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Abstract. In this article we present the principles and main conclusions of Self-Variation Theory. 
The Theory is based on three principles, the principle of Self-Variation, principle of conservation 
of energy-momentum and definition of the rest mass of a material particle. The main conclusions 
of the Theory are the following; it predicts an internal structure of the particles, predict and justify 
particle interactions, predicts and justifies the cosmological data, Self-Variation is related to 
quantum phenomena.  
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1. Introduction  

 
Every substantial, decisive expansion of our knowledge of theoretical physics is related to at least 
one unknown law, an unknown principle whose action in nature had not been integrated into the 
theoretical background of physics. This principle cannot be contained, not even implicitly, in 
current theories of physics. Theoretical investigation would eventually bring it to the light. One 
such principle is the law of the Theory of Special Relativity which states that the speed of 
electromagnetic waves is not affected, nor does it depend on the speed of their source, as is the 
case with all other waves. However, an implication emerging from Theory of Special Relativity is 
the relativity of simultaneity. Two events occurring simultaneously in one inertial reference 
system do not occur simultaneously in another. This conclusion contradicts our perception of 
time. The Theory of Special Relativity was published thanks to Planck’s insight and intelligence, 
but it could have just as easily not been published due to the prediction it made of the relativity 
of simultaneity. Planck’s interpretation of black-body heat radiation, that electromagnetic 
radiation consists of “quanta” or “bundles of energy”, is absent from Maxwell’s Electromagnetic 
Theory. In fact, it is completely incompatible with the entire theoretical background of 
nineteenth-century physics. Planck’s hypothesis, although unexpected at the time of its 
integration to the theoretical background of physics, is essential for understanding the 
microcosm. The independence of the speed of electromagnetic waves from the speed of their 
source and the quanta hypothesis did not exist in the theoretical background of physics of the 
nineteenth-century century. The difficulty in the advancement of theoretical physics concerns the 
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identification of the principles that govern the natural world and the investigation of their 
consequences.  
    The principle that was absent from the current theories of physics and emerges from the Theory 
of Self-Variation is the principle of self-variation. It is a simple, though obviously a somewhat 
unexpected principle. Taking into account the energy-momentum conservation principle, the self-
variation of the rest mass of the material particle can only take place with the simultaneous 
emission of energy-momentum into the surrounding spacetime of the particle. The combination 
of the principle of self-variation with the conservation of energy-momentum has as a 
consequence the presence of energy-momentum in the surrounding spacetime of the material 
particle. The introduction of the principle of the rest mass self-variation was made with the 
expectation that this energy-momentum in spacetime could provide a cause for the interaction 
of material particles. In retrospect, this expectation was confirmed. Being aware of the existence 
of the gravitational interaction we set as an axiom the self-variation of the rest mass. Similarly, 
due to the existence of the electromagnetic interaction we set as an axiom the self-variation of 
the electric charge: each interaction results from a “self-variating charge” Q .  

    The Self-Variation Theory is based on three principles, which we present in section 1.  
1. The principle of Self-Variation.  
2. The principle of conservation of energy-momentum.  
3. The definition of the rest mass of a material particle.  
    The main conclusions of the Theory are the following.  
1. It predicts an internal structure of the particles. This structure also exists in the case where we 
consider a point particle.  
2. Predict and justify particle interactions.  
3. Predicts and justifies the cosmological data.  
4. Self-Variation is related to quantum phenomena.  
 

2. Axiomatic foundation of Self-Variation Theory  

 
In a N -dimensional Riemannian spacetime (see, [1]) the Theory of Self-variation is based on three 
principles, the principle of Self-Variation, the principle of conservation of energy-momentum and 
the definition of the rest mass of material particles.  
 
A. The self-variation principle  
 
With the term “self-variation principle” we mean an exactly determined increase of the rest mass 
of material particles and generally of the “self-variating charge” Q . The most direct consequence 

of the principle of self-variation is that energy, momentum, angular momentum and electric 
charge (when the material particle is electrically charged) of particles are distributed in the 
surrounding spacetime. To compensate for the increase, in absolute value, of the electric charge 
of the electron, the particle emits a corresponding positive electric charge into the surrounding 
spacetime. Otherwise, the conservation of the electric charge would be violated. Similarly, the 
increase of the rest mass of the material particle involves the “emission” of negative energy as 
well as momentum in the spacetime surrounding the material particle (spacetime energy-
momentum) P .  
    The principle of self-variation quantitatively describes the interaction of the ‘self-variating 
charge’  

   0 1 2 1
, , ,...,

N k
Q Q Qx x x x x


  , *
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of material particles with the energy-momentum P  it emits in spacetime as a consequence of the 
self-variation of the charge Q ,   

0,1, 2, ..., 1

kk

Q b
PQ

x

k N






 

                                                                                                                                       (2.1) 

in every system of reference  
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, , ,...,

N k
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
    

where 
2

h


  is the reduced Planck constant and b , 0b   is a constant. 

0

iE
P

c
  denotes 

the energy and 0
x ict  the time measured by an observer, where c  is vacuum velocity of light 

and i  is the imaginary unit, 2
1i   . If 0Q m  equation (1) becomes  
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



.                                                                                                                                           (2.2) 

    The principle of Self-variation quantitatively describes the interaction of material particles 
with the spacetime energy-momentum. For the formulation of the equations the following 
notation is used,  
W  is the energy of the particle,  
J  is the momentum of the particle,  

0
m  is the rest mass of the particle,  

 E is the energy of the spacetime energy-momentum interacting with the particle,  

P is the momentum of the spacetime energy-momentum interacting with the particle,  

0
E  is the rest energy of the spacetime energy-momentum interacting with the particle. Then we 

define the N -vectors,  
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,                                                                                                                              (2.3) 
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In equation (2.1), the momentum J  of the particle is due to the charge Q . The momentum P  

arises as a consequence of the Self-Variation of the charge Q . The physics quantities Q , J , P  

are defined at the same point X  of spacetime.  
 
B. The principle of conservation of energy-momentum  
 
The material particle and the spacetime energy-momentum with which it interacts comprise a 
dynamic system, which we call “generalized particle”. We consider the covariant (see, [2, 3]) 
momentum of the particle J  and the total momentum C  of generalized particle,  

n n n
C J P  , 0,1,2,..., 1n N  .                                                                                                            (2.7) 

As a consequence of Equation (2.1), the N -vectors C , J  and P  are covariant.  
 
C. The rest mass of the material particles  
 
As invariant physics quantities, the rest masses corresponding to the N-vectors J , P , C  are 
given by the following equations,  

2 2

0

n

n
J J m c ,                                                                                                                                              (2.8) 

2

0

2

n

n

E
P P

c
 ,                                                                                                                                                (2.9) 

2 2

0

n

n
C C M c .                                                                                                                                          (2.10) 

For the contravariant N -vectors we have nk

k

n
C g C , nk

k

n
P g P , nk

k

n
J g J  where 

ij
g  is the 

metric tensor. The N -vector C  is constant, therefore rest mass 
0

M  is also constant. In Equations 

(2.8), (2.9), (2.10) we follow Einstein's summation convention for terms where an index appears 
twice.  
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    The goal of Self-Variation Theory is to find the functions  J J X ,  
0 0

m m X ,  P P X  

and  
0 0

E E X . The differential equations resulting from the axiomatic foundation of the Theory 

give specific solutions for these functions. These solutions have a common feature. The material 
particle has internal structure, even if we assume it to be a point. In the frame of the Self-Variation 
Theory, the generalized particle replaces the concept of the material particle.  
    Concluding the section we present three direct consequences of the principles of the Theory. 
The first of these is given by the following equations,  

k a

a k

P P

x x

 


 
,                                                                                                                                                (2.11) 

k a

a k

J J

x x

 


 
.                                                                                                                                                (2.12) 

Indeed, from Equation (2.1) we get  

 
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;

kk a
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where with ; a  we denote the covariant derivative with respect to 
a

x . Then we get,  
2 2
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and equivalently we get,  
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and with equation (2.1) we get,   
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and finally we obtain,  
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Similarly, from the equation  

Q b
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
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.  

Therefore we have  
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x x
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 
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and taking into consideration that 0Q   we get Equation (2.11). From Equations (2.11) and (2.7) 

we get Equation (2.12). In the proof process we used the symbols of Christoffel,  
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    If 
0

0E  , the rest mass 0

2

E

c
 is Self-Varying. Therefore, for each solution  J J X , 

 
0 0

m m X ,  P P X  and  
0 0

E E X  that we get from the differential equations of the 

Theory, the following symmetry criterion applies.  
 
Symmetry criterion  
 

If 
0

0E   them one of the following equations holds,  

0

0kk

E b
J E
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
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
 or 0

0kk
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x


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
.                                                                                                       (2.13) 

    We can also give a second interpretation to the symmetry criterion. Equation (2.2) could be 
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for the resting energy 
0
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to hold, If 
0

0E  .  

 
    The relative position of N -vectors J  and P  in spacetime can be given by the following 
equations,  

0 00 0 01 1 02 2 0( 1) 1
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                                                           (2.15) 

where  ij ij X  . Denoting T  the N N  matrix  ij , Equation (2.13) is written in the form  

P TJ .                                                                                                                                                    (2.16) 
From Equations (2.15) and (2.7) we get,  

 T I J C                                                                                                                                            (2.17) 

where I  is the N N  unit matrix. Equations (2.16) and (2.17) are valid in any frame of reference.  
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3. Self-Variation in the spacetime of Special Relativity  
 
In this section we study the generalized particle in the flat 4-dimensional spacetime of Special 
Relativity (Minkowski spacetime), (see, [1-4]). This study is fundamental, since it highlights the 
basic consequences of the Self-Variation of material particles. Moreover, this study is a model for 
the study of the generalized particle in curved spacetime.  
    In the flat 4-dimensional spacetime of Special Relativity Equations (2.3) - (2.6) and (2.8) - (2.10) 
take the form,   
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respectively.  
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                                                                        (3.8) 

 

0 0 1

1 1 0

2 2

3 3

u
J J i J

c

u
J J i J

c

J J

J J





 
   

 

 
   

 

 

 

         

0 0 1

1 1 0

2 2

3 3

u
P P i P

c

u
P P i P

c

P P

P P





 
   

 

 
  

 

 

 

,                                                                                 (3.9) 

where 

1
2 2

2
1

u

c




 
 
 
 

.  

 
From these transformations and Equation (2.15) we get the following equations,   

00 11 22 33

,ij ji i j  

        


                                                                                                                 (3.10) 

and transformations,  
                                                                                                                                                         (3.11) 

 

01 01

02 02 21

03 03 13

u
i

c

u
i

c





  

   

   

 
 

 

 
 

 

,                                                                                                                      (3.12) 
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32 32

13 13 03

21 21 02

u
i

c

u
i

c





 

   

   



 
 

 

 
 

 

.                                                                                                                       (3.13) 

    It follows from our study that as we move from one frame of reference to another through 
Lorentz-Einstein transformations, we get equations that apply to the same frame of reference. 
They are Equations (3.10). Also, the vectors α , β ,  

01

02

03

ic

ic

ic



 
 

 
  

α ,  

32

13

21



 
 
 
  

β   

are transformed like the electromagnetic field. The vector α  corresponds to the electric field and 
the vector β  to the magnetic one.  

    From Equations (2.15) and (3.10) we get,  

0 0 01 1 02 2 03 3

1 01 0 1 21 2 13 3

2 02 0 21 1 2 32 3

3 03 0 13 1 32 2 3

P J J J J

P J J J J

P J J J J

P J J J J

    

    

    

    

.                                                                                                   (3.14)  

 The determinant  T  of the system of Equations (3.14) is given by the following equation,  

   
24 2 2 2 2 2 2 2

01 02 03 32 13 21 01 32 02 13 03 21
T                 ,  

as obtained after the necessary calculations. If 0P  , the system of equations (3.14) is non-
homogeneous its determinant is non-zero,  

   
24 2 2 2 2 2 2 2

01 02 03 32 13 21 01 32 02 13 03 21
0                .                     (3.15) 

From the inequality (3.15) it follows that if 0
ij

   for every i j , then 0  . If 0   then 

01 32 02 13 03 21
0       . One of the conclusions derived from the study we did is given by 

the following Internal Symmetry Theorem.  
 
Internal Symmetry Theorem  
 
I. If 0P   the following applies.  

A. If 0   them 
01 32 02 13 03 21

0       .  

B. If 0ij   for each i j  then the following applies.  

1. The 4-vectors P  and J  are parallel,  
P J  .                                                                                                                                                   (3.16) 
2. Exactly one of the following applies,  

2

0 0
E m c  and 

0
0M                                                                                                                            (3.17) 
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or 

 0 0 1 1 2 2 3 3
exp

b
K c x c x c x c x     

 
  

 ,                                                                                      (3.18) 

      0

0
1

M
m  


,                                                                                                                                    (3.19) 

     
2

0

0
1

M c
E


 


,                                                                                                                                  (3.20) 

      , 0,1, 2,3
1

i

i

c
J i 


,                                                                                                                    (3.21) 

     , 0,1, 2,3
1

i

i

c
P i


 


                                                                                                                      (3.22) 

 where 0K   is a dimensionless constant.   
 
II. If 0P   then the following applies. 

1. 0 0E  .                                                                                                                                                 (3.23) 

2.    
24 2 2 2 2 2 2 2

01 02 03 32 13 21 01 32 02 13 03 21
0                .                (3.24) 

Proof. A. A has been proved before, following Inequality (3.15).  

B. 1. if 0ij   for each i j , Equation (3.16) results from the system of Equations (3.14).  

2. From Equation (3.16) we have 
i i

P J   and with Equation (2.7) we get 
i i i

c J J    and 

equivalently we obtain,   

 1
i i

J c   .                                                                                                                                         (3.25) 

If 1    we have 0ic   and 
i i

P J  . Then, from Equation (3.7) we obtain 
0

0M   and from 

Equations (3.5), (3.6) we obtain, 2

0 0
E m c .  

    If 1   , from Equation (3.25) we get,  

1

i

i

c
J 

 
.                                                                                                                                                (3.26) 

From equations (3.5) and (2.2) we get,    

2 20 31 2

0 1 2 3 0
2 2 2 2 2 0

k

k k k k

J J J J
J JJ J b

P m c
x x x x

  
    

   
  

and with Equation (3.5) we get,   

 0 31 2

0 1 2 3

2 2 2 2

0 1 2 3 0
k k k k

kJ J J J
J JJ J b

P J J J J
x x x x

  
       

   
  

and with Equation (2.7) we get,    

  0 31 2

0 1 2 3

2 2 2 2

0 1 2 3 0
k k k k

k kJ J J J
J JJ J b

c J J J J
x x x x

J
  

       
   

   

and with Equation (3.26) we get,   
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       

0 31 20 31 2

2 22 2

0 31 2

2 2 2 2

1 1 1 1 1 1 1 1

0
1 1 1 1 1

k k k k

k
k

c cc cc c c c

x x x x

c c cc cb
c

   
  

           

    
    

      
      
      

  
      

  

and after the calculations we get,  

k

k

bc

x


  


.                                                                                                                                      (3.27) 

From Equation (3.27) we obtain,  

 0 0 1 1 2 2 3 3
exp

b
K c x c x c x c x     

 
  

  

where K  is a dimensionless constant physics quantity.  
    From Equations (3.16) and (3.26) we obtain,  

1

i
iP

c



. 

From this Equation and (3.6) we obtain,  
2

0

0
1

M c
E


 


.  

Similarly, from Equations (3.26) and (3.5) we obtain,  
2

0

0
1

M c
m  


.  

    The proof is completed by applying the symmetry criterion. For Equations (3.17) we have,   
2

0 0

k k

E m c

x x

 


 
  

and with Equation (2.2) we get,   

20

0k

k

E b
P m c

x





  

and with Equation (3.17) we get,   

0

0k

k

E b
P E

x





  

and considering that it is 
k k

P J   we obtain,   

0

0k

k

E b
J E

x


 


.  

    From Equations (3.19) and (3.20) we get,  
2 2 2 4

0 0
E m c  .                                                                                                                                          (3.28) 

Then we have  

2 4 2 40 0

0 0 0
2 2 2

k k k

E m
E m c m c

x x x

 
   

  
  

and with the Equations k

k

bc

x


  


 and (2.2) we get,   
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2 4 2 2 40

0 0 0

k k

k

E bc bP
E m c m c

x


   


  

and with the Equation (3.28) we get,   

2 20

0 0 0

k k

k

E bc bP
E E E

x


  


 

and considering that it is 
0

0E   we get,   

0

0 0

k k

k

E bc bP
E E

x


  


  

and equivalently we get,   

 0

0k k

k

E b
P c E

x


 


   

and with the Equation (2.7) we obtain,  

0

0k

k

E b
J E

x


 


.  

II. 1. It follows from Equation (3.6). 2. If 0P   the system of Equations (3.14) is homogeneous so 
the determinant of is equal to zero.   
The Internal Symmetry Theorem is generally valid for any self-variating charge, since in equation 
(2.1), the momentum J  of the particle is due to the charge Q .  

    Equations (3.17) predict a generalized particle with zero total rest mass, 
0

0M  . In addition, 

the Equation 2

0 0E m c  applies. The Internal Symmetry Theorem gives no other information 

about this particle.  
    For the generalized particle of Equations (3.18) - (3.22), the Internal Symmetry Theorem gives 
a remarkable set of information. Equations (3.19) and (3.20) give the distribution of the total rest 

mass 
0

M  in 
0

m  and 0

2

E

c
. Similarly, Equations (3.21) and (3.22) give the distribution of the total 

momentum kc  along the kx  axis. That is, we have energy-momentum and rest-mass distribution 

in space-time. This distribution is determined by the function  . If b i  in Equation (3.18) the 
distribution is periodic. In general, if the constant b  is not a real number, b   the 
distribution has wave characteristics. If it is a real number, b  the distribution is non-periodic.  
    From Equation (3.21) we have  

 
2

1

i i

k k

J c

x x

 
 

 
  

and with Equation (3.27) we get,   

 
2

1

i i k

k

J c cb

x


 

 
  

and with Equations (3.21), (3.22) we obtain,  

i

k i

k

J b
P J

x





.                                                                                                                                           (3.29) 

From Equations (3.29) and (2.7) we obtain,  

i

k i

k

P b
P J

x


 


.                                                                                                                                        (3.30) 
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From equations (3.29) and (3.30) it follows that the Internal Symmetry Theorem gives the rates 
of change of the 4-vectors J  and P .  

    The function   also depends on the 4-vector C . If 
1 2 3

0c c c    we have  

 
0 0

exp
b

K c x  
 
 
 

.  

Then, from Equation (3.7) we get 
0 0

c M c   and  

2

0

0 0
exp exp

bM cb
K c x K t    

  
   
   

.  

Then, from Equation (3.19) we obtain,   

0

0 2

01 exp

M
m

bM c
K t

 

 
 
 
 

.                                                                                                             (3.31) 

Equation (3.31) gives the rest mass 0m  as a function of time in an inertial frame of reference in 

which is 
1 2 3

0c c c   . We can easily prove the corresponding equation for the charge q ,  

2

01 exp

Q
q

bM c
K t

 


 
 
 
 

,                                                                                                               (3.32) 

where Q  in this Equation is a constant (and q  is the self-varying charge). The rest mass 0M   is 

due to the energy-momentum that the particle has due to the charge q . Equations (3.31) and 

(3.32) give the increase in rest mass and electric charge, as required by the Self-Variation principle, 

of a particle that is stationary (
1 2 3

0c c c   ) with respect to an observer in the flat spacetime.  

   In II of Theorem we can give the following interpretation. If 0P   the Self-Variation is negated. 
However, if we assume that this has a chance of happening for a time interval t , II of the 

theorem gives us the consequences. In this time interval the rest mass 
0

m  is constant, while 

Equations (3.23) and (3.24) apply. If in addition 0  , from Equation (3.24) we get 

01 32 02 13 03 21
0       . Therefore vectors α  and β  are perpendicular. In addition, 

Equation (3.23) applies, 0 0E  . This situation corresponds to an ‘electromagnetic wave’. Thus we 

conclude that the rest mass 
0

m  may be constant for a period of time, but this period of time is 

always associated with an ‘electromagnetic wave’.  
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4. Electromagnetic interaction  

 

In this section we present the potentials that are compatible with the Self-Variation principle and 

replace the Liénard-Wiechert potentials (see, [1], [2]). We consider an electric point charge q  

moving arbitrarily in an inertial reference frame  , , ,t x y z .  We assume that the 

electromagnetic field propagates with speed υ , cυ  where c  is the speed of light in vacuum. 

As a consequence of Self-change, at time t , when q  is at point P , it acts at point A  with the 

value it had at point E , at the decelerating time w . We use the following symbolism, EA


 r , 

rr ,  pOE w


 r ,   pOP t


 r ,       , , ,
p p p

E w x w y w z w ,       , , ,
p p p

P t x t y t z t , 

 , , ,A t x y z ,  

where  0,0,0O . The index p  in the coordinates 
px , 

py , 
pz  indicates the position of the point 

particle carrying the charge q , at the corresponding moment in time w  or t . At point E  we 

denote  w u u  the velocity and  w a a  the acceleration of q  (see [3], Fig. 1). With this 

symbolism we have,  

 

 

 

p

p

p

x x w

y y w

z z w



 



 
 
 
 
 

r ,                                                                                                                                     (4.1) 

         2 2 2

1

2

p p p
r x x w y y w z z w      r ,                                                               (4.2) 

r
w t

c
  ,                                                                                                                                                   (4.3) 

 

 

 

1

2

3

x

y

z

p

p

p

x x w
c

c y y w
r r

z z w

 

 

 



    



     
     
     

    
    

r
υ .                                                                                             (4.4) 

The velocity  wu u  of the q  at point E  is,  

 

 

 

1

2

3

p

p

p

x

y

z

dx w

dw

dx w

dw

dx w

dw

u u

u u

u u



 
 
     
     

      
    
    

 
 

u .                                                                                                             (4.5) 

 

Auxiliary equations  

We prove the following list of equations which we will use next.  

From Equation (4.2) we have  

http://www.if.ufrgs.br/~dahmen/Tsamparlis.pdf
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  
 

  
 

  
 1

2 2 2
2

p p p

p p p

dx w dy w dz wr w w w
x x w y y w z z w

t r dw t dw t dw t

   
        

   
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and with Equations (4.4) and (4.5) we get  
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and with Equation (4.4) we get  
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and with Equation (4.3) we get  
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and equivalently we obtain,  
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From Equations (4.3) and (4.6) we obtain,  
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.                                                                                                                                         (4.7) 

Starting again from Equation (4.2) we obtain,  
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From Equations (4.3) and (4.8) we obtain,  
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.                                                                                                                                   (4.9) 

From Equation (4.1) we have  

 

 
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and with Equation (4.7) we obtain,  
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.                                                                                                                                    (4.10) 

From Equation (4.4) we have  
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and with Equations (4.4), (4.6) and (4.10) we obtain,  
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From Equation (4.4) we have  
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and differentiating with respect to x  we get  
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and equivalently we get  
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and with Equation (4.5) we get  
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and with Equation (4.4) we get  
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and with Equations (4.8) and (4.9) we get  

2 2

2

2

1 1

1 1

1x x x x

x c

c

r

c

uc

r c

  
 
 

   
   

 
 


u υ u υ

  

and equivalently we obtain,   
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Working similarly, we finally obtain,  
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,                                                                                                 (4.12) 

where , 1, 2,3i j   and    1 2 3, , , ,x x x x y z .  

Now we have,  
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x y z
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and with Equation (4.12) we get,   
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and equivalently we get,  
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and taking into consideration that 
2 2 2 2

x y z
c      we get,   
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and equivalently we obtain,  

2c

r
 υ .                                                                                                                                                (4.13) 

Working similarly we obtain,  
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
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u υ

.                                                                                                 (4.14) 

    If a physics quantity f  is defined at the point E ,  f f w  then we have,   

   w wf df w

t dw t

 


 
  

and with Equation (4.7) we obtain,  

   
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1

1

w wf df
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c







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u υ
.                                                                                                                   (4.15) 

Similarly, from Equation (4.9) we obtain,  
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.                                                                                                          (4.16) 

From Equations (4.15) and (4.16) we obtain,  
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υ
.                                                                                                                         (4.17) 

As a consequence of Self-Variation, at time t  the electric charge acts at point A  with the value it 

has at point E . Therefore,  wq q  and from Equations (4.15), (4.16) and (4.17) For f q  we 

obtain,  
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,                                                                                                                                 (4.18) 
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,                                                                                                                        (4.19) 
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q
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t c


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

υ
.                                                                                                                                        (4.20) 

We now consider the acceleration vector  wa a  of q  at the moment w  located at point E ,  

 
 d w

w
dw

 
u

a a .                                                                                                                               (4.21) 

Applying equations (4.15) and (4.16) for the velocity components u  we obtain,  

2

1

1
t

c







u
a

u υ
,                                                                                                                                      (4.22) 

2

2
1

j ii

j

a

c

u

x
c







 

  
 
 

u υ
,                                                                                                                          (4.23) 

where , 1, 2,3i j   and    1 2 3, , , ,x x x x y z . Applying equations (4.15) and (4.16) for the 

velocity components a  we obtain,  
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1
t

c





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u υ
,                                                                                                                                      (4.24) 
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
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  
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 

u υ
,                                                                                                                          (4.25) 

where  
 d w

w
dw

 
a

b b .  

    Using the previous Equations we obtain the following equations,  
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after the necessary calculations.  

 

Liénard-Wiechert potentials  

 

With the notation we follow, the Liénard-Wiechert scalar -vector potential pair   ,
LW LW

V A  is 

given by the equations,   
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r
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,                                                                                                                       (4.30) 
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u υ
.                                                                                               (4.31) 

The electric field E  and the magnetic field B  at point  , ,A x y z  are given by the pair  ,V A  of 

the scalar potential V  and the vector potential A  respectively, through equations  

V
t

  



E

A
,                                                                                                                                   (4.32) 

 B A .                                                                                                                                             (4.33) 

Through Equations (4.30), (4.31) and (4.32), (4.33) the Liénard-Wiechert potentials give the 

following equations for the electromagnetic field at point A ,  
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The first terms in the second members of Equations (4.34), (4.35) give the electromagnetic field 

accompanying the electric charge in its movement, and the second terms the electromagnetic 

radiation.  

 

Self-Variation potentials  

 

As a consequence of Self-Variation, the electromagnetic potential splits into two pairs of 

potentials. One pair,  
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                                                                                                  (4.36)  

gives the electromagnetic field that accompanies the electric charge in its motion,   
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The other pair,  
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,                                                                                                  (4.38) 

gives the electromagnetic radiation,   
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From (4.37) and (4.39) we get Equations (4.34). The Liénard-Wiechert and Self-Variation 

potentials give the same equations for the electromagnetic field strength.  

    From the potentials (4.36) we prove the first of Equations (4.37). Similarly, the proof of the 

second is done, as well as the proof of Equations (4.39) from the potentials (4.38).  

Proof. From Equation (4.32) and (4.36) we have,   
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and equivalently we get,   
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and with Equation (4.20) we get,   
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and equivalently we get,   
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From Equation (4.17) for    2f w u w  we get,   

2

2 2

2 2
c

u u

c t c

   

    
   

υ
.                                                                                                                       (4.43) 

From Equations (4.42) and (4.43) we get,   
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and equivalently we get,   
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and equivalently we obtain,   
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From Equations (4.8) and (4.10) we get,  
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From Equations (4.26) and (4.27) we get,  
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From Equations (4.44) and (4.34), (4.45), (4.11), (4.4) we get,   
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and equivalently we get,   
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and equivalently we get,  
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and equivalently we get,  
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and equivalently we get,  
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and equivalently we obtain,  
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.   

    In the proof we followed, the transition from Equation (4.40) to (4.41) was made as a 

consequence of Equation (4.20). This Equation expresses the Self-Variation of the electric charge 

q . If we assume that the charge q  does not self-variate, from the potentials (4.36) we directly 

obtain Equation (4.41). The Self-Variation potentials give the same electromagnetic field whether 

we consider the electric charge to vary according to the Self-Variation principle or to be constant.  

    Applying Maxwell's Equations for the electromagnetic field of Equations (4.34), (4.35) it follows 

that at point A  there is an electric charge, as a consequence of Self-Variation, with density   

and current density j ,  
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.                                                                                                 (4.47) 

As a consequence of Self-Variation, in the surrounding spacetime of q  there is an electric charge 

of opposite sign ( 0
dq

dw
 ), as follows from Equations (4.47).  

    We prove the first of Equations (4.47). Similarly, the proof of the second Equation is made.  
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Proof. From Maxwell's first law we have,  
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We write equation (4.34) in the form,  
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If we ignore Self-Variation and consider q  constant, at point A  there is no electric charge. Thus 

from Equations (4.48) and (34.49) we get,  
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From Equations (4.48) and (4.49) we get,  
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and with Equation (4.50) we get,  
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and equivalently we get,  
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and with Equation (4.19) we get,  
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and equivalently we get,  
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and equivalently we get,  
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and equivalently we obtain,  
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Therefore, the charge density at point A  is given by the equation,   
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Furthermore, electromagnetic radiation does not contribute to the electric charge of spacetime. 

  
    We now prove the continuity equation at point A ,  



28 
 

0
t


 


j .                                                                                                                                          (4.51) 

Proof. From Equation (4.47) we have,  
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and with Equation (4.13) we get,  
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The charge  q q w  and the velocity  wu u  are defined at point E . Then, from the first of 

Equations (4.47) we get the density   in the form,  
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From Equations (4.52) and (4.53) we get,  
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and equivalently we get,  
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From Equations (4.15) and (4.16) we get,  
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From Equations (4.6) and (4.8) we get,  
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From Equations (4.26) and (4.27) we get,  
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From Equations (4.54) and (4.55), (4.56), (4.57) we get,  

   
3 3

3 3

2 2

2 2

4 1 4 1
t

cf w f w

cr r
c c



 


  









   

    
  

j
u υ u υ

  

and equivalently we obtain,  
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j .   

    The continuity equation expresses the conservation of charge distributed in spacetime. This 

conservation of charge is equivalently expressed through the equation,  

   
V

q t q w dV   .                                                                                                                           (4.58) 

Considering the independence of velocity c  (Einstein, 1905) from velocity u  at point E , the 

volume V  in Equation (4.58) is a sphere centered at point E  and radius r . Equation (4.58) can 

also be proved independently of the continuity equation, by using the auxiliary Equations (4.6) – 

(4.29). From Equation (4.58) it follows that two observers in points E  and P , for the same 

particle (carrying the charge q ) measure a value  q t  for their own particle and  q w  the value 

with which the particle of the other acts in theirs.  

    To understand the physical content of Equation (4.58), let us assume that the particle at point 

E  is an electron carrying a charge q . In the time interval from w  to t , 
r

t t w
c

    , the 

increase in q  is balanced by the charge of spacetime, which is distributed over the sphere with 
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center E  and radius r . The charge of spacetime is due to the electromagnetic field that 

accompanies the electron. If we assume that this field exists in every case, the increase of q  is 

continuous. We now assume that the electron is stationary ( u 0 ) at point E . The increase of 

q  to over time is given by the equation (3.32). Therefore, the constant rest mass 
0

M   determines 

the increase in q  over time.  

    The increase of rest mass to over time is given by equation (3.31). Considering that the electric 

charge of the electron contributes a small percentage to its total rest mass, we conclude that in 

Equations (3.31) and (3.32) is, 
0 0

M M  . If we assume that in the same particle the constant b  

is the same for rest mass and electric charge, then then we conclude that the charge q  of the 

electron increases at a much lower rate, compared to the rate of increase of its rest mass 
0

m . This 

conclusion is confirmed by the cosmological data, as we will see in section 6.  

    Self-variation potentials are compatible with Lorentz-Einstein transformations and, obviously, 

with the Self-variation principle. The Liénard-Wiechert potentials were published (1899) six years 

before the publication of Special Relativity (1905) by Einstein. After the formulation of Special 

Relativity it was shown that they are compatible with Lorentz-Einstein transformations. From 

Equations (4.30), (4.31) it is proven that the Liénard-Wiechert potentials are not compatible with 

the Self-Variation principle. For them to be compatible, the Self-Variation principle should have 

given the equation  

2

q
q

t c


  
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u
  

and not (4.20),  

2

q
q

t c


  



υ
.  

If we denote by L  the set of equations that are compatible with the Lorentz-Einstein 

transformations and by S  the set of equations that are compatible with then it is S L . 

Regarding the mathematical formalism of the laws of physics, the Self-Variation Theory imposes 

additional constraints than those imposed by Special Relativity.  
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5. Gravitational interaction  

 

The Theory of Self-Variation formulates gravity and electromagnetism with the same equations. 

These Equations concern the field created by the rest mass / electric charge of a particle. The 

central equation of the Theory relates three physical quantities, the rest mass or charge of the 

field source, the relative velocity of the field source to the observer, and the propagation velocity 

of the field relative to the observer. These velocities are directly related to the potential and 

intensity of the field measured by an observer. The first calculations give consistency of the Theory 

at the distance scales that we have observational data. Theory predicts increased stellar velocities 

on the outskirts of galaxies. It also predicts increased velocities of galaxies on the outskirts of 

galaxy clusters. In the frame of the Theory, the equations we present in this article apply to all 

interactions, not just gravity and electromagnetism. Further investigation of the equations will 

yield the complete, precise prediction of the Theory.  

    Through a series of mathematical calculations described in detail in section 3, the Self-
Variations principle necessarily involves a modification of the electromagnetic potential. For 
comparison the classical electromagnetic Liénard–Wiechert potentials are,  
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whereas the corresponding Self-Variation potentials are,   

 

0 0

2

2

2

3

2

2

2
4 4

1

1 1

q
q

r

u

c
V

c
c

c
 




 




 
 
 

   
   

   

υ α

u υ u υ
,  

2
V

c
A

υ
.  

The difference lies in the potential of Equations (4.38), which are not present in Equations (4.31).   
 
Gravitational potential  
 
The Self-Variation potential for the gravitational interaction is derived from the above Equations 
of the electromagnetic Self-Variation potential by substituting the charge q , with the rest mass 

M , of the source of the gravitational field hence, 
0

4

q
GM


  , where G , is the constant of 

gravity and by substituting the acceleration α  of the particle in the electromagnetic field, with 
the intensity g  of the gravitational field, hence, α g . Also notice that now υ , represents the 

speed of propagation of the gravitational field, hence we must substitute the speed of light in 
vacuum c , with the speed of propagation of the gravitational field  , hence, c  . These 
substitutions lead to the corresponding gravitational potentials of the Self-Variation,  
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V
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.  

where u , is the velocity of the rest mass M  relative to the observer, and r , is the distance from 
the rest mass M . Deriving the gravitational potentials in this way, implies that there is a 

gravitational analog to the magnetic field B , and has units 1
s
  (see Equations (4.30) – (4.33)). 

Notice that in the limit case where the speed of propagation of the gravitational field approaches 
infinity,    , we get the limit potential  

GM
V

r
  ,  

which is no other than the one of classical mechanics which assumed instant action of gravity at 
distance r .  
    Like the corresponding Equation for electromagnetism, Equation (5.1) refers to the 
gravitational field created by the rest mass of a particle. By taking into account the distribution of 
particles in spacetime we get the gravitational field on a macroscopic scale.  
 
Potential, propagation speed and intensity of the gravitational field caused by a single rest mass 

M   
 
The differential equations we get from Equation (5.1) depend on the direction of the vectors υ  
and g . In this article we study in detail one of these cases. Considering that the vectors υ  and g  

have opposite directions,
r


r

υ  and g
r

 
r

g , g  υ g , where   υ  and g  g . Then  
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Then from Equation (5.1) we have   
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The gravitational field intensity  rg  is given by   
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r

dV
V r
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r
g .                                                                                                                      (5.4) 

    From Equation (5.2) in [5], we have that, dr cdw  . However using the symbols of the current 

article this Equation is written as, dr dt  . From Equation (5.2) we get 
d

g
dt


  . Combining 

these Equations we get  

d dV
g

dr dr


   ,                                                                                                                                        (5.5) 
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where with t , we have denoted the time of the observer. From Equation (5.5) we have, 
2

2V                                                                                                                                                  (5.6) 
where   is a constant. In this article we study the case 0  .  
    From Equations (5.3) and (5.5) we get,  
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Then, from Equations (5.6) and (5.7) we obtain the differential equation for the potential, 
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and the differential equation for the speed of propagation of the gravitational field,  
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    Equation (5.9) relates three physics quantities, the rest mass M  of the field source, the velocity 
u  of the field source relative to the observer, and the speed of propagation υ  of the field relative 
to the observer. The fact that this equation relates only these three physics quantities makes it 
fundamental to the gravitational interaction. For the observer, the properties of spacetime 
depend on the rest mass M .  
    In the electromagnetic interaction the Self-Variation Theory predicts two independent pairs of 
potentials. One gives the electromagnetic field of the moving electric charge and depends on the 
velocity u  of the charge (see Equations (4.36)),  
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The other gives the electromagnetic radiation emitted by the electric charge and depends on the 
acceleration a  of the charge (see Equations (4.38)),  
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As a consequence of the substitution a g , this separation cannot be made in the gravitational 

interaction. The intensity of the gravitational field, the acceleration of gravity g  is related to both 

the  
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term in the second part of Equation (5.1). In addition to Equation (45.4), the potential and the 
gravitational field strength are also related to each other through Equation (5.1).  
 
Gravitational interaction of two bodies  
 
We study the case where a body of rest mass m  moves in the gravitational field of a stationary 
body of rest mass M m .  

    In polar coordinates  ,r  , the orbits  r r   of the body of rest mass m  is given by the 

solution of the system of equations,  
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                                                                                                                             (5.10) 
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and  

  constantmV r K E   .                                                                                                                 (5.12) 

In these Equations t  is the time of the observer, L  and K  the angular momentum and the kinetic 

energy of the body of rest mass m , 
2

2

d r

dt
r  , 

d

dt


   and E  the mechanical energy of the system 

of the two bodies.  

    From the solution of the differential Equation (5.8) we get the potential  rV . Then, from 

Equation (5.5) we get the intensity  rg  of the field. Alternatively, from the solution of the 

differential Equation (5.9) we obtain the speed of propagation of the field  r . Then, from 

Equation (5.6) we get the potential  rV . The velocity  u u r  is obtained from Equation (5.12).  

    The solutions given by differential equations (5.8) and (5.9) depend on the inner product 
2


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υ

u

. If 
2

0

 
υ

u  we get the simplest possible solutions. We study such solutions in the next sections 

4 and 5. This partial study is necessary to highlight a property of the gravity equations, as given by 
Equation (5.1). Depending on the distance from the rest mass M , gravity can be either attractive 
or repulsive. In section 6 we formulate the general equations, which include the inner product  

2


υ

u .  

 
Circular orbits  
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In the system of bodies in the previous section, if the body of rest mass m  moves with velocity u  
relative to the body of rest mass M , then the body of rest mass M  moves with velocity u  
relative to the body of rest mass m .  
    The inner product u υ  in the differential Equations (5.8) and (5.9) has the consequence that 
complex calculations are required for their solution. These calculations are simplified in the case 
of circular orbits. The case of circular orbits is a first approach to the conclusions drawn from the 
Equations we present in this article.  

    For the body of rest mass m  we have 
d d

dt dt
 

υ u
g . In the case of circular orbit it is  

 u g 0                                                                                                                                                     (5.13) 

and taking into consideration that the vectors υ  and g  have opposite directions we have  

 u υ 0 .                                                                                                                                                   (5.14) 
Now we have  

2 2

2 2
du d d

dt dt dt
  u u g

u u
 

and with Equation (5.13) we get  
2

0
du

dt
 ,                                                                                                                                                   (5.15) 

where  u  u . Therefore the velocity u  is constant in the circular orbit.  

    From Equations (5.9) and (5.14) we have  
2 2

2

2 2

2
1

GM u GM d

r dr


 

 
    

 
 
 

.                                                                                               (5.16)  

Let  

x r
GM


                                                                                                                                                 (5.17) 

and let  

 
 2

2

x
f x

c


 .                                                                                                                                      (5.18) 

From Equations (5.16), (5.17) and (5.18) we get the following differential equation,  
2

2

2

2

2
0

df c
f f f

dx x c

u


    

 
 
 

.                                                                                                      (5.19) 

In Equation (5.19) it is  
2

2
0 1

u

c
  .                                                                                                                                               (5.20) 

    The solution we get from the differential equation (5.19) depends on the value of the quotients 
2

2

u

c
 and 

2
c


. Solving differential equation (5.19) we get the speed  x   from Equation (5.18).  

    From Equations (5.6) and (5.18) we get the field potential as a function of x ,  

   
2

2 2
x

c
V f x


   .                                                                                                                         (5.21) 

From equations (5.21) and Transformation (5.17) we get the field potential as a function of r . 
    From Equation (5.4) we have  
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 r
r r

dV dV dx

dr dx dr
  

r r
g   

and with the Transformation (5.17) we have  

 x
r

dV

GM dx


 

r
g   

and with Equation (5.6) we have  

 
2

2 r

d
x

GM dx

 
 

r
g   

and with Equation (5.18) we have  

 
2

2
x

r

c df

GM dx


 

r
g   

and with Equation (5.19) we obtain the intensity g  of the field as a function of x ,  

       
2 2

2

2

2
2

2

c u
f f f

x c r
x

c
x x x

GM 


   






 







 



r
g .                                                                  (5.22) 

The functions  r  ,  V V r  and  rg g  are obtained from Equations (5.18), (5.21) and 

(5.22) through the Transformation (5.17).  
    As a consequence of Equation (5.19) the velocity u  and the gravitational field are mutually 
dependent. This is a clear conclusion of the Theory, which has its origin in Equation (5.1). The 

solution of the differential Equation (5.19) gives pairs   ,f x u . Included in these solutions are 

velocities u  that correspond to the increased velocities of stars in the outskirts of galaxies and 
the increased velocities of galaxies in the outskirts of galaxy clusters.  
 
Potential, propagation speed, and intensity of the field induced by a stationary rest mass relative 
to an observer  
 
If the observer and the source of the field M  are stationary between them, u 0 , then from 
Equations (5.8) and (5.9) we have  

2

GM GM dV
V

r drV
  


                                                                                                                      (5.23) 

and  
2

2

2

2GM GM d

r dr


 


    .                                                                                                               (5.24) 

    From Equation (5.24), again applying Transformations (5.17) and (5.18) we get,  
2

2 2
0

df c f
f f

dx x
    .                                                                                                                     (5.25) 

Solving (5.25) for f , we have  

 
2

2

2
2 2

x

x
f x

c ke x x




 
                                                                                                                (5.26) 

where k , is the integration constant. Then from (5.18), (5.26) we have  

 
2

2

2

2 2
x

x
x

ke x x
 

  
.                                                                                                                (5.27) 
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Finally applying the Transformation (5.17) to (5.27) we get the speed of propagation of the 
gravitational field, as derived from the Self-Variation gravitational potential, with respect to r ,  

 
2

2

2
2

2
2 2

ax

a r
r

ke a r ar
 

  
,                                                                                                         (5.28) 

where a
GM


 .                                                                                                                                     (5.29) 

    From Equations (5.6) and (5.27) we obtain the gravitational potential with respect to x ,  

 
 2

2 2

2 2 2

x

x
x

ke x
V

ke x x


 
 

  
.                                                                                                        (5.30) 

Then from Equations (5.30) and Transformation (5.17) we obtain the gravitational potential with 
respect to r ,  

 
 22

2 2

2 2 2

ar

ar

ke ar
V r

ke a r ar


 
 

  
.                                                                                                 (5.31) 

    The gravitational field intensity g  is calculated as follows. From Equation (5.4) and 

Transformation (5.17) we get  

 
 

x
r

dV x

GM dx


 

r
g   

and with Equation (5.6) we get,  

 
 2

2
x

r

d x

GM dx


 

r
g   

and with Equation (5.18) we get,  

 
 2

2
x

r

df xc

GM dx


 

r
g   

and with Equations (5.25) we get,  

       2

2 2
2

2

c c
x f x f x f x

GM x r




   

 
 
 

r
g   

and with (5.26) we obtain,  

       
 

2

2

2

2 2 2 2

2

2 2 2 4

2 2 2 2

x x

x

c c kxe kx e x x
x f x f x f x

GM x r GM rx xke

 



  
     

  

 
 
 

r r
g .          (5.32) 

The function  f f x  is given by Equation (5.26). From Transformation (5.17) and Equations 

(5.26) and (5.32) we get the field intensity  rg g  as a function of r .  

    We made the substitution 
0

4

q
GM


   (and not 

0
4

q
GM


 ) in order for the gravitational 

interaction to be attractive. However, this is not achieved. From Equation (5.32) it follows that 
there are values of k  and x  for which gravity is repulsive. Consequently, the general case of the 

gravitational interaction is obtained by substituting 
0

4

q
GM


  . Equation (5.1) is common to 

electromagnetism and gravity. Through the transformations  

0
4

q
GM


  , a g  and c    
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we pass from one interaction to another.  

    For u 0  and 
0

4

q
GM


    the equivalents of Equations (5.24), (5.25) and (5.26) are,   

2

2

2

2GM GM d

r dr


 


   ,   

2

2 2
0

df c f
f f

dx x
    ,  

 
2

2

2
2 2

x

x
f x

c ke x x





 

.  

Then we get,   

 
2

2

2

2 2
x

x
x

ke x x
 




  
,                                                                                                              (5.33) 

 
 2

2 2

2 2 2

x

x
x

ke x
V

ke x x






 
 

  
                                                                                                        (5.34) 

and  

 
 

2

2

2 2

2

2 2 4

2 2 2

x x

x

kxe kx e x x
x

GM rx xke


 



   
 

  

r
g .                                                                                (5.35) 

By comparing the triads of Equations ((5.27), (5.30), (5.32)) and ((5.33), (5.34), (5.35)) the 

similarities and differences of the 
0

4

q
GM


   and 

0
4

q
GM


   substitutions emerge.  

    As a consequence of the equality 
GM GM

x x
 


, the triads of Equations ((5.27), (45.30), (5.32)) 

and ((5.33), (5.34), (5.35)) are related through the x x   transformation. Through this 
transformation one triad arises from the other. From Equation (5.1) it follows that for the two 

substitutions, this symmetry also exists in the case u 0 . Therefore, for each solution  x , 

 V x ,  g x  of the Equations of the field we also get its "complementary" solution through the 

transformation x x  .  
    The case u 0  is the simplest. In addition, it gives exact solutions of  , V  and g . Therefore, 

the initial investigation of the equations of this article can be done for all possible substitutions 
with u 0 .  
    As a consequence of the equivalence    

0 or



  









u 0

u υ

u υ

,  

the cases u 0  and u υ  (circular orbits) are given by Equations (5.19) and (5.18), (5.21), (5.22),  
2

2

2

2

2
0

df c
f f f

dx x c

u


    

 
 
 

,  

   2 2
x c f x  ,  
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   
2

2 2
x

c
V f x


   ,  

       
2 2

2

2

2
2

2

c u
f f f

x c r
x

c
x x x

GM 


   






 







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

r
g .  

Then, through the transformation x x   we obtain the complementary solution.  
Comparison of complementary solutions  
We now make a first comparison of the complementary solutions.  

From Equation (5.32) we have that gravity is repulsive (   0g x  ) for the values of k  and x  for 

which,  
2 2

2 2 4 0kx kx x x    .  
From Equations (5.27), (5.30) and (5.32) we get the limit values,  

(0) 0   and lim ( ) 0
x

x


 ,  

 0
2

V


   and  lim
2x

V x




  ,  

 0 0g   and  lim 0
x

g x


 .  

    From Equation (5.35) we have that gravity is repulsive (   0g x  ) for the values of k  and x  

for which,  
2 2

2 2 4 0kx kx x x     .  
From Equations (5.33), (5.34) and (5.35) we get the limit values,  

(0) 0   and lim ( )
x

x 


  ( 0  ),  

 0
2

V


   and  lim
2x

V x




  ,  

 0 0g   and  lim 0
x

g x


 .  

These limit values do not depend on the rest mass M .  
 

The general equations for the case 
r


r

υ  and g
r

 
r

g   

 
From Equation (5.9) and transformation (5.17) we get the following equation,  

2 2

2 2

2 2

2

1
1 1 2 2

xd

dx

u
x

 

   


    

  
  

  

u υ
.                                                                                 (5.36) 

From Equation (5.36) and the transformation x x   we get the complementary equation  
2 2

2 2

2 2

2

1
1 1 2 2

xd

dx

u
x

 

   


     
  

  
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u υ
.                                                                             (5.37) 

    For the case we studied (
r


r

υ  and g
r

 
r

g ), (5.36) and (5.37) are the general Equations. 

Corresponding equations are obtained for all possible combinations in the directions of vectors  
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υ  and g . The resulting solutions of these differential equations depend on the inner product 

2


υ

u .  

    In the differential equations (5.16) and (5.24) the unknown function is the 2
 . Thus we made 

the transformation (5.18). In the differential equations (5.36) and (5.37) the unknown function is 
the  . Thus we make the transformation   

   x c x                                                                                                                                           (5.38)  

and we get,   
2 2 2

2

2 2

cos 1 1 2
1 1 2 2

c u xd

c dx

u
x

c






     

  

  
  
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,                                                            (5.39) 

2 2 2
2

2 2

cos 1 1 2
1 1 2 2

c u xd

c dx

u
x

c






      

  

  
  

  
,                                                         (5.40) 

where   is the angle of the vectors u  and υ . 

    After finding the function  x , the velocity  x  is given by equation (5.38). The field 

potential  V x  is given by Equation (5.6). The field strength is given by equation (5.4) written in 

the form  x
r

dV

GM dx


 

r
g .  

    The differential Equations (5.38), (5.39) give triads of solutions   , ,x u  . Included in these 

solutions are velocities u  that correspond to the increased velocities of stars in the outskirts of 
galaxies and the increased velocities of galaxies in the outskirts of galaxy clusters. The theoretical 
prediction coincides with the observational data. For given velocities u , the solutions given by 

Equations (5.39) and (5.40) depend on the quotient  
2

c


. For a given quotient 

2
c


, Equations (5.39) 

and (5.40) give solutions for specific velocities u . There are pairs 
2

,
c

u


 
 
 

 for which equations 

(5.39) and (5.40) give realistic solutions. A criterion for whether a solution is realistic or not arises 

from the values that the speed  x  takes, as given by equation (5.38). As the propagation speed 

of the field, it is not necessarily less than c . However, if we assume that the carrier of gravity is a 

particle, then we have  x c  . In any case, we can draw conclusions about the field from the 

possible values of its propagation speed.  

    In a first approach, the value of the quotient  
2

c


 can be estimated from the already known 

observational data (see, [1] – [3] and [6] – [15]). For such a measurement, at the macrocosmic 
scale the distribution of particles in spacetime must be taken into account and not only their total 
rest mass. A more accurate prediction of the Theory for the velocities of stars in the outskirts of 
galaxies and the velocities of galaxies in the outskirts of galaxy clusters can be made using 
appropriate mathematical models on the respective distance scales.  

    If 
2

0

 
υ

u , from Equations (5.38) and (5.39) we get the Equations of sections 5 and 6. For the 

functions f  and   we have     2
f x x  , as obtained from Equations (5.18) and (5.38).  
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The potentials V , A   
 
The complete investigation of the Theory of Gravitation is done through Equation (5.1) and the 

pair of potentials  ,V A , where  

V



υ

A .  

These potentials relate the gravitational field to spacetime, through the equations,   

V
t


  



A
g ,  

 B A ,  

where B  is a gravitational proportional to the magnetic field and has units 1
s
   (see Equations 

(4.30) – (4.33)).  
    As a consequence of Self-Variation, at time t , the rest mass / electric charge located at point 
P  acts on point A  with the value it had at another point E  (see [5], Fig. 1). The intensity of the 

gravitational field given by the potentials  ,V A  is the same whether we consider the rest mass 

M  to be constant or consider it to vary according to the Principle of Self-Variation (see, section 
3). This property of the potentials of the Self-Variation Theory allows us to solve the differential 
Equations of the gravitational field by considering the rest mass M  as constant. 
    We have presented the Equations for Gravity as predicted by the Theory of Self-Variation. The 
substitution α g , by which we get the Gravitational potential of Self-Variation from the 

corresponding Electromagnetic potential, is an idea belonging to Einstein. Without this 
substitution the Gravitational field of Self-Variation cannot arise. The Equations we have 
presented include Einstein's proposal for the equivalence of acceleration and gravity.  

    Through the substitutions 
0

4

q
GM


  , a g , c   Equation (5.1) is common to gravity 

and electromagnetism. By doing all the combinations we get the possible equations of the 
gravitational interaction. A common characteristic of the resulting cases is that gravity is attractive 
or repulsive as the distance from the rest mass changes. The correlation of attraction / repulsion 
with the distance from the rest mass is a direct consequence of the Equations of this section.  
    If in Equation (5.1) we replace the rest mass with the "Self-Variating Charge Q "  we get the 

"Unified Self-Variation Interaction". In gravitational interaction Self-Variating charge is the rest 
mass, Q M . In electromagnetic interaction the Self-Variating charge is the electric charge, 

Q q . An issue for investigation is the possible physics quantities Q .  

    As a consequence of the Self-Variation of rest masses, spacetime contains negative energy (see, 
Equations (4.47) for electric charge). As distance scales increase spacetime contains a large 
number of particles distributed over a negative energy background. This background of negative 
energy arises from the Self-Variation of the remaining masses of the material particles of the 
universe. At the macroscopic scale the gravitational interaction depends on the distribution of 
particles and negative energy. On the cosmological scale this combination makes the universe flat 
(see, [4]). A mathematical model for the Theory's predictions at the macrocosmic and 
cosmological scales is necessary.  
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6. The cosmological data as a consequence of the Self-Variation of the material particles  

 

As a consequence of Self-Variation, in our cosmological-scale observations, the rest mass and 

electric charge (generally the self-varying charge) of a particle have a smaller value than the 

corresponding values of the same particle in the laboratory, on earth. This fact has consequences 

for all physical phenomena occurring in distant astronomical objects, which depend on rest mass 

and electrical charge. These consequences are recorded in the cosmological data.  

    The reduced values of rest mass in the past time result in the weakening of gravity, compared 

to its strength on earth and nearby galaxies. This attenuation is extremely large at cosmological-

scale distances. The equations given by the Self-Variation Theory predict that gravity cannot cause 

the universe to collapse or expand. The consequences of gravity are limited to other distance 

scales, much smaller than the cosmological one.  

    The Standard Cosmological Model is based on General Relativity. However, it has repeatedly 

had to introduce additional assumptions in order to bring the Model into agreement with the 

observational data. From the hypothesis of Dark Matter (see, [20])) and inflation (see [5]), to the 

more recent hypothesis of Dark Energy (see, [12], [17]). The Standard Cosmological Model is 

inconsistent with recent measurements from the early twenty-first century to the present (see 

[1], [3], [4], [9], [14]). There is no hypothesis that could bring the Standard Cosmological Model 

into agreement with the two measured values for the Hubble constant (see, [15], [16]).  

    The Internal Symmetry Theorem justifies the so far known cosmological data, in a flat and static 

universe. The increased velocities of stars on the outskirts of galaxies, and the increased velocities 

of galaxies on the outskirts of galaxy clusters are justified by the conclusions of section 4 on 

gravity.  

 

Rest mass and electric charge on the cosmological scale  

 

In a flat and static universe, from Equation (3.31) for ,b K , 0b   we get the following 

equation for the increase in rest mass to over time t ,  

  0

0 0 2

01 exp

M
m m t

bM c
K t

 


 
 
 

.                                                                                                      (6.1) 

 

From equations (3.19) and (3.20), requiring  

 

2 2

0

0 0 2
0

1

M c
m E


 


  

we get 0   and equivalently we get,   

0K  .                                                                                                                                                         (6.2) 

In Equation (6.1) the constant K  is negative.  

    We consider an astronomical object at distance r  from Earth. The emission of the 

electromagnetic spectrum of the far-distant astronomical object we observe “now” on Earth has 

https://adsabs.harvard.edu/full/1933AcHPh...6..110Z/0000119.000.html
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taken place before a time interval t
r

c
  . From equation (6.1) we have that the rest mass   0m r  

on the distant astronomical object at the moment of emission was,  

  0

0 2

01 exp

M
m r

bM c
K

r
t

c




  

  
  

.                                                                                                   (6.3) 

From Equations (6.1) and (6.3) we obtain,  

 0 0

2

0

2

0 0

1 exp

1 exp exp

m r m

bM c
K t

bM c bM c
K t r

 
  

 
   

    
  

.                                                                        (6.4) 

Different particles have different rest mass 
0

M . Furthermore, in different particles the Self-

Variation can evolve in a different way, which can be expressed by a different value of the 

constant b . Thus in Equation (6.4) we denote,  
2 2

0 0 0k

p

bM c b M c
k   .                                                                                                                     (6.5) 

With the index ‘ p ’ we denote the particle to which the constant 
p

k  refers. With this symbolism, 

Equation (6.4) is written in the form,  

 0 0

1

1

p

pp

r

c

k t

kk t

K
m r m

K

e

e e






 .                                                                                                                   (6.6) 

 

We now denote by A  the time-dependent function,  

    0pk t
A A t t Ke      .                                                                                                        (6.7) 

From Equations (6.6) and (6.7) we obtain,  

 0 0

1

1
p

r

c
k

A
m r m

Ae






 .                                                                                                                         (6.8) 

From Equation (6.7) we obtain,  

0p

dA
A k A

dt
   .                                                                                                                                 (6.9) 

    Similarly, starting from Equation (3.32) we get the following equations,  
2 2

0 0 0k

p

bM c b M c
k

 
   ,                                                                                                                   (6.10) 

 
1

1
p

r

c
k

B
r

B

q q

e
 





 ,                                                                                                                             (6.11) 

0pk t
B K e


   ,                                                                                                                                     (6.12) 

0p

dB
B k B

dt
   .                                                                                                                               (6.13) 
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The replacement of the function  t  with the functions  A t  and  B t  was done to preserve 

the notation of the cosmological scale equations as they are in already published articles (see, 

[10]).  

 

The redshift of the distant astronomical objects  

 

The fine structure constant a  is defined as  
2

04

eq

c



 ,                                                                                                                                           (6.14) 

where 
e

q  is the electric charge of the electron. From Equation (6.11) if 
e

q q  the charge of 

electron we obtain,  
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 
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 
 
 

.                                                                                                                        (6.15) 

The energy of the electron in the atom is  
2 2

2 2

4
1

2

1, 2,3,...

e

n

eK m q
E

n

n


 



   

where 
e

m  is the rest mass and 
e

q  is the electric charge of the electron, Z  is the atomic number 

and K  is Coulomb’s constant (see [2], [18]). The wavelength   inversely proportional to the 

photon energy E , 
2c

E


   (see, [13]). Therefore, the wave length   of the linear spectrum is 

inversely proportional to the factor 4

e em q . If we denote by 0  the wavelength of a photon emitted 

by an atom “now” on Earth, in the laboratory and by   the same wavelength of the same atom 
received “now” on Earth from the far-distant astronomical object, the following relation holds,  
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e e

e e

m q

m r q r




   

and from equations (6.8) and (6.11)  if 
e

q q  the charge and 
0 e

m m  the rest mass of electron 

we obtain,  
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.                                                                                                           (6.16) 

From equation (6.16) we have for the redshift z ,  

0

0 0

1z
  

 


     

of the astronomical object that  
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From Equations (6.15) and (6.17) we get,  
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Considering that the electric charge of the electron increases at a much slower rate than its rest 

mass (see comments at the end of section 3 and [7], [19]), from equation (6.18) we get,  
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and equivalently we obtain,  
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z e
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.                                                                                                                              (6.19) 

For small distances r, from Equation (6.19) we get,  

1 1
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e

A r
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A c
  
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 
 
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and equivalently we get,  

 1

e
k A

z
c A

r


  

and comparing this Equation with Hubble’s law cz Hr  (see, [6]) we get,  

1

e

e
A

k A
H H


  ,                                                                                                                                     (6.20) 

where eH H  is the Hubble constant for the linear spectrum of atoms. If the electromagnetic 

radiation we measure depends on ΄΄heavy΄΄ particles, such as the proton and the neutron, 

Equation (20) becomes,  

1

p

p
A

k A
H


 .                                                                                                                                             (6.21) 

The Self-Variation Theory predicts the measurement of the two values of Hubble's constant (see, 

[15], [16]). This prediction has already been made since 2016 (see, viXra:1512.0246, version C, 

section 12, https://vixra.org/pdf/1512.0246vC.pdf ).  

    Taking into account that 0H  , 0A   and 0ek  , from Equation (6.20) we get,  

1A  .  

From Equation (6.10) we get,  

1 A

A
z


   

and taking into account that 0A   we obtain,  

1
1

A
z

z
 


.                                                                                                                                           (6.22) 

https://vixra.org/abs/1512.0246
https://vixra.org/pdf/1512.0246vC.pdf
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From this inequality and considering the possible values of redshift we conclude that,  

1A


 .                                                                                                                                                    (6.23) 

 

From equations (6.21) and (6.9) we have,  
2

dH H
H

dt A
  .                                                                                                                                      (6.24) 

 From this Equation and relation (6.23) we conclude that Hubble's constant increases slightly with 

time.    

 

The rest mass of the electron as a function of redshift  

 

From equations (6.8) and (6.19) we obtain,   

 
1

e
e

m
m z

z



.                                                                                                                                         (6.25) 

The redshift is measured with great precision. Therefore, Equation (6.25) gives the relation 

between    e e
m z m r  and 

e
m  very precisely.  

    A large set of physical phenomena and mechanisms depend on the rest mass of the electron. 

Therefore it is important to know precisely its value in distant astronomical objects. This accuracy 

is given by Equation (6.25).  

 

The diminished energies of distant astronomical objects  

 

From Equation (6.25) we get,   

 
1

E
E z

z



                                                                                                                                           (6.26) 

for the energy 2

eE m c  of the electron.  

    Taking into account the two measured values of the Hubble constant (see [15], [16]) we 

conclude that equation (6.26) is also approximately valid for heavy particles. This equation 

predicts that the energy resulting from hydrogen fusion and nuclear reactions is reduced in distant 

astronomical objects.  

 

The Thomson and Klein-Nishina scattering coefficients as a function of redshift of the distant 

astronomical objects  

 

The laboratory value of the Thomson scattering coefficient is given by equation,  
2

2 4

8

3

e
T

e

q

m c


  ,                                                                                                                                      (6.27) 

where em  the rest mass and 
e

q  the electric charge of the electron. Thus we have,  
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and taking into account the very slow rate of change of the fine structure constant (  z  ) 

we get,  

 

 

2

T e

T e

z m

m z





 
 
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and with Equation (6.25) we obtain,  
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2
1
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T

z
z
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
 .                                                                                                                                   (6.28)                                        

    The Thomson coefficient concerns the scattering of photons with low energy E . For photons 

with high energy E  the photon scattering is determined from the Klein-Nishina coefficient,  
2
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8 2
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m E
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  
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                                                                                                        (6.29) 

in the laboratory and,  
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                                                                                  (6.30) 

in an astronomical object with redshift z . From Equations     2
E z m z c  and (6.26) we get,  
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0 0
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and Equation (6.30) becomes,  
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and with Equation (6.29) we get,  
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and with Equation (6.28) we obtain,  

   
 

2
1

T

T

z z
z

 

 
  .                                                                                                                   (6.31) 

From equation (16.41) we conclude that the Thomson and Klein-Nishina scattering coefficients 

increase with redshift and indeed in the same manner.  

    From Equation (6.19) we obtain,  

lim
1r
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.                                                                                                                                          (6.32) 

Then from Equations (6.31) and (6.32) we get,  
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Considering the limit (6.23) and Equation (6.33) we conclude that the Thomson and Klein-Nishina 

scattering coefficients had enormous values in the very early universe. In its initial phase the 

universe was totally opaque. From this initial phase stems the Cosmic Microwave Background 

Radiation (see, [8], [11]) we observe today.  
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The ionization and excitation energies of atoms as a function of redshift of the distant 

astronomical objects  

 

The ionization energy as well as the excitation energy of atoms 
n

X  is proportional to the factor 

4

e em q , where em  is the rest mass and eq  the electric charge of the electron. Therefore we have,  
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and considering that the electric charge of the electron increases at a much slower rate than its 

rest mass we get,  
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X r r
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and with equation (6.25) we have,  
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and equivalently we obtain,  
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  .                                                                                                                         (6.34)                

From Equation (6.34) we conclude that the ionization and excitation energies of atoms decrease 

with increasing redshift. This fact has consequences on the degree of ionization of atoms in the 

distant astronomical objects.  

    The number of excited atoms in a gas in a state of thermodynamic equilibrium is given by 

Boltzmann’s equation,  

1 1

expn n nN g X

N g KT
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 
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 

,                                                                                                                          (6.35) 

where nN  is the number of atoms at energy level n , nX the excitation energy from the the 1st to 

the nth energy level, 23 1
1 38 10K JK

 
    Boltzmann’s constant, T  the temperature in degrees 

Kelvin, and ng  the multiplicity of level n , i.e. the number of levels into which level n  is split apart 

inside a magnetic field.  

    From Equations (6.34) and (6.35) we obtain,  
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For the hydrogen atom for 2n  , 10

2 10.5 16.4 10X eV J   , 1 2g  , 2 8g   and at the 

surface of the Sun where 6000T K  equation (6.36) implies that just one in 8
10  atoms is at state 

2n  . Correspondingly from equation (16.35) and for 1z   wee have 1z   , for 2z   we have 

32

1

5.8 10
N

N


  , and for 5z   we have 2

1

0.15
N

N
 .  

From Equations (6.34) and (36) we conclude that in the past, the universe went through an 
ionization phase of possibly long duration.  
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The position-momentum uncertainty as a function of redshift of the distant astronomical objects  
 
Combining equations (3.21) and (6.7) we have,  
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for an astronomical object at distance r , and combining these two equations with equation (6.8) 
we get,  
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and with equation (6.25) we obtain,  
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    From the position-momentum uncertainty, for the axis 
i

x  we have,  

i i
J x   

in the laboratory, and  

   
i i

z zJ x   

for the astronomical object, and combining these two relations we get,   

   
i i i i

z zJ x J x      

and with equation (6.37) we have,  

   1
i iz zx x   .                                                                                                                               (6.38) 

From equation (16.44) we conclude that the uncertainty  
i

zx  of position of a material particle 

increases with the redshift. Moreover, as the universe evolved towards the state we observe 

today, the uncertainty of position of material particles was decreasing.  

    From equations (6.38) and (6.32) we have,  

 
1

i

i
r

x
x

A






 .                                                                                                                              (6.39) 

Considering the limit (6.23) and Equation (6.39) we conclude that in the very early universe there 

existed great uncertainty of position of material particles. The same conclusions arise for the Bohr 

radius,  

   1Bohr Bohrz zR R ,                                                                                                                         (6.40) 

 
1

Bohr

Bohr r
R

R
A




 .                                                                                                                           (6.41) 

 

On the type Ia supernovae  
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The production of energy in the universe is mainly through hydrogen fusion and nuclear reactions. 

Therefore, the energy produced in the past at distant astronomical objects was smaller than the 

corresponding energy produced today in our galaxy (see, Equation (6.26)). Furthermore, the Self-

variation of the electron’s rest mass played a defining role in the energy produced in the past at 

distant cosmological objects. This is due to the fact that the fundamental astrophysical 

parameters depend on the rest mass of the electron, which depends on the redshift.  

    A characteristic example concerns type Ia supernovae. The value of the rest mass of the 

electron, given as a function of the redshift z from Equation (6.25), plays a defining role at all 

phases of evolution of a star which ends up exploding as a type Ia supernova. As a consequence 

of equations (6.25) and (6.38) the intrinsic luminosity of supernovae of type Ia supernovae 

depends on redshift. The dependence of brightness on redshift is recorded at the seemingly long 

distances of type Ia supernovae (see, [12], [17]).  

 

The evolution of the universe. Vacuum state  

 

From equation (16.33) it follows that as the universe evolved to the state we observe today the 

ionization energy increased. This prediction is generally valid for any kind of negative dynamical 

energies which bind together material particles to produce more complex particles.  

  From equation (16.27) we have,   

 
2

2 0

0
1

m c
m z c

z


 


  

for the energy 2

0
m c , the mass deficiency, which ties together the particles which constitute the 

nuclei of the elements. According to this Equation the energy 2

0
m c , like the ionization energies, 

increased as the universe evolved towards its present state.  

    From Equations (16.27) and (16.21) we have,  

     0 0
1 0m r m A    .                                                                                                             (6.42) 

Considering the limit (6.25) and Equation (6.42) we conclude that, as the universe tends toward 

its initial state, the rest masses of material particles tend to zero,  

   0 0
1 0m r m A    .                                                                                                             (6.43) 

With the notation we follow, from Equation (3.20) we have,  

 0
0E r   .                                                                                                                                      (6.44) 

    According to the relations (16.48) and (16.49) the initial state of the universe slightly differed 

from vacuum. Considering the conservation of energy-momentum, we conclude that the total 

mass / energy of the universe asymptotically tend to zero or its is zero. We called this initial state 

of the universe the 'Vacuum State'.  

    As a consequence of the Vacuum State, the gravitational interaction cannot play the role 

attributed to it by the Standard Cosmological Model. Gravity cannot cause either the collapse or 

the expansion of the universe.  

    The gravitational interaction strengthens with the passage of time, as the rest masses of 

material particles increase. From one point and on this is in position to accumulate matter within 

“small” regions of space. The role of gravity is limited to the creation of the large structures of the 

universe.  
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A comparison of the cosmological predictions of the Theory of Self-variation versus the Standard 

Cosmological Model, based on the cosmological data  

 

In this subsection we compare the predictions of the Standard Cosmological Model (SCM) and the 

Self-Variation Theory (SVT), based the 14 main cosmological data.  

 

1. Origin of the universe  

SCM, Big Bang.  

SVT, Vacuum State.  

 

2. Redshift  

SCM, direct consequence of the expansion of the Universe.  

SVT, direct consequence of the self-variation of rest mass of the electron. In the past (large 

redshift) the electron transition energies inside the atom were much smaller.  

 

3. Cosmic Microwave Background Radiation  

SCM, remnant of the Big Bang.  

SVT, consequence of the enormous values of the Thomson and Klein-Nishina scattering 

coefficients in the distant past.  

 

4. Increased luminosity distances of type Ia  

SCM, is forced to do the Dark Energy case.  

SVT, direct consequence of the self-variation of the fundamental parameters of astrophysics 

(mass of electron, ionization energy and degree of ionization of atoms, Thomson and Klein-

Nishina scattering coefficients, Bohr radius, production of energy via hydrogen fusion and nuclear 

reactions). In the distant past these parameters had different values.  

 

5. Flatness of the Universe  

SCM, an attempt is made to justify it with the Inflation hypothesis.  

SVT, the total energy content of the Universe is predicted to be zero, therefore the Universe on 

the grand scale is and was always flat.  

 

6. Nucleosynthesis of the chemical elements  

SCM, prediction in agreement with observations, for a particular decrease rate of the temperature 

versus the expansion rate of the universe that is adopted.  

SVT, further investigation of the Internal Symmetry Theorem in curved spacetime is required.  

 

7. Ionization of atoms in the early universe  

SCM, predicted as a consequence of the high temperatures after the Big Bang.  

SVT, direct consequence of the dependence of the ionization energy from redshift. In the past 

(large redshift) the ionization energy was much smaller.  

 

8. Distribution of matter on the cosmological scale.  
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SCM, inconsistent with recent measurements.  

SVT, is consistent with the recent measurements.  

 

9. Variation of the fine structure constant  

SCM, not predicted.  

SVT, direct consequence of the Self-variation of the electric charge.  

 

10. The Horizon problem  

SCM, an attempt is made to explain it with the hypothesis of inflation.  

SVT, the Self-variation model predicts that the position-momentum uncertainty is huge in the 

early universe, tending to infinity in the distant past. Therefore everything was connected in the 

early universe.  

 

11. The larger than expected velocities of astronomical objects at the outskirts of large structures 

in the universe  

SCM, is forced to do the Dark Matter case.  

SVT, predicted (see, section 5).  

 

12. Absence of magnetic monopoles in the universe  

SCM, magnetic monopoles have never been observed, hence the problem for SCM, since it 

predicts their existence as a consequence of the Big Bang.  

SVT, the detailed study of electromagnetism in section 4 rules out the existence of magnetic 

monopoles.  

 

13. Olbers' paradox  

SCM, it is justified by the expansion of the universe.  

SVT, is a consequence of Equation (6.26).  

 

14. The two measured values of Hubble's constant  

SCM, the two measured values of the Hubble constant are incompatible with the SCM.  

SVT, on the cosmological scale, the Self-Variation of the electron and the heavy particles 

correspond to different values of Hubble's constant.  
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7. Self-Variation and quantum phenomena. The structure of matter   

 

In the frame of the Self-Variation Theory, the structure of matter is determined by the relative 

position of the N -vectors J  and P  in curved N -dimensional spacetime. In flat 4-dimensional 

spacetime this structure is given by the Internal Symmetry Theorem. The Theorem predicts a 

distribution of energy-momentum and charge of every material particle in space-time. It also gives 

the rate of change of the 4-vectors J  and P , predicting a dynamical system that we called a 

generalized particle. A central role in the generalized particle is played by the function   (see, 

Equation (3.18)). It justifies the cosmological data, in a flat static universe, while if b   it 
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Theorem is related to fundamental physical phenomena and mechanisms, such as the structure 

and wave behavior of matter, quantum phenomena and interactions. Hence, the investigation of 

the Internal Symmetry Theorem in the curved N -dimensional spacetime is the main goal of the 

Self-Variation Theory.  

 

The Internal Symmetry Theorem in curved N-dimensional space-time  

 

We follow the proof procedure of the Internal Symmetry Theorem in flat spacetime. From 

Equation (2.8) we get,  

   2 2

0; ;

n

n k k
J mJ c   

and equivalently we get,  

A    2 2
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n k
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J m
x

J c



 , 

and with Equation (2.2) we obtain,  

  2 2

0;

n

n kk

b
J P mJ c .                                                                                                                              (7.1) 

    Equation (2.7) applies to the N -vectors J  and P ,  

n n n
C J P  , 0,1,2,..., 1n N  .                                                                                                            (7.2) 

The relative position of the N-vectors J and P in space-time is given by Equation (2.15),  
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  .                                                          (7.3) 

    The Internal Symmetry theorem is given by the solution of the system of Equations (7.1), (7.2) 

and (7.3). As a consequence of the covariant derivative with respect to k
x  in the first part of 

Equation (7.1), the investigation of the Theorem requires complex mathematical calculations. An 

exception is 4-dimensional flat spacetime, as we saw in section 2.  

    Self-Variation propagates as a 'disturbance' in space-time. The transmission of this disturbance 

in space-time is given by the functions 
ij , after solving the system of Equations (7.1), (7.2) and 

(7.3). These functions give the rate of change of J , P , therefore they are always related to an 

interaction. As a consequence of Equation (7.3), the Interior Symmetry Theorem is always related 

to a set of matrices. The propagation of Self-Variation in space-time is equivalent to wave 

behavior of matter.  

Physicists have come into contact many times with the system of Equations (7.1), (7.2), (7.3). 

Schrödinger understands the wave behavior of matter (see, [3]), defines the homonymous 

operators and applies them to a dynamical system, the hydrogen atom, from a completely 

different perspective than Bohr (see, [1]). Dirac introduces non-commutative matrices in his work 
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on quantum mechanics (see, [2]), but does not know Equations (7.2) and (7.1), (7.3) and the cause 

of quantum phenomena. The contribution of the Self-Variation Theory to theoretical physics is 

summarized in the Internal Symmetry Theorem, i.e. in the solution of the system of Equations 

(7.1), (7.2) and (7.3).  
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