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Detecting Whether a Graph Has a Fixed-point-free
Automorphisms Is in Polynomial Time

Yasunori Ohto

Abstract

The problem that to determining whether a graph has a fixed-point-free automorphism is NP-complete. We
show that it is solvable in polynomial time. First, we obtain the automorphisms of an input graph G by using a
spectral method. Next, we prove the Theorem used to detect whether there is a fixed-point free automorphism in
G. Next, we construct an algorithm to detect whether G has a fixed-point-free automorphism using this result. The
computational complexity of this problem is O(n5). Then, the complexity classes P and NP are the same.
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I. INTRODUCTION

The P versus NP problem [1], [2] is one of the major problems in theoretical computer science. An
answer to this problem would determine whether problems that can be verified in polynomial time can
also be solved in polynomial time. Attempts have been made to prove that P is not equal to NP. However,
it has been shown that this cannot be proven or is difficult to prove using the methods of relativizing
proofs [3], natural proofs [4], and algebrizing proofs [5]. On the other hand, many attempts have been
made to show the lower bound of NP problems [6], [7], mainly by pruning conditional searches [8], but it
is still unclear whether P and NP are equal. In contrast, we will show a lower bound on the computational
complexity of an NP-complete problem by introducing a spectral method to handle multiple states at once.

If a problem is NP and all other NP problems are polynomial-time reducible to it, the problem is
NP-complete [9]. If one of the NP-complete problems can be solved in polynomial time, the complexity
classes P and NP are the same. The problem of determining whether a given graph has a fixed-point-free
automorphism is NP-complete [10]. In this paper, we show that it is solvable in polynomial time.

First, we define the following functions. Let S be a vertex-weighted graph. Let Vw0(S) be the set of
vertices with weight 0 of S. Let Sg(S, v, w) be a vertex-weighted graph in which a weight w ∈ N is
given to a vertex v of S. Let Ev(S) be the eigenvalue set of the adjacency matrix of S. Next, we use
Theorem II.2 [11] to obtain the automorphisms of an input graph G using eigenvalue sets.

Theorem II.2. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
When Ev(Svi) = Ev(Svj), Svi and Svj are isomorphic.

Next, we prove Theorem II.5 to detect whether there is a fixed-point-free automorphism in G.

Theorem II.5. We obtain the vertex sets Vλ ⊂ V with the same λv = Ev(Sg(S, v, w)), v ∈ V , w > 0.
Vλvi > 1 for all vertex sets of λvi if, and only if, G has a fixed-point-free automorphism.

Next, we construct an algorithm to detect whether a graph has a fixed-point-free automorphism using this
result. Since the elements of an adjacency matrix of a vertex-weighted graph are all integers, the coefficients
of the eigenequation of this matrix are all integers. Then, we calculate the Frobenius normal form [12],
[13] to obtain the coefficients of the eigenequation of this matrix without real number calculations. Then,
we compare the coefficients to determine whether the sets of eigenvalue are the same. The computational
complexity of detecting whether a graph has a fixed-point-free automorphism is O(n5). Since one of the
NP-complete problems is solvable in polynomial time, the complexity classes P and NP are the same.
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This paper is organized as follows. Section II provides the proofs used to determine whether a given
graph has a fixed-point-free automorphism. Section III presents an algorithm to solve this problem. Finally,
Section IV presents a conclusion regarding the result of this paper.

II. PROOF

In this section, we provide the proofs for the results of detecting whether a given graph has a fixed-
point-free automorphism.

A. Preparation
We define the following functions, which will be used in the proofs and the methods. Suppose S is

a vertex-weighted graph. Let Vw0(S) be the set of vertices of S with weight 0. Let Sg(S, v, w) be the
vertex-weighted graph in which the weight w ∈ N is given to vertex v of S. Denote the adjacency matrix
of S by A(S). Let Ev(S) be the set (with multiplicities) of eigenvalues of A(S).

B. Obtain the automorphisms
In this subsection, we provide the proof and use the Theorem and the Corollary for obtaining the

automorphisms in G.
Let Aut(G) be the automorphism group of G. We can obtain ψ ∈ Aut(G) by composition of automor-

phisms of order two.

Corollary II.1. There are certain automorphisms ψ1, ψ2, . . . , ψm ∈ Aut(G) of order two, and we can
explain ψ = ψmψm−1 · · ·ψ1.

Proof. Permuting vertices of ψ consists of transposition and cycling. Suppose that a composition of
automorphisms has a cycle σi = (σ1 → · · · → σj → σj+1 → · · · → σr → σ1) of order r > 3. At this
time, there exists the transposition such that σj,j+1 = (σj ↔ σj+1). Then, σi = σiσ

−1
j,j+1σj,j+1 = σi+1σj,j+1.

Thus, the order of σi+1 is r − 1. Therefore, Corollary II.1 holds.

An automorphism of order two contains transposing two vertices. So, we remove fixed points by
compositions of automorphisms that contain transposing two vertices. Thus, we use Theorem II.2 and
Corollary II.3 [11] to obtain the automorphisms that contain transposing two vertices of an input graph
G using eigenvalue sets.

Theorem II.2. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
If Ev(Svi) = Ev(Svj), then Svi and Svj are isomorphic.

Corollary II.3. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
If Ev(Svi) ̸= Ev(Svj), then Svi and Svj are not isomorphic.

So, when Ev(Svi) = Ev(Svj) if, and only if, there is an automorphism in G that contain the transposition
of vi and vj .

C. Detect whether there is a fixed-point-free automorphism
In this subsection, we provide the proofs for the results of detecting whether a given graph has a

fixed-point-free automorphism from obtained the automorphisms.
Lemma II.4 and Theorem II.5 prove that it is possible to detect whether there is a fixed-point-free

automorphism in G.

Lemma II.4. Suppose that a graph G = (E, V ) has nontrivial automorphisms ψa, ψb ∈ Aut(G), where
ψa ̸= ψb. Let ψa have fixed points Vfixed,ψa = {v|ψa(v) = v, v ∈ V }. Now, ψb has the vertex transposition
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Algorithm 1 A function that determines whether a graph G has a fixed-point-free automorphism.
1: function HAS FIXED POINT FREE AUTOMORPHISM(G = (V,E))
2: S ← G with all vertex weights are 0
3: w ← 2|V |
4: clear hash h
5: for each v ∈ V do
6: λ← Ev(Sg(S, v, w))
7: if h(λ) = ∅ then h(λ)← {v}
8: elseh(λ)← h(λ) ∪ {v}
9: end if

10: end for
11: for each T ∈ h do
12: if |T | = 1 then
13: return FALSE
14: end if
15: end for
16: return TRUE
17: end function

ψb(va) = vb and ψb(vb) = va, va ∈ Vfixed,ψa . When we apply ψb following ψa, the set of fixed points
become Vfixed,ψa ∩ Vfixed,ψb

.

Proof. Suppose ψa : Va,s 7→ Va,d, Va,s ∪ Va,d ∪ Vfixed,ψa = V . When we apply ψb following ψa, we obtain
ψb : Va,s ∪ Vfixed,ψa 7→ Va,s ∪ Vfixed,ψa , Va,d ∪ Vfixed,ψa 7→ Va,d ∪ Vfixed,ψa , so the vertices belonging to Va,s
and Va,d are not returned to the original point by ψb. The automorphic transformation ψb maps at least
one vertex v to another. Thus, Lemma II.4 holds.

Theorem II.5. Consider a graph G = (E, V ). Let the vertex weighted graph S = G. We obtain the vertex
sets Vλ ⊂ V with the same λv = Ev(Sg(S, v, w)), v ∈ V , w > 0. Vλvi > 1 for all vertex sets of λvi if,
and only if, G has a fixed-point-free automorphism.

Proof. From Lemma II.4, applying multiple automorphic transformations to G does not increase the size
of the set of fixed points. When Vλvi > 1 for all vertex sets, there exists ψ such that ψ(v) ̸= v at every
vertex v. Suppose there is a set of vertices such that |Vλvj | = 1. There is no ψ such that ψ(v) ̸= v at
v ∈ Vλvj . Then, v becomes a fixed point. Therefore, Theorem II.5 holds.

III. ALGORITHM

In this section, we present a polynomial-time algorithm to determine whether a graph has a fixed-point-
free automorphism. We assume that the number of vertices of the graph is n.

Since the elements of an adjacency matrix of a vertex-weighted graph are all integers, the coefficients
of the eigenequation of this matrix are all integers. We use the set of coefficients of the eigenequation
of the adjacency matrix of a vertex-weighted graph instead of its set of eigenvalues. We calculate the
Frobenius normal form to obtain the set of coefficients without real number calculations. The amount of
computation required to convert an adjacency matrix into the Frobenius normal form is O(n4).

Function 1 determines whether a graph G has a fixed-point-free automorphism. First, by adding a
weight w > 0 to a vertex, we obtain a set of vertices Vλ with the same eigenvalue set. Thus, we obtain
automorphisms of G from Theorem II.2 and Corollary II.3. Next, we check if the size of the vertex set
Vλ is 1 or above to determine whether there is a fixed-point-free automorphism based on Theorem II.5.
The computational complexity of this function is O(n5).
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Fig. 1. An example of detecting a fixed point.

Figure 1 shows an example of detecting a fixed point for the graph G = (V,E). Let the vertex weighted
graph S = G. We obtain the vertex sets Vλ ⊂ V with the same λv = Ev(Sg(S, v, w)), v ∈ V , w > 0.
Then, we obtain Vλ1 = {v1, v3}, Vλ2 = {v2, v4} and Vλ3 = {v5}. Thus, if |Vλ3| = 1, then G has no
fixed-point-free automorphism.

IV. CONCLUSION

In this paper, we have presented an algorithm to detect whether a given graph G has a fixed-point-free
automorphism. It has polynomial time complexity. Since one of the NP-complete problems is solvable in
polynomial time, the complexity classes P and NP are the same.

Note that this algorithm has a limitation in that it can only detect whether G has a fixed-point-free
automorphism.

APPENDIX A
DEFINITION

In this section, we give the definitions used in this paper.

Definition A.1. A graph G = (V,E) is a pair consisting of a non-empty finite vertex set V ̸= ∅ and
an edge set E that is a subset of V 2. The graph’s size is the number of its vertices 1 < n = |V |. The
number of vertices in a graph is assumed to be finite. In addition, we align the set V with {v1, . . . , vn}.
There is an edge between vertices va and vb when (va, vb) is an element of the set E. Also, edges have no
direction. Moreover, the graph has no multiple edges between a pair of vertices, and there are no loops
(i.e., (va, va) is never an edge).

Definition A.2. A vertex-weighted graph S = (V,E,w) is a graph with a function w : V → N that
gives the weights of the vertices. Then, a graph is a vertex-weighted graph in which the weights of all
its vertices are 0.

Definition A.3. The adjacency matrix A of a vertex-weighted graph S = (V,E,w) with n = |V | is an
n× n symmetric matrix that is given as follows. The entries ai,j , vi, vj ∈ V , 0 < i, j ≤ n of A satisfy: (vi, vj) ∈ E if ai,j = aj,i = 1,

(vi, vj) /∈ E if ai,j = aj,i = 0,
ai,i = w(vi).

Definition A.4. Suppose that a graph G = (E, V ) has an automorphism. Let ψ be the automorphic
transformation. A fixed-point-free automorphism is an automorphism such that ψ(v) ̸= v at all vertices
v ∈ V .
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APPENDIX B
PROOF

This chapter reproduces the proofs from the reference [11].
The following Theorem II.2 and Corollary II.3 [11] prove that it is possible to obtain the automorphisms

of S using eigenvalue sets.

Theorem II.2. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
If Ev(Svi) = Ev(Svj), then Svi and Svj are isomorphic.

Proof. We show that if Ev(Svi) = Ev(Svj), then Svi and Svj are not cospectral but isomorphic.
Let A(Svi) and A(Svj) be Avi and Avj , respectively. When there exists a permutation matrix P such

that Avi = P tAvjP , Svi and Svj are isomorphic. Denote the eigenfunctions of Avi and Avj by fvi and fvj ,
respectively. When fvi and fvj are the same, the eigenvalue sets of Avi and Avj are the same. Therefore,
we will prove that such a nontrivial permutation matrix exists when fvi − fvj = 0.

Without loss of generality, we may assume i = 1 and j = 2. We show the characteristic polynomials
fv1 and fv2 as below.

fv1 = |Av1 − λI|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

w − λ a1,2 a1,3 a1,4 · · · a1,n
a2,1 −λ a2,3 a2,4 · · · a2,n
a3,1 a3,2 w3 − λ a3,4 · · · a3,n

a4,1 a4,2 a4,3
. . . ...

...
...

... . . . ...
an,1 an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

fv2 = |Av2 − λI|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ a1,2 a1,3 a1,4 · · · a1,n
a2,1 w − λ a2,3 a2,4 · · · a2,n
a3,1 a3,2 w3 − λ a3,4 · · · a3,n

a4,1 a4,2 a4,3
. . . ...

...
...

... . . . ...
an,1 an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The weights of the vertices are w, w3, and . . . wn, all of which are integers. Then,

fv1 − fv2 = w

∣∣∣∣∣∣∣∣∣∣∣

0 a2,3 a2,4 · · · a2,n
a3,2 w3 − λ a3,4 · · · a3,n

a4,2 a4,3
. . . a3,n

...
... . . . ...

an,2 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣
− w

∣∣∣∣∣∣∣∣∣∣∣

0 a1,3 a1,4 · · · a1,n
a3,1 w3 − λ a3,4 · · · a3,n

a4,1 a4,3
. . . a3,n

...
... . . . ...

an,1 an,3 · · · · · · wn − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0.

(1)

If n = 2, fv1 and fv2 are the same. Hence, in this case, Sv1 and Sv2 are isomorphic.
We treat the case of n = 3 as follows. Equation 1 becomes

fv1 − fv2 = w

∣∣∣∣ 0 a2,3
a3,2 w3 − λ

∣∣∣∣− w ∣∣∣∣ 0 a1,3
a3,1 w3 − λ

∣∣∣∣
= w(a2,3a3,2 − a1,3a3,1)
= 0.

So, when a2,3 = a1,3, fv1 and fv2 are the same. For this case, then, Sv1 and Sv2 are isomorphic.
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Let n > 3. Suppose the matrix A′ is as follows.

A′ =


w3 a3,4 · · · a3,n

a4,3
. . . a3,n

... . . . ...
an,3 · · · · · · wn

 .

Let vertex u1 = (a1,3, a1,4, . . . , a1,n)
t and u2 = (a2,3, a2,4, . . . , a2,n)

t. Then, Equation 1 becomes as
follows.

fv1 − fv2 = w

∣∣∣∣ 0 ut2
u2 A′ − λI

∣∣∣∣− w ∣∣∣∣ 0 ut1
u1 A′ − λI

∣∣∣∣
= 0.

In order for fv1 and fv2 to be the same, it is necessary that fv1 − fv2 = 0 for all λ. So, we assume
|A′ − λI| ≠ 0. Then,

fv1 − fv2 = w|A′ − λI||0− ut2(A′ − λI)−1u2|
− w|A′ − λI||0− ut1(A′ − λI)−1u1|

= w|A′ − λI|(u2 − u1)t(A′ − λI)−1(u2 − u1)
= 0.

When u1 = u2, fv1 and fv2 are the same. In this case, then, Sv1 and Sv2 are isomorphic.
Let u2 ̸= u1. When (u2−u1)t(A′−λI)−1(u2−u1) = 0, u2−u1 and (A′−λI)−1(u2−u1) are orthogonal.

So,

(u2 − u1)t(A′ − λI)(u2 − u1) = ut2A
′u2 − ut1A′u1 − ut2λIu2 + ut1λIu1

= 0.

In order for fv1 and fv2 to be the same, it is necessary that fv1 − fv2 = 0 for all λ. So, the number of
elements with value 1 in u2 and u1 is the same.

Since u2 − u1 and (A′ − λI)(u2 − u1) are orthogonal,

(u2 − u1)tA′(u2 − u1) = (u2 − u1)tP ′tA′P ′(u2 − u1)
= (u1 − u2)tP ′tA′P ′(u1 − u2)
= 0

with P ′ a liner operator. When A1 and A2 have the same eigenvalue set, there exists a set of nontrivial
permutation matrices {P ′|P ′tA′P ′ = A′∧ (u2−u1) = P ′(u1−u2))}. So, Sv1 and Sv2 are isomorphic.

Corollary II.3. Let Svi = Sg(S, vi, w) and Svj = Sg(S, vj, w) with vi, vj ∈ Vw0(S), vi ̸= vj and w > 0.
If Ev(Svi) ̸= Ev(Svj), then Svi and Svj are not isomorphic.

Proof. Using a permutation matrix P , A(Svi) ̸= P tA(Svj)P . So, there is no bijection between Svi and
Svj . Therefore, Svi and Svj are not isomorphic.
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