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This article is written as mathematical conjecture. It is a challenge to build a elementary theory
without semi-group theory or apriori estimates of the Navier-Stokes equation. If you have any ideas
or questions, please contact to MasatoshiOhrui1993@gmail.com . I'm also looking for people to
study together.

| thought about the uniqueness and smoothness of the weak solution, which was unsolved in the
Leray-Hopf's weak solution. | thought of a elementary argment in the sense that there are no long
or complicated calculations, and the theory of evolution equations is not used at all. The existence
of the solution is actually known, and the proof that already exists is very wonderful. For example,
Fujita-Kato Theory, Shibata Theory: Takayoshi Ogawa [26], Yoshihiro Shibata [22], Shibata-Kubo
[24], Kakita-Shibata [3], Okamoto [20]. But | don't think these are elementary. Also, I'm not good at
complex calculations, so | want to say the existence of solutions without calculating too much,
specifically, "Fundamental theorem of distributions with compact support":

"The fundamental solution of any linear partial differential operator with constant coefficients L on
RY thatis, E € D' that satisfies LE = § , for f € D', one of the solutions of the equation
Lu= fonQisu=FE xxof € D'(Q).

Here if f € &' then (E * f, ) = (E(z), (f(y), ¢(z +y))) "

| thought about it as an application of real analysis and "fundamental theorem of distributions with
compact support".
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The policy is, let L be the heat operator 0y — A in the Navier-Stokes equations
Ou—Au=f—-Vp—(u-V)u
divu =0

erase the pressure  and to approximate the nonlinear term (u . V)u by a sequence of smooth

T

functions, use the fundamental theorem for the difference between the external force f and the
approximation term, and show that the limit in Sobolev space is the solution.

[definition of symbols]
For convenience , write the index of the component of the vector in the upper right corner.
"Function space" and "space" are abbreviations for "linear topological space" (of functions or

distributions), other than pressure p are R?’ -values. The absolute value of the function in the
norm of normal function space is interpreted as the length of the number vector (the absolute
value of R?’ ) in the norm of the space of the R?’ -value function. We write the space of the real
numeric function and the space of the Rg -value function in the same symbol to make the symbol
easy. For any positive number

J, let B5(O, y) be the & -neighborhood of point (0, y) . Let {2 be a bounded open set contained
inR x R® whose for any y € R? | there exists § such that Bs(0,4) N Q = () and have
smooth boundary. Let tg = inf{s € R : 3y € R?, (s,y) € Q} . Let | Q] be its Lebesgue
measure. Let X be the characteristic function on Q , the support compact and the divergence for
special valuables O . For any natural number m > max{0+4/1,0+4/2} =4,p=1,2,
let V;P(Q) = {u € C*(Q) : ||ul|wms() < oo,divu = 0},

W*P(2) be the Sobolev space defined by

VP 's completion by norm of WP (§2) = ng’p(ﬂ) Let D(€2) be the space of
the test functions ( CSO(Q) as a set), DU(Q) is the space of the test functions where the
divergence is O for spatial variables (see [Supplement 1]). Let P : L2(Q) — L?,(Q) be the
projection Let C'k 6(ﬁ) be the Holder space. <w, 90> = (w, cp)L2(Q)

= [o> Z 1 w'(t, )¢ (t, z)dtdx

= [ w( (t x)dtdx

(w= (wl, w2, w?), o = (¢!, ?, ©*)) . In general, if for two Banach spaces X, Y, there
exists linear Hausdorff space Z suchthat X,Y C Z ,then X MY is a Banach space with the
norm given by [|ul|x + ||ully or max{||ul|x, [lully}  max{[ju|x, [[ully} < [lulx +
Htu <2 maX{HuHX, Htu} so these are equivalent.

(| llwmsp ()

X = ﬂm s Wi 1 (Q) Wm’2(ﬂ) . X is a Banach space with the norm given by

Jullx = Zm 5 mw HUHW““ (QNW2(Q) -
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[Proof]
Let {Un} be the Caucy sequence in X . Then, {Un} is the Caucy sequence of W(T’l (Q) N
Wm2(Q) . W™ (Q) N W™2%(Q) is a Banach space, so {u,, } converges. Let the limit be ¥ .

If u ¢ X , for any positive number R, there exists natural number m’ > 5 such that

!
2 =5 i 1wt w2 (@) > B - Then [|ullym w2 () > CR . Thisis a
contradiction, sou € X . If lim,, , ||un, — u||x = 0 does not hold, there exists positive

number R’ such that for any natural number NV , there exists . > N , M’ > 5 such that

MI
Em:5 # ”'U/n — UHW;n,l(Q)mW;nJ(Q) > RI . Then Hun — UHW;n’l(Q)ﬂW;n’Z(Q) > C,Rl .
This is a contradiction, too. So lim,, s Hun — UHX = 0.
(END)

xa € X so X # {0}.

A constant C' > (0 exists such that
[u'v’|| < Cllu'l|x]v’]|x
(Separation of the product)

and

10zl y < Cllullx
(absorption of differential)
holds foru € X .

[Proof]

For binomial coefficients Cq g , let

Ca = D p<u Caf - B

There is a continuous embedding X C Ck’g(Q) for any natural number k , because ||’Um —
’U,HX — 0

= [lun — UHWCZ”’l(Q)mW?J(m — 0

= ”Un — UHCk,s(ﬁ) — 0, so there exists constant ¢’ > 0 such that if |a| < k , by Leibniz'
formula,

10%(u'v )| ze()

< CaHUZHckvf(ﬁ)HUZHokﬁ(ﬁ)\ml/p

< ol |7’ || x |07 x

< cacl2‘Q|1/pHuiHXH’UiHX . Therefore,

Haa(uivi) HLp(Q) < Caclz‘QP/pHuiHX HUZHX , SO there exists a constant C > 0 such that
lu'v’lx < Cllu'llxlv"]lx -
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Let {Un} C X satisfies u,, — u, (91,]’(1,” — VU . From the Holder's inequality, we have
[(Ozittn — v, )| < [|Opitn — V|| 1r() |||l Le() — 0 and the weak differentiation is
continuous in D} () , so Opiuy, — QEJUIII 'D(’,(Q) . From

v=0uu€ X, {u€ X :0,u€ X} =X, therefore the absorption of differentiation is

true by the closed graph theorem.
(END)

X 3 u+— Ex(xqu) € X isabounded operator and a constant C' > 0 exists such that for
any u € X

| Jems B(s,9)xalt — s,z — y)u(t — s,z — y)dsdy] x

< Cllullx

holds.

[Proof]

As a function of (8, y) , forany (t,z) € Q,

supp(E'(s,y)xa(t — s,z — y)u'(t — s,z — y))

C-Q+(tz)

={(5,y) ERxR3: (t —s,z—y) € Q}

is the translation of reverse of {2 , so it is compact, and

052 (E* (s, y)xa(t — s,z — y)u'(t — s,z — y))| < E'(s,y) sup{|Of,u'(t —

S, T — y)| : (t —S,T— y) < Q} S Liy(ﬂ) , S0 combine the theorem of differentiation
under the integral sign, the Holder's inequality and assumption of

Q , we have
10%(E * (xow)) ||z ()
< ||E % (0%(xau)) | 7(2)

< E(s,y)llzz, (-0t @wapll0®ult — s,z — y)ll12 (~a+ e |22, ()
< SUP(; e HEHm 0+ (b)) 10%u| L2 () |27

S CH8 UHLl ﬂL2(Q)

< XX.

So we have

1E * (xou)||x < C|lulx.

(END)

For a constant M | let S be a subspace of X :
S={uecX: < M} . We take M the smaller one while satisfying 20°M <
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1,C(1 +3C?)M < 1. Letthe external force f € Sand ||f|lx < M?*.

We solve

(N-S)' Oy — Au = f — (u- V)u, thatis, u(to, z) € L®(Q) , u € W™ (Q) N
W),

p e L120C(Q) ,forany ¢ € D, (1),

(Ou+ (u-V)u—Au+Vp — f,p) =0,

forany ¢ € D(§2),

(divau, @) = — 37 (uf,00¢p) = 0.

@ : S — S can be defined as

Plu(t, z)

= foR3 E(s,y)xa(t — s,z —y)(Pf(t— s,z —y) — P((u- V)u)(t — s,z —
y))dsdy . we take the function sequence {u, } C Sasug € S,ifn > 0 then

Un+1 (ta :13) - ds[un] (t’ 217)

= Jaurs E(8,9)x0(t — s,z —y)(Pf(t — s,z —y) — P((un - V)un)(t — s,z —
y))dsdy .1f X is a complete metric space, then S is complete because it is a closed subspace
that is not empty, and if it can be said that @ is a contraction mapping, according to the Banach's
fixed point theorem, the uniqueness and the existence of a fixed point of @ :

Some u € S exists uniquely and @|u] = u .

Then, due to the uniqueness of the fixed point in Banach's fixed point theorem, it can be said that
w is a unique weak solution. If f = 0 thenu 7% 0 . £ can be arbitrary large, so u, p are time
global.

[Proof of the possibility that @ can be defined as a contraction mapping]

u€eS=|[Ex*(xa(Pf—P((u-V)u)lx <oo
holds. Therefore

| Plu]l|x < M.

HP“ =1, so0
Ixe(Pf = P((u-V)u))llx
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< Ifllx + ||utOpu + uOpu + w?dpsu| x
< M?2+3C°M? < .

If

| D[ull x

< CM?* + 3C*M?

< M,MmustbeC(l—i—3Cz)M <1.
(END)

d:85 — S is Lipschitz continuous: there is a constant L > 0 such that

| Jasrs E(ss9)xa(t — s,z —y)(P((v- V)v)(t — s,z —y) — P((u- V)u)(t -
s,x —y))dsdyl|x
< L||u — v||x.

may be possible. If the Lipschitz continuity established,

| 2[u] — &[v]||x

< | Jasrs E(8,9)x0a(t — 5,2 —y)(P((v- V)v)(t — s,z —y) — P((u-
V)u)(t — s,z — y))dsdy||x

< Ljju —v|x

follows. Here, if

[ d may be a contraction mapping]

L<1

holds, the argument is justified.

[Proof of Lipschitz continuity]

(v- V)v(t—s z—y)— (u-Vu(t—s,z—y)

= Z] LV (Ov(t — 8,2 — y) — Owu(t — s,z —y)) + (v 0pu(t — s,z —y)) —
(w Opiu(t — s,z — y)) , so we have

I f s B(s,9)xa(t — 8,2 —y)(P((v- V)v)(t — 5,2 —y) = P((u- V)u)(t -
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s,z — y))dsdy| x

< C||v]| x max;([|0piv — Bpiul| x) + C%||v — ul| x max;([|0ziull x)
< C*M|lv —ullx + C°M|jv —u| x

= 2C*M|ju — v||x.

Therefore, we can make it L = 2C° M .
(END)

[Proof of the possibility that @ is a contraction mappig]

From the above argment || foR3 E(s,y)xa(t — s,z —y)(P((v-V)v(t — s,z —
) — P((u- V)u)(t — 5.2 — y))dsdy]x

< 2C°M]||u — vl x

and

20°M < 1.
(END)

[Solvability of the Navier-Stokes equations]
When taking f € Sto || f||x < M? | the fixed point of
@ . S — S will be the solution of (N-S)".

If f # 0thenu 7% 0. €2 can be arbitrary large, so u, J are time global.

[Proof]
We take the function sequence {un} C Sasug € 5,ifn > 0 then

Unt1(t, ) = Pluy](t, z)
- foRs E(s,y)xat — s,z —y)(Pf(t — s,z —y) — P((un - V)un)(t — s,z —
y))dsdy .

[proof]
u satisfies div « = 0 in the sense of a distribution belonging to D/(Q) (See [28]). That is, for

any p € D(Q), (divu,p) = — Z?lej, 0xlp) = 0.
Forany ¢ € D,(Q),
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diV((p) = 0, so by integration by parts
(Vp, >

= [, 21 (Vp)i(t, 2)¢' (¢, z)dtd
- _fQ (¢, z)div(p)(t, z)dtdz = 0.

Therefore, boundness of u, 8mju by the Sobolev's embedding theorem and ‘Q| < OO, we have
(u . V)u € L2(Q) , S0 by the Helmholtz decomposition,

ifwelet f = Pf + Vf,(u-V)u=P((u-V)u)+ Vu

then

(fyp) =(Pf,0),((u-V)u,p) = (P((u-V)u), ), hence we solve
(N-S) Opu — Au = f — (u- V)uinD,(Q) .
The solution of the approximate equation on Q

(N-S)" Opvy, — Avy, = (Pf - P((un : V)un))
(Un = Un+1)
is

v, = E x xo(Pf — P((un - V)u,)) € V"12(Q) .

Therefore, the solution of (N-S)"

’Un(t,:l,‘) — fRXRB E(Say)XQ(t — 5T — y)(Pf(t — 5T — y) - P((un )

Vu,)(t — s, — y))dsdy.

We show that 4 = v is the solution of (N-S)':

'Un(ta :B)

= Jrms B(5,0)X(t = 5,2 — 1) (Pf(t — 5,2 — y) — P((tun - V) (t — 5,2 —
y))dsdy,

Uy, — U =V < Uy,

Oun (t, ) — Avy(t, x)

— <(8tE(t — 8T — y) - AE(t — 8T — y))axﬁ(say)(Pf(Say) - P((un ’
V)un)(s,9)))

Z))<>5(T) ®6(2), xa(t — T,z —2)(Pf(t — 7,2 — 2) = P((un - V)un)(t — 7,2 —
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— Pf(ta CE) o P((un ) V)un)(t7 QE)

Therefore, the above calculation and the continuity of the heat operator on 'Df,(ﬂ) :

|{Oyvy, — Ay, @) — (Oyu — Au, )| — 0, and from the Holder's inequality, || P|| = 1,
and product of the function L?(Q) x L*(2) 2 (u,v) + uv € L*(£) is continuous (See
[Supplement 2])

[ Jo(P )(t,w)
—P(( ) )( z))) - ¢(t, z)dtdx|
< [[((un - V)un) (¢, 2) = ((u- V)u) (¢, 2) | 2v@llet 2) | 2<@) = 0, (n — o0),

hence

Oiu — Au = Pf — P((u- V)u) holds, so we have

u(t, ) = [p.ps E(s,y)xa(t — s,z —y)(Pf(t — s, —y) — P((u- V)u)(t -
s, —y))dsdy .

It has been shown that it is a solution in the sence of a distribution in D;(Q) of (N-S)' (See
[Supplement 3]).

" €Dy() = (U,p) =0
<~
" there exist P such that U = Vp "

(See [14]), therefore there exist P such that 8tu + (u . V)u — Au — f = —Vp holds.

u(t,z) € Wm™P(Q) C C(m—4/p)-1Le (ﬁ) , and if the function is bounded as variables (¢, z)
then it is also bounded as variable T , therefore u(to, :I:) is bounded.
(END)

[Smoothness and boundness of elementary weak solutions]
Solution (u, p) are C'™° ~functions and bounded.

[Proof]
™ can be arbitrarily large, so the embedding theorem to Holder space (See [18] theorem 6.12)

"if N> m —4/p > 0then W™P(Q) C C(m_4/p)_1’€(§) fore € (0,1) " in the sence of
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existence of suitable representative elements, © is bounded on §2 and C'™° -function.

f is smooth and Oyu + (u - V)u — Au — f = —Vp because — VP is smooth, so p is also
smooth.
(END)

[The uniqueness of elementary weak solutions]
Let the solutions are u, v .

fOu+ (u-Viu—Au—f=08v+ (v-V)v —Av — fthenu =v.

[Proof]

U, v are smooth, soif i ;é v,

Ou+ (u-V)u—Au— f # 0w+ (v-V)v — Av — f . Thisis a contradiction.
Thereforeu = v .

(END)

[Supplement 1]
As functions ( that diverges for spatial variables divip = V - o = 0, it is sufficient to take any

(VNS D(Q) and set to ¢ = curly . (See [10])

[Supplement 2]

Let Hun — uHLz — 0, H’Un — vHLz — (. By the triangle inequality, we have
|HunHL2 — HuHL2 | < ”un — uHLz for any sufficientaly large 11 . On the other hand,
HunHLz < HuHL2 + 1. Therefore

[unvn — 'vaILl < HunHLz Mvn = vll2@) + vz llun — ull2@) <
(llwllz2 () + 1)an — vll2@) + llvllz2e Hun — ullz2(@) = 0.

[Supplement 3]
Let|a] <m —1.

Jo! Jpums E(5,9)0% (xalt — s,z — y)(Pf(t — s,z —y) — P((u- V)u)(t -
s, x — y))dsdy|Pdtdx

= Jo| Joxrs_Bs00) E(5:9)0%(xalt — 5,2 = y)(Pf(t — s,z —y) — P((u-
Vu)(t — s,z — y))dsdy|Pdtdx
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+ Jo [ 500 E(5,9)0 (xalt — s,z — y)(Pf(t — s,z —y) — P((u- V)u)(t -
S, T — ))dsdy|pdtdw.

1 _l=?
) t 0 )
E'(t,x) = Vit erw (t>0) ,s0 E*(s,y) is a locally integrable function, therefore
0 (t <0)

Jo | forms E(8,9)0%(xa(t — s,& — y)Pf(t — s,z — y))dsdy[Pdtdz

is a finite value.

Jo | [o.ms E(s,4)0%(xa(t — s,z — y)P((u- V)u)(t — s,z — y))dsdy|Pdtdz

is also finite.

Jo ! Jeups E(s,y 8a( ot —s,z—y)P((u-V)u)(t — s,z — y)dsdy|Pdtdz

- fﬂ | foR3 Bs(0 E(s,y)0%(xa(t — s,z —y)P((u-V)u)(t — s,z —
))dsdy|pdtdm

+ fQ | fB (0,0) (s,9)0% xa(t — s,z — y)P((u- V)u)(t — s,z — y))dsdy|Pdtdx.

This first term is a finite value:

Jo | JaxrsBs0,0) E(8,9)0% (xa(t — 5,2 —y) P((u- V)u)(t — s,z —
y))dsdy|Pdtdx

< sup{E'(s,y) : (s,9) € R x R’ — Bs(0,0)}” fQ | f{(s,y):(t—s,w—y)eﬂ} 0%(P((u
V)u)(t — s,z — y))dsdy|’dtdz

< sup{E'(s,y) : (s,y) € R x R — B5(0,0)}” sup{|0*(P((u - V)u))(s,y)]
(s,9) € Q}P|Q"7

< 0.

Also, the second term is also a finite value:by
Holder's mequallty

fQ | fB 0() 7y 8Q(XQ(t — ST — y)P((u : V)U)(t — 8, — y)dsdy\pdtdm
o 10° (P (- DY) e 5. 0.0

< Q.
(END)
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