K2dξ(q)/dq

)
=
(
GM/r2

)(
(q2 dχ(q)/dq)−K2(q2 dξ(q)/dq)

)
. (2.8l)

From Eq. (2.8k) we see that as q →∞, (q2 dχ(q)/dq)→ 2 and (q2 dξ(q)/dq)→ 3, so from Eq, (2.8l),

the test body’s radial acceleration d2r/dt2 is asymptotic to
(
GM/r2

)(
2− 3K2

)
as r →∞, (2.8m)

which only agrees with the Eq. (1.1e) Newtonian-gravity acceleration −(GM/r2) when 0 ≤ (1 − K2) � 1.
When 0 < K2 < (2/3), the test body’s acceleration becomes positive. An unexpected positive acceleration of
the expansion of the universe has been reliably observed, and its discoverers awarded a Nobel prize. If the
radially-moving test body is a packet of light, we see from the r → ∞ asymptotic Eq. (2.8g) that K2 = 0.
Putting K2 to zero in Eqs. (2.8h) and (2.8l) produces,

(dr/dt)2 = c2χ(q) and d2r/dt2 =
(
GM/r2

)(
q2 dχ(q)/dq

)
, (2.8n)
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where q = (r/rs), and χ(q) increases monotonically from zero at q = 0 toward unity as q → ∞. Therefore
dχ(q)/dq > 0, and furthermore, immediately below Eq. (2.8l) we learn that as q → ∞, (q2 dχ(q)/dq) → 2.
Therefore the closer the radially-moving light packet is to the static point mass M at r = 0, the slower its
speed is, so the gravitational acceleration which the static point mass exerts on the radially-moving light
packet is always directed radially outward, which is the opposite direction of the gravitational acceleration
that the static point mass exerts on a stationary or nonrelativistically-moving test body. Moreover, when the
radially-moving light packet is at asymptotically large distance from the static point mass M , the acceleration
d2r/dt2 which the static point mass M exerts on it is 2(GM/r2), which not only is oppositely directed to the
acceleration −(GM/r2) that that static point mass M exerts on a nonrelativistically-moving test body, but
as well is twice as great in magnitude! The effect of gravity on light is best regarded as a purely refractive
one; the stronger the gravitational field is, the slower light travels, so the “gravitational lensing” terminology
astronomers use is very appropriate indeed.

The tremendous velocity dependence of Einstein’s gravity strongly calls into question the conceptual
appropriateness of the supposed “Principle of Equivalence”. The fundamental curvature/tidal effects of
gravitation have never coexisted comfortably with that supposed “Principle”, so the realization that high
enough speeds play havoc with the direction and magnitude of the acceleration of gravity ought to be the final
nail in the coffin of the “Principle of Equivalence”. It would seem that the best way to begin thinking about
gravity is to place great emphasis on its parallels with electromagnetism, but with the immensely important
distinction that its source is the second-rank-symmetric-tensor density/flux of conserved energy-momentum
instead of the four-vector density/flux of conserved charge. The consequent second-rank-symmetric-tensor
gravitational potential necessarily interacts with a test body’s four-vector velocity in a way which startlingly
mimics the structure of that test body’s kinetic-energy term. The natural consequent conjoining of the two
almost identically-structured terms then reveals gravity to be a local warping of Lorentzian space-time, an
effect of space-time metrics rather than of potentials as in electromagnetism. Given the great existing store of
knowledge about metrics in differential geometry, the familiar elements of Einstein’s gravity theory inevitably
emerge, including its key dynamic symmetry of general coordinate transformation covariance [3] which en-
forces gravity’s physically-crucial nonlinear structure, and plays a role in gravity theory which closely parallels
the role played in electromagnetic theory by that theory’s own dynamic symmetry of gauge-transformation
covariance. Gravity theory is a magnificent amalgam of the principles of Lorentzian electromagnetism with
those of metric differential geometry; its almost kaleidoscopic attributes defy characterization by something
as simpleminded as the “Principle of Equivalence”.

We next elucidate the possible time dependences r(t) of a test body’s radial distance r as r → 0. We first
treat Newtonian gravity, where (dr/dt)2 ' (2GM/r) as r → 0. The two possible r → 0 time dependences
follow from solutions of the two differential equations drB/dt = +

√
2GM/rB and drC/dt = −

√
2GM/rC

that also satisfy rB(t)→ 0 and rC(t)→ 0. Therefore rB(t), drB/dt, rC(t) and drC/dt are given by,

rB(t) =
(
(9/2)GM(t− tB)2

)1
3 and drB/dt =

(
(4/3)GM

/
(t− tB)

)1
3 as (t− tB)→ 0+, and,

rC(t) =
(
(9/2)GM(tC − t)2

)1
3 and drC/dt = −

(
(4/3)GM

/
(tC − t)

)1
3 as (tC − t)→ 0+, (2.9a)

where rB(t) and drB/dt give the rB(t) → 0 “Big Bang” asymptotic time behavior as (t − tB) → 0+, where
tB is the time earlier than t when the “Big Bang” occurred, while rC(t) and drC/dt give the rC(t) → 0
“gravitational collapse” asymptotic time behavior as (tC − t)→ 0+, where tC is the time later than t when
the “gravitational collapse” will occur. Both of these time dependences accord with r → 0, but they both
as well accord with |dr/dt| → ∞, which is the most extreme violation of |dr/dt| < c conceivable. Moreover,
all initial conditions for this model, when solved using purely Newtonian gravity, exhibit either a past “Big
Bang” or a future “gravitational collapse” or both.

We next treat the time dependences of a test body’s radial distance r as r → 0 in Einstein gravity,
where (dr/dt)2 ' ((c/(3rs))r)

2 as r → 0 (see Eq. (2.8e)). Therefore we find solutions of the two differential
equations drI/dt = +(c/(3rs))rI and drD/dt = −(c/(3rs))rD that satisfy rI(t)→ 0 and rD(t)→ 0,
rI(t)=rI(0) exp(ct/(3rs)) and drI/dt=c(rI(0)/(3rs)) exp(ct/(3rs)) for t≤0 & rI(0)→ 0, and,

rD(t)=rD(0) exp(−ct/(3rs)) and drD/dt=−c(rD(0)/(3rs)) exp(−ct/(3rs)) for t≥0 & rD(0)→ 0, (2.9b)

where the inflationary rI(t) = rI(0) exp(ct/(3rs)) for t ≤ 0 increases exponentially with time t, and the
deflationary rD(t) = rD(0) exp(−ct/(3rs)) for t ≥ 0 decreases exponentially with time t. Since |drI/dt| ≤
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c(rI(0)/(3rs)) and rI(0)→ 0, |drI/dt| < c, and since |drD/dt| ≤ c(rD(0)/(3rs)) and rD(0)→ 0, |drD/dt| < c.
We also note that both the inflationary and the deflationary r → 0 asymptotic forms rI(t) and rD(t)

manifest entirely positive acceleration. This is a prime example of the fact that gravitational time dilation,
when it is strong enough, provokes acceleration opposite to that associated with Newtonian gravity. It is
apparent that proper understanding of the universe’s inflationary era can’t be attained without appreciation
of the fundamental underlying role of gravitational time dilation.

Eqs. (2.8h) to (2.8l) describe the differential equations for a test body’s radial motion in the gravitational
field of a static point mass M . For their transparent numerical treatment, we now restate Eqs. (2.8h) and

(2.8l) in terms of the dimensionless variables q
def
= (r/rs) and u

def
= (ct/rs), where rs = (2GM/c2). These

equations as well involve the dimensionless constant K2. The first-order Eq. (2.8h) becomes,

(dq/du)2 =
(
χ(q)−K2ξ(q)

)
, (2.10a)

where χ(q) and ξ(q) are explicitly given by Eq. (2.8i). The second-order Eq. (2.8l) becomes,

d2q/du2 = (1/2)
(
dχ(q)/dq −K2dξ(q)/dq

)
, (2.10b)

where dχ(q)/dq and dξ(q)/dq are explicitly given by Eq. (2.8k).
According to the Birkhoff theorem, the purely radial gravitational motion of the surface of a spherical

blob of uniform-density zero-pressure perfect fluid doesn’t change when the blob’s bulk fluid is replaced by
an equivalent static point mass M = E/c2 fixed to its center, where E is the total conserved energy of the
blob’s bulk fluid. Thus all of the results that we have obtained so far apply not only to the purely radial
motion of a test body, but also to the purely radial motion of the spherical surface of such a uniform-density
zero-pressure spherical blob of perfect fluid, which is known as an Oppenheimer-Snyder cosmological model.

As noted below Eq. (2.8m), the fact that the universe’s expansion is accelerating implies thatK2 < (2/3).
Since the universe’s asymptotic expansion speed is c

√
1−K2, its expansion speed therefore must be greater

than c/
√

3 = .57735c, which corresponds to a redshift of only about 1. We thus see that the order of
magnitude of the universe’s expansion speed can comfortably account for the acceleration of its expansion,
with no need for “dark energy” (the presence of a cosmological constant term in the Einstein equation).

The Einstein-gravity Oppenheimer-Snyder model shows the very great importance of gravitational time
dilation, both to the observed acceleration of the expansion of the universe and to the inflationary character
of the universe when it was sufficiently small. Of course this Einstein-gravity model permits only speeds
less than c under all circumstances, so nothing remotely resembling a Big Bang, with its unbounded speeds,
could ever have occurred. Also, the Einstein-gravity universe has existed forever, albeit in a state of extreme
gravitational time dilation “suspended animation” when it was far smaller than its Schwarzschild radius
rs = (2GM/c2), where Mc2 is its total conserved energy. With no Big Bang whatsoever, and its having
existed forever, there is no reason why the universe shouldn’t have a surplus of particles over antiparticles.

3. Further ideas of a more speculative nature about the universe’s evolution

A key property of the universe is that it is expanding, so it presumably was arbitrarily compact and dense in
the sufficiently remote past; in particular it was far inside its Schwarzschild radius rs = (2GM/c2), whereMc2

is the universe’s conserved total energy. In that era its behavior would have been dominated by gravitational
time dilation, so all physical processes would have been greatly slowed and radiation frequencies greatly
reduced; it would have been dark and cold with almost paralyzed physical processes, even its expansion
rate would have been greatly reduced. Going further back in time only further accentuates its “suspended
animation” character. Going forward in time eventually brings it to a radius of the order of rs. The
accompanying decrease in gravitational time dilation would have increased its expansion rate, which would
have further reduced gravitational time dilation, causing a futher increase in its expansion rate, etc.

Thus when the universe reached a radius of the order of rs it was on the cusp of a rapid increase in
its expansion rate. Physical process rates in that era would have also rapidly increased as the dead hand of
extreme gravitational time dilation fell away. Notwithstanding its rapid expansion, the universe would still
have been vastly, vastly more compact and dense than today’s universe, which has undergone billions of years
of additional expansion. So dense a universe, which was liberated from extreme gravitational time dilation,
would have been able to give birth to every conceivable kind of young star at an utterly enormous rate,
with particular emphasis on immensely massive, extremely hot and short-lived giants. However considering

10



how much even denser than that the universe was when it neared the liberating radius rs, only a quite small
fraction of its matter would have been able to participate directly in those fireworks; by far the greatest part
of its matter would have been compelled to take the form of primordial black holes (but do bear in mind
that black holes absolutely do not have event horizons). However those primordial black holes profoundly
modulated the spectacular star-formation fireworks underway by, for example, becoming the active nuclei of
galaxies, with the primordial black holes of lesser mass being utterly crucial to galaxy formation by supplying
the necessary cold, dark gravitational “glue”. When the compact, dense universe’s star-formation fireworks
was at its zenith, the universe was obviously extremely hot, so the black-body cosmic microwave background
is the frequency-downshifted remnant of the universe’s immense black-body radiation of that intense star-
formation era. With its continued expansion, the universe’s density of course diminished, diminishing its
rate of star and galaxy formation. The James Webb Space Telescope may possibly be registering evidence
of rapid star and galaxy formation in the early universe.
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