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Abstract 

Open-ended evolution (OEE) of interacting elementary cellular automata (ECA) was studied by Alyssa 

Adams et al. (2017). Some instances of composite ECA systems incorporating state-dependent 

dynamics were shown to satisfy definitions of unbounded evolution (UE) and innovation (INN), 

facilitating OEE. As an exercise in the rigorous analysis of systems not larger than sufficient to 

establish universal requirements for OEE, the scope of the study was restricted to small one-

dimensional systems (ECAs) in which the perturbation of one subsystem by one other was one-way 

only (from “environment”, e to “organism”, o), but the authors recognized that their conclusions 

should also be relevant to the richer dynamics of large systems of mutually interacting subsystems. In 

this study, I explore the potential of three mutually interacting hodge podge machines for OEE and 

recognize that study of OEE in such comparatively large systems is provisionally tractable only by 

assessment of INN, considered as a reliable UE/OEE indicator. 
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Introduction 

Persistence of unpredictable change is an amazing feature of the world which we can describe as 

open-ended evolution (OEE). An unsolved deep problem is that attempts to model the evolution of 

the world and its processes have failed to capture OEE, but recognition that OEE incorporates 

unbounded evolution (UE) and innovation (INN) points the way to discernment of what is missing 

from dynamics models which fail to exhibit increasing diversification. The OEE problem has been 

studied with composite systems of elementary cellular automata (ECA) in which one subsystem 

perturbs the state trajectory of another, and determining if rigorous definitions of UE and INN are 

satisfied [1].  

Understanding OEE requires definitions of its defining features. A system of finite size 

accommodating only a finite number of states must eventually cycle within an expected recurrence 

time: the Poincaré recurrence time (tp). Note that many dynamical systems will never return to an 

initial state, but will enter a limit cycle spanning a small subset of all otherwise-possible states, often 

with a short period. A prospective subsystem evolving in isolation will cycle within its own tp but 

recurrence of a subsystem (tr) within a composite system of interacting subsystems can exceed the tp 

of its isolated equivalent. The definition of UE follows: it corresponds to tr > tp [1]. The other OEE 

feature, innovation (INN), is defined to have occurred if a subsystem’s state trajectory is not a 

possible state trajectory of its isolated equivalent [1]. 

In [1], three categories of one-dimensional ECA systems incorporating one subsystem 

(“environment”, e) perturbing another (“organism”, o) were described. In two of them (case 

categories 2 and 3), the rule evolution of o is entirely driven by external influence: in case 2, the 

eight-bit state of an environment ECA is interpreted as the ECA rule applying to o at each time step, 

and in case 3, the state trajectory of o is determined by stochastic bit-flips of the ECA rule table 

applied at each iteration. The state-dependency exclusive to case category 1 system dynamics was 

inspired by recognition of the self-referential nature of biological dynamics: only in case 1 systems is 



the state trajectory of o determined by both its own state and perturbations of its rule at each step 

by its environment.  

Figure 1 below shows an example of a case 1 system demonstrating OEE, reproduced from [1]. 

 

 

 

Figure 1. A case 1 system exhibiting OEE, reproduced from [1]. With black cells corresponding to state 1 and 

white cells representing state 0, the time trajectory of e (environment) is determined by repeated application 

of ECA rule 62: 00111110 (Wolfram’s ECA indexing scheme, [6]). The first state (top row) of o (organism) is 

11011 which transitions to 01000 by rule 66 (01000010). Subsequent evolution of the o state is determined by 

environmental modification of the transition rule at each step as specified in [1]. By the algorithm, the specific 

sequence of rules applied to o is 66 → 80 → 67 → 25 → 57 → 43 → 29 → 117 → 61 → …  

 

In Figure 1 the organism o is five cells (bits) wide (2^5 = 32 possible states) so tp = 32 steps, shown by 

blue highlight. The longer states recurrence time (tr) is indicated by the red highlight extending 

further than the blue highlight. The 42-step state sequence from the third o state 00100 to the state 

where the red highlight ends (01101) repeats indefinitely, so tr = 42 steps > tp = 32 steps, meeting the 

definition of UE. The sequence of rules (t’r) applying to o also repeats each 42 steps (but note tr = t’r 

does not always occur in these systems). 

By inspection of the 42-step tr cycle, neighbourhood 111 always corresponds to cell state transition 1 

to 0 but contradictions (state transitions to 0 and 1) occur from instances of all other three-cell 

neighbourhoods within the tr cycle. Occurrence of such contradictions reveals innovation (INN), i.e. 



the tr sequence cannot be the outcome of any single ECA rule uniformly applied. The definitions of 

UE and INN are both met by the system of Figure 1, so it demonstrates OEE as defined in [1]. 

(As an aside, the perpetually-repeating 42-step tr sequence incorporates only 13 of the 32 possible 

states, i.e. o is not ergodic, as many states are never visited. Similarly, only 22 rules of the 256-rules 

ECA rule space drive the 42-step t’r sequence, so the o system is not ergodic within the ECA rule 

space either.) 

The study of these composite ECA systems [1] satisfied the authors’ objective of establishing 

universal requirements for OEE, but the authors recognized that their conclusions should also be 

relevant to the richer dynamics of large systems of mutually-interacting subsystems. I have 

considered two-dimensional hodge podge machines as a family of abstract systems of interest for 

studying OEE at larger spatial and complexity scales. 

 

A two-dimensional non-linear dynamic system: the hodge podge machine 

The hodge podge machine CA was an outcome of work done by Martin Gerhardt and Heike Schuster 

studying the phenomenon of spatially-ordered structures emerging in chemical systems [4]. Rigorous 

interest in the phenomenon of spontaneous oscillations in chemical media began with the Russian 

chemist Boris Belousov who noticed these phenomena circa 1950, but at first these striking 

observations were assumed impossible by editors and mostly ignored until Anatoly Zhabotinsky later 

expanded on the work and developed credible theory. Since recognition of the Belousov-Zhabotinsky 

(BZ) reaction [2], other oscillating nonlinear chemical systems have been discovered and studied. 

Reference [3] is an article about the hodge podge (HP) machine for a general readership. Note that 

there is scope for some variation in parameter values and in the state-transition rules, so a 

continuous universe of varied hodge podge machines can be defined. 

 

Methods 

For the purposes of this work, my modification of the HP machine as described in [3] incorporates a 

much-reduced number of states (n = 7, specifying cell-state set 0 to 7), horizontal and vertical 

periodic boundary conditions (toroidal topology), and seven-cell neighbourhoods (Figure 2, below) 

implemented on a CA grid of 300 x 300 cells. In all implementations, the grid was initialized with a 

uniform (pseudo) random distribution of the cell states. 

 

 

    



Figure 2 (above). A seven-cell CA neighbourhood is described elegantly with hexagonal cells (left), but can be 

implemented more simply in a CA grid of square cells with rows staggered by a half-cell distance in an 

alternating manner (right). In a CA grid of seven-cell neighbourhoods, an even number of equal-length rows 

allows periodic boundary conditions to be applied both vertically and horizontally. With each cell implemented 

as 2x2 pixels, the half-cell displacements of neighbouring rows correspond to horizontal shifts of one pixel. 

 

The hodge podge machine rules implemented in this work  

The eight states can be categorized as 0 (“healthy”), 1 to 6 (progressively “infected”), and 7 (“ill”). All 

ill cells (state 7 at time t) transition to healthy cells (state 0) at time t+1. 

Healthy cells (state 0 at time t) transition to a state at time t+1 calculated by:  

floor(number of not-ill cells over the 7-cell neighbourhood / k1) + floor(number of ill neighbour cells 

/ k2)  

Infected cells (in the state range 1 to 6 at time t) transition to a state at time t+1 calculated by:  

floor(((sum of state values over the 7-cell neighbourhood) / (number of neighbouring not-ill cells)) + 

g)  

The calculated state is truncated to state 7 if the calculation result exceeds 7. If the number of 

neighbouring not-ill cells denominator evaluates to zero, value 1 corresponding to the infected 

neighbourhood centre cell is substituted which avoids a DIV by 0 condition. The g parameter term is 

a contribution which influences “infectivity”. 

By the further modifications of setting parameters k1 to 2/1.1, k2 to 3/1.6, and g to 0.42, visually-

satisfying classic BZ dynamics of spirals and scrolls are produced by my HP machine implementations, 

as shown in the screenshot stills of Figure 3A below. Casual comparison of the two frames of Figure 

3A indicates a system period of nine time-steps, but close inspection reveals that the frames differ 

very slightly, i.e. the system has converged to a short-period cycle, but not exactly - the cycle drifts 

slowly within the system’s state-space, but in time eventually completes convergence to an exact 

short cycle. As an aside, Figure 3B relates hodge podge machine dynamics to the observable 

dynamics of a fertilized starfish egg surface, contributing to an argument for the relevance of hodge 

podge machines to general biological dynamics. 

 



            

Figure 3A. Screenshot stills of a hodge podge machine implementation illustrating a short, but not yet exact, 

state cycle (see discussion in the text). Left, At time 214. Right, At time 223 (time interval 9 steps). Parameter 

values: k1 = 2/1.1, k2 = 3/1.6, g = 0.42, and n = 7 (state set 0 to 7). Cell states 0 to 7 are represented with the 

colour assignments shown in Figure 4. 

 

      

Figure 3B. Left: A Zhabotinsky scroll isolated from a separate run of the hodge podge machine shown in Figure 

3A. Right: A strikingly-similar image of the surface of a newly-fertilized starfish egg, cropped from a larger 

micrograph by Jörn Dunkel, Nikta Fakhri et al., shown in a 2020 MIT news release at 

https://news.mit.edu/2020/growth-organism-waves-0323  (This online news release includes video of the 

dynamically-changing egg surface.) 

 

 

Figure 4. In all of my CA graphics, cell states are visualized by colour. State 0 (healthy) through infected (states 1 

to 6) to state 7 (ill) are represented respectively by the left-to-right colour sequence from red to deep blue. 

 

With varied combinations of parameter values, a continuous range of different hodge podge 

machines can be constructed. Varying the g parameter value with all else held unchanged 

corresponds to a satisfying degree of dynamic variability, which can be seen in comparison of the 

graphics shown in Figure 5 and Figure 3A. Figure 5 below shows an implementation differing from 



that shown in Figure 3A only by changing the g parameter value from 0.42 to 0.80. With only this 

change, different dynamics are readily apparent. (Figure 5 spans the next three pages, with 

commentary following.) 
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Time 136 (same as Time 130, closing the cycle) 

Figure 5. Screenshot stills of a hodge podge machine implementation demonstrating an exact six-step cycle 

(see discussion in the text). Parameter values: k1 = 2/1.1, k2 = 3/1.6, g = 0.80, and n = 7 (state set 0 to 7). 

 

With g = 0.80, the six-step cycle (time = 130 to 136) shown in Figure 5 above displays dynamics very 

different from the dynamics illustrated in Figure 3A where g = 0.42 (all else equal). An immediately-

noticeable feature in Figure 5 is the structural contrast between a scattering of small detailed 

structures and the background mosaic of larger patches of cells of uniform state-value. At time = 130, 

one of the small structures isolated within a patch of cells in state 4 (bright green) is selected and 

identified within a rectangular black border. Zoom-views of this structure are shown to the right of 

the corresponding full grid at each time step, showing its cyclic dynamic within the six-step cycle. 

 

Interaction of three hodge podge machines 

Recognizing that OEE can emerge in a composite system of one subsystem perturbed by another, I 

have explored systems of mutually-interacting two-dimensional HP machines differing only in the 



values of the g parameter. Figure 6 details how I have organized the mutual interaction of three two-

dimensional HP machines, distinguished by g values 0.42 and 0.80 as in Figures 3A and 5 respectively, 

and g = 0.75. In the three-layer mutual-interaction system, the HP machine rules specified on page 4 

are extended from seven-cell neighbourhoods to nine-cell neighbourhoods. 

 

 

Figure 6. A seven-cell neighbourhood in each of three parallel 2D hodge podge machines. The central yellow 

cell with six blue neighbours is a complete neighbourhood within one HP machine evolving independently of 

any others. Influence from parallel HP machines was enabled by adding to the neighbourhood a cell at the 

same planar coordinates as the yellow cell (beige and green) in each of the other HP machines. This defines 

nine-cell neighbourhoods within the system of three interacting HP machines. A nine-cell neighbourhood is so-

defined for every cell in the system by a periodic boundary condition applying to the dimension perpendicular 

to the three planes.  

 

Results 

Figure 7 below shows a time series from the g = 0.80 layer within the three mutually-interacting 

layers system. The first image occurred at Time = 209 with subsequent images at successive six-step 

intervals. Fifty time-steps of mutual independence of the HP machines were allowed before mutual 

interactions were enabled (i.e. one additional neighbour from each of the other layers added to each 

neighbourhood from Time = 51). In all three layers k1 = 2.0/1.1 and k2 = 3.0/1.6.  

While the independent HP machine with g = 0.80 settles into a strict six-step cycle (Figure 5), Figure 7 

below shows that the six-step cycle drifts in response to the additional inputs from the other layers in 

the mutually-interactive system. This demonstrates that in the three-layer system, tr of the g = 0.80 

layer extends to a period much longer than six steps. See Discussion for commentary on this point. 

 



            

Time = 209                                                                        Time = 215 

            

Time = 221                                                                          Time = 227 

            

Time = 233                                                                           Time = 239 



            

Time = 245                                                                           Time = 251 

Figure 7. A time series of the g = 0.80 subsystem layer within the three-layer mutually-interacting system. The 

first image (top left) occurred at Time = 209 with subsequent images at successive six-step intervals, the last 

(8th, bottom right) being at Time = 251. Fifty time-steps of mutual independence were allowed before the 

mutual interaction was switched on (i.e. one additional neighbour from each of the other layers were added to 

each neighbourhood from Time = 51). In all layers, the k parameter values were set to k1 = 2.0/1.1 and k2 = 

3.0/1.6 (the layers differed only in the value of the g parameter).   

 

Time series sequences are not shown for the layers determined by g values 0.75 and 0.42, but Figure 

8 below shows screenshot stills of these layers at Time = 251, for comparison with the Time = 251 

screenshot shown in Figure 7. Visual comparisons indicate that the comprehensive system of three 

interacting HP machine layers eventually converges to a homogeneous dynamic very different from 

the dynamics of the individual HP machines iterated in isolation from each other. 

 

            

g = 0.75, Time = 251                                                           g = 0.42, Time = 251 



Figure 8 (above). Representative screenshots of subsystem layers with g = 0.75, left, and with g = 0.42, right, at 

Time = 251. All three mutually-interacting layers appear to converge to a similar dynamic (in particular, the g = 

0.42 layer loses its characteristic BZ spirals-and-scrolls structure displayed in Figure 3A).  

 

The innovation (INN) definition can be satisfied by identification of rule contradictions 

Within a system of interacting subsystems, innovation can be recognized where the state trajectory 

of a subsystem cannot occur in an equivalent independent system [1]. Observation of arbitrarily-

selected neighbourhoods in the system of three mutually-interacting HP machines revealed instances 

of state-transition contradictions within their HP machine layers. A seven-cell neighbourhood within 

its specific subsystem layer is part of a corresponding nine-cell neighbourhood within the system of 

interacting layers (see Figure 6), so the within-layer state-transition contradictions are readily 

explained by variation of the states of the two additional cells completing the nine-cell 

neighbourhood. There is no single independent HP machine which can accommodate different cell 

state transitions at different times from a common neighbourhood state, so observation of these 

within-layer contradictions satisfies the definition of INN given in [1].  

Tables 1 to 3 below show instances of within-layer state-transition contradictions. Colour-highlighting 

corresponds to the colour-coding shown in Figure 6, so the geometry of these results can be 

visualized. (Note that common centre state neighbourhoods are state-transition-context identical if 

the distribution of states within the neighbourhoods is invariant, e.g. the third pair of seven-cell 

neighbourhoods listed in Table 1 are 4 (centre), 3, 4, 4, 3, 4, 4 and 4 (centre), 4, 4, 4, 4, 3, 3. These are 

identical seven-cell neighbourhoods in differing nine-cell neighbourhoods.) 

 

Table 1. Cell state transitions recorded from observations of an arbitrary seven-cell neighbourhood colour-

coded yellow (centre, C) and blue (its neighbours) within a subsystem layer with g = 0.80. The nine-cell 

neighbourhood in the mutually-interacting system is completed by one cell from each of the parallel HP 

machine layers (colour-highlighted beige and green). The g parameter values set for the parallel layers were 

0.42 and 0.75. Each of the three row-pairs demonstrate a within-layer state transition contradiction. 

 

 

 

 

 

 

Time C, state at the  States of the six neighbours of C States of additional State transition C --> * Comments

centre of the  in the 7-cell neighbourhood within neighbours in parallel in the system of three

neighbourhood the g = 0.80 HP layer HP machine layers mutually-interacting layers

65 6 6 5 6 5 6 6 4 5 6  maintenance of infection

84 6 6 5 6 5 6 6 4 6 7  infected --> ill

127 4 4 4 4 4 4 4 4 4 5  infection increase

132 4 4 4 4 4 4 4 0 4 4  maintenance of infection

113 4 3 4 4 3 4 4 4 4 5  infection increase

126 4 4 4 4 4 3 3 0 4 4  maintenance of infection



Table 2. Cell state transitions recorded from observations of an arbitrary seven-cell neighbourhood colour-

coded yellow (centre, C) and blue (its neighbours) within a subsystem layer with g = 0.42. The nine-cell 

neighbourhood in the mutually-interacting system is completed by one cell from each of the parallel HP 

machine layers (colour-highlighted beige and green). The g parameter values set for the parallel layers were 

0.80 and 0.75. Each of the three row-pairs demonstrate a within-layer state transition contradiction. 

 

 

Table 3. Cell state transitions recorded from observations of an arbitrary seven-cell neighbourhood colour-

coded yellow (centre, C) and blue (its neighbours) within a subsystem layer with g = 0.75. The nine-cell 

neighbourhood in the mutually-interacting system is completed by one cell from each of the parallel HP 

machine layers (colour-highlighted beige and green). The g parameter values set for the parallel layers were 

0.80 and 0.42. Each of the six row-pairs demonstrate a within-layer state transition contradiction. 

 

 

Discussion 

The example from [1] reproduced above in Figure 1 demonstrates OEE in a system with state-

dependent dynamics, i.e. each state transition of the “organism” (o) subsystem is a function of its 

preceding ECA state-transition rule, but at each step the rule is perturbed by the state of the 

“environment” (e) subsystem.  

Time C, state at the  States of the six neighbours of C States of additional State transition C --> * Comments

centre of the  in the 7-cell neighbourhood within neighbours in parallel in the system of three

neighbourhood the g = 0.42 HP layer HP machine layers mutually-interacting layers

352 5 6 6 5 6 5 5 6 6 6  increase in infection 

489 5 6 6 5 6 5 5 7 7 7  increase in infection

64 4 4 4 4 4 4 4 5 5 5  increase in infection

69 4 4 4 4 4 4 4 4 4 4  maintenance of infection

137 4 4 4 4 3 4 4 4 4 4  maintenance of infection

150 4 4 4 4 4 3 4 5 5 5  increase in infection

Time C, state at the  States of the six neighbours of C States of additional State transition C --> * Comments

centre of the  in the 7-cell neighbourhood within neighbours in parallel in the system of three

neighbourhood  the g = 0.75 HP layer HP machine layers mutually-interacting layers

91 5 5 5 5 6 6 5 7 5 7  infected to ill

179 5 5 6 5 6 5 5 5 4 6  infection increase

266 5 4 5 4 5 5 5 5 3 5  infection maintained

322 5 4 5 4 5 5 5 5 4 6  infection increase

247 4 4 4 4 4 4 4 4 4 5  infection increase

252 4 4 4 4 4 4 4 4 0 4  infection maintained

240 4 4 4 4 3 4 4 4 0 4  infection maintained

259 4 4 4 3 4 4 4 4 4 5  infection increase

190 4 3 4 4 4 3 4 4 4 5  infection increase

196 4 4 3 4 4 3 4 4 0 4  infection maintained

74 4 0 0 0 0 4 4 5 7 4  infection maintained

94 4 0 0 0 4 0 4 4 0 2  infection decreased



Like the class 1 ECA systems studied in [1], the time-course of each HP machine layer in the system of 

three interacting layers is determined by both within-layer cell-states and cell-states of the adjoining 

HP machine layers (the nine-cell neighbourhoods span all layers, Figure 6). But unlike the class 1 ECA 

systems, each HP machine layer (each subsystem) perturbed by the dynamics of its neighbouring 

subsystems simultaneously perturbs the dynamics of the neighbouring layers. Another contrast with 

the class 1 ECA systems studied in [1] is that in the HP machine systems, the nine-cell neighbourhood 

state transition rules applied across the three-layer system are static in time, but in the restricted 

scope of each single HP machine layer, the component seven-cell neighbourhoods within their 

respective nine-cell neighbourhoods often correspond to contradictory cell state transitions (Tables 1 

to 3). 

Despite these differences, both classes of systems can satisfy the INN feature of subsystem histories 

which have no isolated-system equivalents, but the increased size and complexity of the three 

interacting HP machines system deliberately addresses the problem of identifying OEE in real-world 

systems of interest. Considering the unbounded evolution (UE) aspect of OEE, a 300 x 300 cell HP 

machine layer with an 8-member cell-state set has tp = 8 ^ (300 x 300) > 10^81,278. This vast number 

excludes recognition of any tr > tp identifying UE of a subsystem (see Footnote below), so the 

potentially tractable approach to assessment of OEE in large, complex systems is hypothetically 

restricted to assessment of INN, which was shown to scale with recurrence time over the range of 

systems studied in [1].  

It is encouraging that identification of some state transition contradictions within a layer due to 

perturbation from parallel interacting layers is easily tractable (Tables 1 to 3), but a question to 

address is: how extensive must a compilation of state transition contradictions be to reliably identify 

robust OEE of a subsystem? 

Noting that biology is homochiral (defined by right-handed nucleic acids and the left-handed proteins 

determined by transcription and translation), what are the prospects for development of a general 

dynamic system applicable to both biological and artificial systems that is both homochiral and open-

ended? Some immediate observations may be relevant. A Zhabotinsky scroll (Figure 3B) consists of 

two joined spirals. One spirals inward in the clockwise direction, and its complement partner spirals 

inward in the counter-clockwise direction, so in a sense a HP machine displaying classic BZ dynamics 

(e.g. Figures 3A and 3B) is a racemic conglomeration of chiral dynamic components. At a spatial scale 

localized sufficiently to limit observation of only single spirals, an impression of homochirality might 

be perceived. Is there any relevance here for reconciliation of homochiral dynamics (e.g. as observed 

in study of CA loop replicators) with dynamic systems driven by achiral rules (e.g. Game of Life and 

HP machines)? Recognition of the strengths and limitations of each class of systems may inspire 

some unification of the two to form life-like open-ended homochiral systems, perhaps further 

inspiring a credible solution to the abiogenesis problem. 

Footnote: While the extension of tr resulting from perturbation of the g = 0.08 subsystem (Figure 7) may be 

encouraging for prospective recognition of UE (tr > tp), the vast value of tp excludes confirmation of UE of the 

subsystem. 
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