
ON THE CLASSIFICATION OF THE OPERATIONAL SPACES

MATHIS ANTONETTI

Abstract. In this paper, we introduce operational spaces that are a special
case of what is usually called quotient topological spaces with an equivalence
relation of interest. Then we derive some results and conjectures on their
classification and an application to define the convergence of a sequence to-
wards a cycle in the general case. We also provide a perspective on the still
unaddressed conjectures concerning the operational spaces and we argue that
the commonly useless non-uniform almost periodicity is actually useful in this
context to understand the classification of such spaces.

1. Operational space

First, let us recall some properties of the quotient spaces that are useful to
understand the sequel.

1.1. Basics on the quotient spaces. Let E be any set, a pseudo-distance is a
function D : E × E → R+ verifying

∀(u, v) ∈ E2,D(u, v) = D(v, u)

∀(u, v, w) ∈ E3,D(u,w) ≤ D(u, v) +D(v, w)

∀u ∈ E,D(u, u) = 0.

For a given D pseudo-distance, we have a natural equivalence relation defined
by

u ∼ v ⇐⇒ D(u, v) = 0.

So we also have a quotient space F which is the quotient of E by ∼ i.e.

F = E/ ∼= {U ∈ P(E) | ∀(u, v) ∈ U2, u ∼ v}.

Theorem 1.1.1. (F, d) is a metric space where d is the natural distance of the
topology induced on F defined by

∀U, V ∈ F, d(U, V ) = sup
(u,v)∈U×V

D(u, v).

Proof. Indeed, d is trivially symmetrical and reflexive. Moreover, for U, V,W ∈ F ,
we have

∀(u, v, w) ∈ U × V ×W,D(u,w) ≤ D(u, v) +D(v, w) ≤ sup
v′∈V

(D(u, v′) +D(v′, w)) .

So we have

∀(u,w) ∈ U ×W,D(u,w) ≤ sup
v∈V

D(u, v) + sup
v′∈V

D(v, w).
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Applying the upper bound to the inequality on U ×W , we obtain

d(U,W ) ≤ d(U, V ) + d(V,W ).

□

The following property is used extensively in the sequel:

Property 1.1.2. Let U, V ∈ F , for all (u, v) ∈ U × V , we have

d(U, V ) = D(u, v).

Proof. Just note that for all (u1, u2) ∈ U2 and (v1, v2) ∈ V 2, we have

D(u1, v1) ≤ D(u1, u2) +D(u2, v2) +D(v2, v1) = D(u2, v2).

□

1.2. Formal definition. Let (F, dF ) be a complete metric space, and (A, ◦) be a
unital magma of unitary operators A : F → F , i.e. such that

(i) ∀A ∈ A,∀(u, v) ∈ F 2, dF (Au,Av) ≤ dF (u, v)

(ii) ∀B ∈ A, B ◦ A ⊂ A
(iii) (IdF : u 7−→ u) ∈ A.

Theorem 1.2.1. The function DA defined by

∀(u, v) ∈ F 2, DA(u, v) = max

(
inf
A∈A

dF (Au, v), inf
A∈A

dF (u,Av)

)
is a pseudo-distance on F .

Proof. It’s easy to check with (iii) that DA(u, v) = DA(v, u), DA(u, u) = 0 for all
u, v ∈ F . For u, v, w ∈ F , we also have using (i) that

∀(A1, A2) ∈ A2, dF (A1A2u, v) ≤ dF (A1A2u,A1w) + dF (A1w, v)

≤ dF (A2u,w) + dF (A1w, v).

Hence

(1) inf
A2∈A

dF (A1A2u, v) ≤ dF (A1u,w) + inf
A2∈A

dF (A2w, v).

We deduce from (ii) that

inf
A∈A

dF (Au, v) ≤ inf
A1∈A

inf
A2∈A

dF (A1A2u, v) ≤ inf
A1∈A

dF (A1u,w) + inf
A2∈A

dF (A2w, v).

Therefore,

DA(u, v) ≤ max

(
inf
A∈A

dF (Au,w) + inf
A∈A

dF (Aw, v), inf
A∈A

dF (Av,w) + inf
A∈A

dF (Aw, u)

)
≤ max

(
inf
A∈A

dF (Au,w), inf
A∈A

dF (Aw, u)

)
+max

(
inf
A∈A

dF (Av,w), inf
A∈A

dF (Aw, v)

)
≤ DA(u,w) +DA(w, v).

□
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We thus denote AF the metric space induced by the pseudo-metric space (F,DA)
and obtain the natural distance dA on this space (see section 1.1). The resulting
metric space (AF , dA) is called the operational space associated to A with respects
to F and is convenient for studying properties specific to operators contained in
A. The definition of the distance may recall the reader of the Hausdorff’s distance
which is (see [DieudonnéDieudonné1979], p.61) :

d(A,B) = max

(
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

)
However, since we took a inf instead of sup, we obtain a weaker metric and thus dif-
ferent properties. We will need the following technical definition, which represents
a certain form of uniqueness of the limit:

Definition 1.2.2. We say that AF is absorbing if for all (u, v) ∈ F 2, we have :

(∃(An)n, (Bn)n ∈ AN, Anu →
n→+∞

v and Bnv →
n→+∞

u) =⇒ ∃A ∈ A, v = Au

We also need a fixed-point transmission property, which is reflected in the next
definition.

Definition 1.2.3. AF absorbs B ∈ A in u ∈ F if :

∃(An)n∈N ∈ AN, AnBu →
n→+∞

u

In the following, we’ll denote AF,u = {B ∈ A | AF absorbs B in u}

Properties 1.2.4. Trivially:

IdF ∈ AF,u ⊂ A
∀u ∈ F,∀A ∈ A, Au = u =⇒ A ∈ AF,u

These properties justify the following definition.

Definition 1.2.5. AF is absolutely bipolar in u ∈ F if

(AF,u ̸= {IdF }) =⇒ (∃A ∈ A\{IdF }, Au = u) =⇒ (AF,u = A)

Definition 1.2.6. AF is absolutely bipolar if and only if AF is absolutely bipolar
in u for all u ∈ F , the same applies to all other definitions.

In the sequel, we’ll also need the following weaker definition.

Definition 1.2.7. AF is bipolar in u ∈ F if :

(AF,u ̸= {IdF }) =⇒ (AF,u = A)

1.3. General properties. We have the following conjecture:

Conjecture 1.3.1. (AF , dA) is complete. It is denoted O(A, F ) or AF for conve-
nience.

This is well-known in the particular case when AF has a group structure since
it is basically a quotient distance infA∈A d(Ax, y) in that case. However, it remains
unaddressed (as the definition of AF ) in the general case to the best of the author’s
knowledge.

The following lemma is important for characterizing this space:

Lemma 1.3.2. If AF is absorbing, the element U of AF containing u verifies :

U ⊂ Au
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Proof. Let u, v ∈ U ∈ AF . It is assumed that AF is absorbing. We have :

inf
A∈A

dF (Au, v) = inf
A∈A

dF (Av, u) = 0

So we have two minimizing sequences (Anu)n and (Bnv)n of elements of F such
that Anu →

n→+∞
v and Bnv →

n→+∞
u. Now AF is absorbing, so we have A ∈ A such

that v = Au which shows the lemma. □

Property 1.3.3. If AF is absorbing, we have the following characterization of the
U element of AF containing u ∈ F :

U = AF,uu

Proof. Let v ∈ U , we have from the previous lemma A ∈ A such that v = Au.
But we also have DA(v, u) = 0 and so we have (An)n ∈ AN such that AnAu → u
when n → +∞. So A absorbs A in u, which shows that v ∈ AF,uu. In the other
direction, if we take B ∈ AF,u and set v = Bu ∈ AF,uu, then we have (An)n ∈ AN

such that AnBu → u when n → +∞. So we necessarily have DA(v, u) = 0 and
therefore v ∈ U . □

Corollary 1.3.4. If AF is absorbing and absolutely bipolar, then :

∀u ∈ U ∈ AF , U =


Au if ∃A ∈ A\{IdF }, Au = u

{u} otherwise

Proof. This is obvious from the definition of absolutely bipolar. □

1.4. The special case of monogenous monoids. A monogenous operator monoid
is defined by A = (Ap)p∈N with A : F → F . We then have A0 = IdF and

(2) ∀n, p ∈ N, An+p = AnAp = ApAn.

It is assumed that (F, dF ) is complete and that assumption (i) in part (1.2) holds.
This allows to define AF according to part (1.2). This special case is interesting
because we can uniquely identify any u ∈ F to (Apu)p∈N allowing better under-
standing of the global properties of u (like the mean of a function for example).
Furthermore, we have the following obvious result.

Theorem 1.4.1. The injection F ↪→ AF is continuous.

In the sequel, we write that u ∈ F converges to u∗ ∈ F in AF which means that
the

The following result will prove to be quite confusing later on.

Theorem 1.4.2. The following two assertions are true.

∀u ∈ F, (∃B ∈ A\{IdF }, Bu = u) =⇒ (AF,u = A)(3)
AF is absorbing ⇐⇒ AF is absolutely bipolar(4)

Proof. We start by proving (3). If we have k ∈ N∗ such that Aku = u, then for
any i ≥ 1, we have j = i(k − 1) ∈ N such that AjAiu = Aiku = u from (2), which
shows that AF,u = A.

Now let’s prove (4). Suppose AF is absorbent. Let u ∈ F be such that AF,u ̸=
{IdF }, we have p ∈ N∗ and (kn)n∈N such that AknApu →

n→+∞
u. But we also have



ON THE CLASSIFICATION OF THE OPERATIONAL SPACES 5

Apu →
n→+∞

Apu which implies (since AF is assumed to be absorbing) that there

exists q ∈ N such that u = AqApu = Ap+qu. Since p + q ⩾ 1, we deduce with (3)
that AF is absolutely bipolar in u. Since this holds for all u ∈ F , AF is absolutely
bipolar.

In the other direction, assume that AF is absolutely bipolar. Let’s show that AF

is then necessarily absorbing. Given u, v ∈ F and (kn)n, (jn)n such that Aknu → v
and Ajnv → u, if lim inf

n→+∞
kn = 0, we have u = v passing to the limit. From now on,

we’ll assume that ∃N ∈ N,∀n ≥ N, kn ≥ 1 (which is equivalent to contradicting
lim inf
n→+∞

kn = 0). We then have,

Akn+jn−1Au = Akn(Ajnu) → u,

so A ∈ AF,u. Since AF is absolutely bipolar, there exists k ∈ N∗ such that u =

Aku. Let hn = ⌊kn

k ⌋k and in = kn − hn. Then for all n ∈ N, in ∈ [0, k − 1] ∩
N. Applying the Bolzano-Weierstrass theorem, we have an extracted subsequence
(iφ(n))n converging to i ∈ N such that

Akφ(n)u = Ahφ(n)+iφ(n)u = Aiφ(n)u → Aiu

But we also have Akφ(n)u → v. By uniqueness of the limit (since F is a metric
space), we obtain v = Aiu. □

In the general case, we can only give the following result on the classification of
AF .

Theorem 1.4.3. AF is bipolar.

Proof. If we have i ≥ 1 and (jn)n ∈ NN such that AjnAiu → u when n → +∞,
then there are only two possibilities :
◦ If (jn)n is bounded: The Bolzano-Weierstrass theorem provides an extracted sub-
sequence (jφ(n))n which converges to j∗ ∈ N and is therefore almost constant from a
certain rank, such that Aj∗+iu = Aj∗Aiu = u according to (2). Thus, for k = j∗+i,
for all l ≥ 1, we have m = l(k − 1) ∈ N such that AmAlu = Alku = u according to
(2), which shows that AF,u = A.

◦ If (jn)n is not bounded : Then we have an extracted subsequence (jφ(n))n such
that jφ(n) → +∞ when n → +∞. Let k ∈ N, so we have a certain rank N ∈ N
such that :

∀n ⩾ N, jφ(n) ⩾ k − i

This allows to write :
Ajφ(n)+i−kAku →

n→+∞
u

□

In the isolated case, a better classification is obtained by the following theorem.

Theorem 1.4.4. If E is isolated (i.e. Ē is discrete), then AF is absolutely bipolar.

Proof. Let u ∈ F , we have two implications to show.

(∃A ∈ A\{IdF }, Au = u) =⇒ (AF,u = A) : If we have k ∈ N∗ such that Aku = u,
then for any i ≥ 1, we have j = i(k − 1) ∈ N such that AjAiu = Aiku = u from
(2), which shows that AF,u = A.
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(AF,u ̸= {IdF }) =⇒ (∃A ∈ A\{IdF }, Au = u) : If we have i ≥ 1 and (jn)n ∈ NN

such that AjnAiu → u when n → +∞. Since E is isolated, (Ai+jnu)n is even-
tually equal to u, say for n ≥ N ∈ N, by a classical argument. We then have
u = Ai+jNu. Since this reasoning is true for all u ∈ F , we deduce that AF is
absolutely bipolar. □

We also have funny results such as the following.

Property 1.4.5. Let P ∈ Z[X] be a polynomial of degree d ∈ N with non-negative
coefficients and u ∈ F , (kn)n ∈ (N∗)N such that Aknu

F→
n→+∞

u. We have :

(∀n ∈ N, kn = P (n)) =⇒ AP (d)(0)u = u

Proof. (∗) : We define the endomorphism on Z[X]

∆ : Q 7−→ Q(X + 1)−Q(X)

and the assertions (for k ∈ N)

G(k) : the coefficients of ∆kP are non-negative and τ (∆
kP )(n)u

F→
n→+∞

u.

H(k) : ∀Q ∈ Zk[X], ∆kQ = Q(k)(0).

G(0) and H(0) are clearly verified with the assumptions.
Let k ∈ N, and assume that G(k) and H(k) are true. Denoting ei = Xi the

vectors of the canonical basis of Zd[X], we have

∀i ⩾ 0,∆ei = (X + 1)i −Xi =

i−1∑
j=0

(
j

i

)
Xj ∈ Z[X],

which shows that ∆ei has non-negative coefficients. By hypothesis, the coefficients
of ∆kP in this base are non-negative. We deduce that ∆k+1P = ∆(∆kP ) also has
non-negative coefficients. But then (∆k+1P )(n) ⩾ 0 for all n ∈ N which allows to
consider A(∆k+1P )(n). Thus, the triangular inequality gives

dF (A
(∆k+1P )(n)u, u) ≤ dF (A

(∆k+1P )(n)u,A(∆kP )(n+1)u) + dF (A
(∆kP )(n+1)u, u).

Or

∆k+1P + (∆kP )(X) = (∆kP )(X + 1),

so

dF (A
(∆k+1P )(n)u,A(∆kP )(n+1)u) = dF (A

(∆k+1P )(n)u,A(∆k+1P )(n)A(∆kP )(n)u) ⩽ dF (u,A
(∆kP )(n)u)

and thus :

dF (A
(∆k+1P )(n)u, u) ≤ dF (u,A

(∆kP )(n)u) + dF (A
(∆kP )(n+1)u, u) →

n→+∞
0.

This gives G(k + 1). We also have for all Q ∈ Zk+1[X] a certain R ∈ Zk[X] such
that

Q =
Q(k+1)(0)

(k + 1)!
Xk+1 +R.

So we get
∆k+1Q = Q(k+1)(0) + ∆∆kR = Q(k+1)(0).
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So H(k + 1) is true. Hence, we have shown by induction that

∀k ∈ N, A(∆kP )(n)u →
n→+∞

u and ∀Q ∈ Zk[X],∆kQ = Q(k)(0).

. In particular, we have A(∆dP )(n)u →
n→+∞

u and ∆dP = P (d)(0), i.e.

AP (d)(0)u = u.

□

1.4.6. An important monogenous example: periodic convergence. We take F ⊂ EN

(with E a normed vector space, for example), A = T = {taup | p ∈ N} defining the
operator shift τ : F → F by:

∀u ∈ F, τu = (un+1)n∈N

If E is isolated (N for example), we obtain with the theorem 1.4.4 and (4) that TF is
absorbing and absolutely bipolar. Using the general characterization of operational
spaces, we can deduce that,

(5) ∀u ∈ U ∈ TF , U =

{
{τku | k ∈ N} if ∃p ∈ N∗, τpu = u ∈ N∗

{u} otherwise
.

Informally, TF are spaces where periodic sequences are merged with all their trans-
lations. This makes it possible to define convergence to a cycle of a sequence with
a separable topology with the following definition :

Definition 1.4.7. We say that u ∈ F converges to v ∈ F if the sequence (τpu)p∈N
converges to v ∈ F in TF .

In the non-discrete case, this same characterization property (5) turns out to be
false. To illustrate, assume that E is an K-e.v.n. with K an arbitrary field. Recall
that we can then define ∥u∥ℓ∞(N,E) = sup

i∈N
∥ui∥E and :

ℓ∞(N, E) = u ∈ EN | ∥u∥ℓ∞(N,E) < +∞}.

We then obtain that ℓ∞(N, E) is complete, which gives meaning to the following
result, illustrating the problem.

Theorem 1.4.8. Let Ẽ ⊂ E, consider F = ℓ∞(N, E) ∩ ẼN fitted with its natural
distance dF (u, v) := ∥u− v∥ℓ∞(N,E). If TF is absolutely bipolar, then Ẽ is discrete
(for the induced topology).

Proof. We reason by contrapositive, assuming that Ẽ is not discrete. We then
have an injective sequence (ak)k∈N ∈ ẼN converging to a ∈ Ẽ. We can define the
sequence u = (un)n∈N ∈ ẼNby strong induction (with u0 = a),

∀n ∈ N,∀k ∈ [2n, 2n+1 − 1] ∩ N, uk =

{
uk−2n si k > 2n

an si k = 2n

It is clear that u ∈ F because (an)n∈N ∈ F . Let k ⩾ 2, we pose for all for n ∈ N,

Ck = {2j | j ∈ N}, Dk = {2j−2k | j ⩾ k+1}, B
(n)
k = ([0, 2n−1]∩N)\(Ck∪Dk).
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We also define Bk =
⋃

n∈N B
(n)
k . In this way, we obtain the partition N = Bk ∪

Ck ∪Dk. For all n ∈ N,

b = sup
i∈Bk

∥ui+2k − ui∥E

bn = sup
i∈B

(n)
k

∥ui+2k − ui∥E

c = sup
i∈Ck

∥ui+2k − ui∥E

d = sup
i∈Dk

∥ui+2k − ui∥E .

By definition, we have,

∀n ∈ N∗,∀i ∈ B
(n)
k \B(n−1)

k , ui+2k − ui = ui−2n+2k − ui−2n and i− 2n ∈ B
(n−1)
k .

This gives,

∀n ∈ N∗, sup
i∈B

(n)
k

∥ui+2k − ui∥E = sup
i∈B

(n−1)
k

∥ui+2k − ui∥E .

So we have,
∀n ∈ N∗, bn = bn−1 = b0,

with b0 = ∥u2k − u0∥E = ∥ak − u0∥E . We deduce that b = b0. We also have,

c = max

(
sup
j⩾k

∥u2j+2k − u2j∥E , sup
j<k

∥u2j+2k − u2j∥E

)
= max(c(1), c(2)),

where clearly,

c(2) = sup
j<k

∥u2j+2k − u2j∥E = sup
j<k

∥u2j − u2j∥E = 0,

. by definition of u. We deduce that c = c(1). Furthermore, we have,

∀j ⩾ k + 1, u2j−2k = u2j−1+(2j−1−2k) = u2j−1+(2j−1−2k) = u2j−1−2k ,

where ∀j ⩾ k, u2j−2k = u0. From this we deduce that d = sup
j>k

∥u0 − u2j∥E =

sup
j>k

∥aj − u0∥E . We obtain,

∥tau2ku− u∥ = sup
i∈N

∥ui+2k − ui∥E = max(b, c, d) = max(b0, c
(1), d).

But clearly max(b0, d) = sup
j⩾k

∥aj − u0∥E and,

c(1) = sup
j⩾k

∥u2j+2k − u2j∥E = sup
j⩾k

∥u2k − u2j∥E = sup
j⩾k

∥ak − aj∥E

. Finally (remembering that u0 = a),

∥tau2ku− u∥ℓ∞ = max(sup
j⩾k

∥ak − aj∥E , sup
j>k

∥aj − a∥E) →
k→+∞

0

On the other hand, u is clearly not periodic. To see this, simply note that,

∀k ⩾ 2,∀i ∈ B
(n)
k ,∃j ⩽ n, ui = aj

Thus, since (an)n∈N is injective, we have,

∀k ∈ N∗, u(2k−k)+k = ak ̸= u2k−k.

So TF is not absolutely bipolar. □
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2. A non-uniform almost periodicity

2.1. Motivations. The definitions we’ve introduced can be used to classify opera-
tional spaces, but we may wonder what they really mean. In the end, if u, v ∈ U ∈
AF , then :

inf
A∈A

dF (Au, v) = inf
A∈A

dF (Av, u) = 0

So there exists (An)n, (Bn)n such that :

Anu →
n→+∞

v and Bnv →
n→+∞

u

Therefore :

AnBnu →
n→+∞

u

Thus, either v = u, or there exists N ∈ N such that

∀n ≥ N,An, Bn ̸= IdF .

For a monogenic monoid, for example, we get Cn = AnBn ∈ (A \ {IdF }) such
that Cnu → u. If A = T , this is exactly the characterization of a non-uniform
almost-periodic sequence presented below.

2.2. Definition and first approach. We say that a sequence u = (un)n∈N ∈ F
is almost-periodic of period k = (kn)n∈N if :

τknu
F→

n→+∞
u and ∀n ∈ N, kn ≥ 1.

We assume that we can always define the operational space TF . We then have
the following properties.

Properties 2.2.1. Let P ∈ Z[X] be a polynomial of degree d ∈ N with positive or
zero coefficients and u ∈ F , (kn)n ∈ (N∗)N such that τknu

F→
n→+∞

u. We have the

following results:

• (∗) kn = P (n) =⇒ u is periodic of period P (d)(0).

• (∗∗) kn = 2n =⇒ ∃v ∈ F, τknv
F→

n→+∞
v and v non-periodic.

Proof. (∗) : This is a direct consequence of the property 1.4.5.
(∗∗): the proof is the same as for the theorem 1.4.8 except that we need to

consider a distance instead of the ℓ∞ norm. □

The reader may wonder why such a consideration is interesting. Indeed, we
already know very well uniform almost-periodicity (that differs a bit from non-
uniform almost-periodicity) [Muchnik, Semenov, and UshakovMuchnik et al.2003]
[BesicovitchBesicovitch1926]. However, we showed that non-uniform almost-periodic
functions (or sequences) are related to the classification problem of operational
spaces. That is why these non-uniform definitions almost inexistent in the litera-
ture are of interest here.
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2.3. Conjectures. There are still many conjectures to prove concerning those
spaces. For instance, does the following result holds in the monogeneous monoid
case ?

Conjecture 2.3.1. Let P ∈ Z[X] be a polynomial of degree d ∈ N with positive or
zero coefficients. There exists u ∈ F such that A2nu

F→
n→+∞

u and u /∈ Au.

Or can we find a general classification depending on A? Or is it possible to
exploit the properties of those spaces to prove other conjectures, such as the Collatz
conjecture ?

3. Conclusion

We established the classification of the operational spaces in some obvious cases
and paved the way towards a better understanding of such spaces. However, some
questions remain unaddressed such as : How to generalize those spaces as topolog-
ical spaces ? Do the results still hold in a certain form for those topological spaces
?
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