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Abstract  
This paper builds on proposals in earlier papers that build the SM fundamental particles from 

infinite superpositions.  The most important prediction of these earlier papers is that all 

fundamental particles, including bosons, have an infinitesimal mass that at all times is 

inversely proportional to the horizon radius times the Hubble flow velocity. Photons 

interacting between electrically charged particles only travel at approximately light velocity 

when interacting energies are well above inverse horizon radius values. High energy 

scattering experiments performed in this current era are unlikely to include interacting photon 

energies approaching the inverse horizon radius, and will thus show mirror symmetry as their 

interacting bosons travel at virtually light velocity. However, when matter and antimatter were 

forming, the inverse horizon radius was very small with larger energy interacting photons, and 

more likely to have included energies inversely proportional to the horizon radius. These 

photons travel at well below light velocities and will not show mirror symmetry, which 

Sakharov argued in 1967 could explain the matter antimatter imbalance. 
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1 Introduction 
The current formulation of the Standard Model (SM) of particle physics was finalised in the 

mid-1970s. However, although extremely successful in providing testable experimental 

predictions and currently the best description we have of the subatomic world, the theory still 

leaves a significant number of phenomena unexplained. In the last forty years or so there have 

been a number of theories seeking to move physics beyond the SM, including supersymmetry 

and string theory. However, none of the particles predicted by supersymmetry have yet been 

found, despite a decade of work at CERN’s Large Hadron Collider (LHC), and string theory, 

widely considered the most likely path for including gravity in the SM, is not yet supported by 

any direct empirical evidence. Further, dark matter has yet to be directly detected, and dark 

energy remains elusive. In contrast to these disappointments however, the ATLAS and CMS 

experiments at CERN's LHC announced in 2012 that they had each observed a new particle in 

the mass region around 126 GeV; a particle consistent with the Higgs boson predicted by the 

SM. 

String theory has been strongly criticised over its inability to make testable predictions [1-6].  

However, along with the multiverse theory, it has generated intense and important debate over 

the scientific standing of non-testable theories in physics. In 2009 Dawid, a theoretical 

physicist turned philosopher, noted substantial conflict between supporters and critics of 

string theory in assessing its status and success [7]. Dawid argued that this disagreement could 

best be understood in terms of a paradigmatic rift between the two sides over their 

understandings of theory assessment. Critics on the one hand believed that “it is a core 

principle that scientific theories must face continuous empirical testing [emphasis added] to 

avoid going astray” (p988). In contrast, supporters of string theory placed importance on 

theoretical criteria for theory assessment. In an interview several years later Dawid [8] 

suggested this emergence of non-empirical theory assessment, or post-empirical science, 

represented a Kuhnian paradigm shift in physics and that it would become increasingly 

important due to the difficulties associated with experimentally testing new theories. In 

Nature, Ellis and Silk in 2014 [9] made an appeal to “Defend the integrity of physics.” They 

expressed concern that when faced with the difficulties of applying fundamental theories to 

the observed universe, some researchers had begun explicitly advocating a change to how 

theories should be assessed, viz., if deemed sufficiently elegant and explanatory, experimental 

testing was unnecessary. Ellis and Silk disagreed, insisting that empirical testability is a 

necessary condition for a theory to be considered scientific, and concurred with Hossenfelder 

[10] that the concept of post-empirical science was an oxymoron.  

Another important issue relating to the testability of theories in physics has been highlighted 

recently by the astrophysicist David Merritt [11]. In regard to the lambda cold dark matter 

model ( CDM ), which contains Einstein’s theory of gravity, Merritt notes that dark matter, 

dark energy and inflation were all added to the theory in response to observations that would 

falsify it, i.e. they are ad hoc, or auxiliary hypotheses. Further, he argues that they are 

https://home.cern/about/experiments/atlas
https://home.cern/about/experiments/cms
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conventionalist hypotheses in that they add no empirical content and hence are unfalsifiable in 

the sense defined by the philosopher Karl Popper.  Popper had set specific criteria for 

preserving falsifiability (or testability) when such “conventionalist stratagems” are employed, 

i.e., the modified theory had to make some new, testable predictions, and at least some of the 

new predictions should be verified.  Further, Popper’s student Imre Lakatos, tested and 

refined these criteria to distinguish between “progressive” and “degenerating” research 

programs. A progressive research program is one in which “its theoretical growth anticipates 

its empirical growth, that is, as long as it keeps predicting novel facts with some success.” The

CDM , according to Merritt, fails to meet such requirements as the auxiliary hypotheses 

(dark matter, dark energy and inflation) have yet to be confirmed, and the CDM  is notably 

lacking in successful predictions. Steinhardt [12] one of the founders of inflationary 

cosmology, now also views that theory untestable and has become one of its sharpest critics. 

The failure to progress significantly beyond the SM during the past four decades, the 

increasing prominence of highly theoretical, mathematically elegant but difficult to test or 

untestable theories, and threats to undermine testability as a sine qua non for a theory to be 

considered scientific, all appear responsible for a succession of popular books expressing 

concern at the current state of physics [1-5]. In her recently published Lost in Math: How 

Beauty Leads Physics Astray, Hossenfelder [3] contends that the search for beauty has led 

physicists astray, giving wonderful mathematics but bad science; belief that the best theories 

are beautiful, natural and elegant has resulted in theories that are untestable. Lamenting the 

lack of a major breakthrough in the foundations of physics during the last forty years, she 

advocates physicists need to rethink their methods. In reviewing her book Wilczec [13] 

contends that Hossenfelder presents an overly pessimistic view, but concedes that “the 

malaise expressed...is not baseless and is widely shared among physicists” (p57). 

In view of these concerns over the current state of physics we offer an alternative approach, 

but one which still uses very simple basic principles of quantum mechanics (QM) and special 

relativity (SR). Apart from infinitesimal differences it is (almost) consistent with the SM. It 

suggests the possibility of massive spin 2 gravitons emitted by baryons, with galactic radii 

Compton wavelength spherically symmetric wavefunctions, causing similar effects in the 

metric as dark matter. It proposes that the acompanying massive gravitons control both the 

scale factor and cosmic acceleration.  

We contend our theory is both simple and capable of making testable predictions; at the 

cosmological level, if not the quantum level. It is, however, radical in its proposals and 

implications. Consequently, it will require a significant shift in thinking, not only in regard to 

the fundamental particles, but also the evolution of the cosmos. Such a shift, however, may 

facilitate progress beyond the SM and/or the CDM . 

Because these proposed ideas are so radical, we start with some preliminary explanatory 

notes. The forming of fundamental particles from infinite superpositions follows in section 2 

with their properties in section 3. Section 4 looks at the effect of the infinitesimal mass on 

Charge-Parity Symmetry and the Matter-antimatter Imbalance Anomaly which has been a 

puzzle that the SM does not explain.  
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1.1 List of Some Abbreviations, Acronyms and Symbols Used in the Text 
 

CDM     The Lambda Cold Dark Matter Model of Cosmology. 

CMB         Cosmic Microwave Background. 

EM            Electromagnetic. 

FLRW       Friedmann-Lemaitre-Robertson-Walker metrics. 

GR            General Relativity. 

ICM          Intracluster Medium. 

MOND      Modified Newtonian Dynamics. 

SM            Standard Model.  

SR             Special Relativity. 

QCD         Quantum Chromodynamics 

QED         Quantum Electrodynamics 

QM           Quantum Mechanics. 

 

,   & s.N n  Integers 3,4,5,6 & 7n   are used in 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y     virtual 

primary ( 3)l   wavefunctions at wavenumber .k  Their probability is ,
sN dk

k

 
 
 

 where s  is 

spin, and 1N   for all massive 1/ 2s   fermions, as well as 1s   and 2s    massive bosons.  

 

2N   for all spin 1 and spin 2  infinitesimal mass bosons. 

 

C
  is the primary to secondary coupling ratio 1

3
 

  at the Planck energy superposition cutoff. 

min
k  is the wavenumber of the maximum cosmic wavelength but cuts off exponentially. 

OH
R  is the observable horizon radius.  

min OH
k R   radians. 

minGk
  is the normal three dimensional density of min

k gravitons 

minGk
K  is the min

k graviton invariant as in 
min min minGk Gk

K dk  where  min
0.12 .

Gk G
K   

mink
  The maximum or min

k wavelength. 

  with no subscript is the usual electromagnetic coupling constant. 

U
  is the average density of both baryonic and massive graviton mass/energy in the universe. 

T
  is the infinitesimally modified Einstein tensor where (Local) (Average).T T T  

    

(Average)T  is the Einstein tensor averaged over the observable cosmos..  

1   in the CDM  at critical density for flatness.  
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1.2 Preliminary Explanatory Notes  

1.2.1 Summary flow chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Different groups of 8 preons (with no weak charge) couple to the electromagnetic and 8 colour ground 

state fields, forming 3l   spatially dependant wave functions. Infinite superpositions of these wave 

functions form all the spin ½ & spin 1 standard model particles, as well as spin 2 gravitons. The 

frequencies of these wavefunctions start at 1

min
(Horizon radius)k


            up to Planck scale maximum. 

This paper starts with the assumption that all “fundamental particles” are built from combinations of 

“virtual preons”. There are three preons, coloured red, green and blue, and their antiparticles. All preons 

are spin zero and electrically charged.  

 

Cosmic wavelength zero point densities are very limited. Because 

spin zero preons are born with zero momentum and infinite 

wavelength they can couple to modes anywhere inside the extra 

space generated by the  expanding Hubble flow horizon.  

High frequency coupling is  

to local ground state fields 

where the available densities 

are plentiful. 

Low frequency coupling controls the average universe density 
2

Total mass/Baryonic mass
 in Planck units,

  
U

OH
R V

 


where  OH
R  is the observable horizon radius, V   is  the Hubble flow velocity. 

 

When mass is distributed evenly as a dust there is a uniform density of 
min

k gravitons throughout a 

horizon radius sphere, space and spacetime is flat everywhere. If any of this mass is moved to a central 

location it increases the spatial density of 
min

k  gravitons surrounding it, distorting spacetime locally, and 

restoring density in agreement with Einstein’s equations, but with infinitesimal differences effective at 

cosmic radii: 4 4
(Local)

1 8 8
(Average)

2
.

G G
G T TR

c
TR g

c
    

 
        Inside the 

observable hnorizon the average values of  0 .GT  
    Space is flat and the Freidman equation 

components average zero. QM controls the expansion of space regardless of .  with or without 

inflation. Intergalactic voids have (Local)< (Average)T T   with negative G  and .R  
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1.2.2 General relativity as an initial guide 

GR informs us that all forms of mass, energy and pressure are sources of the gravitational 

field. Thus to create gravitational fields, all spin ½ leptons & quarks, spin 1 gluons, photons, 
0

W & Z
 particles etc. emit virtual gravitons, except possibly gravitons themselves (section 

6.2.6 in [24])as gravitational energy is not part of the Einstein tensor.  

The starting point of this paper assumes there is a common thread uniting these fundamental 

particles making this possible. Equations are developed that unite the amplitudes of the colour 

and electromagnetic coupling constants with that of gravity. The precision required by 

quantum mechanics for half integral and integral angular momentum allows gravity to be  

included, despite the vast disparity in magnitude between gravity and the other two. This 

combination of colour, electromagnetic and gravitational amplitudes in the same equation is 

possible because of a radically different approach taken in this paper: an approach using 

infinite superpositions of positive and negative integral  angular momentum virtual 

wavefunctions for spin ½, spin 1 and spin 2 particles. The result is almost identical to the SM, 

with infinitesimal but important differences. The total angular momentum can be summed 

over all wavenumbers ;k  from 0k   to some cutoff value 
cutoff

k . We will assume (as with 

many unification theories) that the cutoff for these infinite superpositions is somewhere near 

Planck scale. Firstly, imagine a universe where the gravitational constant 0G  . As 0G  , 

the Planck length 0
P

L  , the Planck energy  and
P

E    
cutoff

k  also. If we sum the 

angular momentum of these infinite superpositions when 0G   (i.e. from 0k   to

)
cutoff

k   we get precisely half integral or integral  for the fundamental spin ½, spin 1 & 

spin 2 particles in appropriate m  states. If we now put 0G   the infinitesimal effect of 

including gravity can be balanced by an equal but opposite effect due to the non-infinite cutoff 

value in .k  A near Planck scale superposition cutoff requires gravity to be included to get 

precisely half integral or integral . (Section4.2 in [24]) 

 

These infinite superpositions have another very relevant property relating to the fact that all 

experiments indicate that fundamental particles such as electrons can behave as point 

particles. Each wavefunction with wavenumber k , which we label as k
 , has a maximum 

radial probability at 1/r k  and they all look the same (Figure 1.1.1). Every wavefunction 

k
  of these infinite superpositions, interacts only with virtual photons (for example) of the 

same ;k  if superpositions representing say an electron are probed with such photons (that 

interact only with wavefunction k
 ) the resolution possible is of the same order as the 

dimensions of ,
k

 both have 1/ .r k  The higher the energy of the probing particle the 

smaller the k


 
it interacts with; the resolution of an observing photon can never be fine 

enough to see any k
 dimensions. Even if this energy approaches the Planck value, with a 

matching k
  radius near the Planck length it is still not possible to resolve it. This behaviour 

is consistent with the quantum mechanical properties of point particles. 
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1.2.3 Primary and secondary interactions 

Supposing that superpositions can in fact build the fundamental spin ½, spin 1, and spin 2 

particles, then what builds the superpositions? Answering that question requires dividing all 

interactions into two categories: primary and secondary. 

Secondary interactions are those we are familiar with, and are covered by the SM; but with 

the addition of gravity, which is not included in the SM. They take place between the 

fundamental spin ½, spin 1 and spin 2 particles formed from infinite superpositions. They are 

the quantum electrodynamics/quantum chromodynamics (QED)/(QCD) etc, interactions of all 

real world experiments. 

Primary interactions we conjecture on the other hand, are those that build virtual infinite 

superpositions. The base states of virtual infinite superpositions only last for time 

/ 2 ,T E    and the primary interactions that build them are completely hidden to the real 

world of experiments. Infinite superpositions cannot be decomposed into their base states, in 

the same way as base states of fundamental particles can be observed. The quantum world is 

always hidden until observation, even if we know base state probabilities. But virtual infinite 

superpositions are always hidden, and only fundamental particles can be observed.  

Primary interactions are extremely simple. They are only one way; zero-point fields act on the 

particle, but the particle cannot act on, or influence, zero point fields. (Its invariance is 

guaranteed by Heisenberg’s uncertainty principle.) In contrast, secondary interactions involve 

all the excited modes above the ground state and are two way. These excited field modes both 

act on the particle which in turn acts back on the field. Quantum field theory (QFT) is all 

about these complicated two way interactions. Lagrangians are ideal for these two way 

interactions, predicting symmetries and conservations. However, Lagrangians are less relevant 

in primary interactions: the natural invariance of the ground state carries through into 

symmetries and conservation laws. In view of this, our proposals depart from the current 

practice of basing new theories on Lagrangians. In this regard, while acknowledging their 

enormous predictive power, Penrose [6] expresses unease with this modern trend, arguing 

against relying too strongly on Lagrangians in searches for improved fundamental theories (p 

491). History tells us progress can be inhibited by assuming that what has worked so well up 

to now must always be so. Newton reigned supreme for almost two centuries until superseded 

by Einstein. 

4
*R R

k


  

kr   

Figure 1.1.1  Radial probability of the dominant 6n   mode of a spin ½ wavefunction 6k
 . 
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The first half of this paper is about these primary interactions, and the superpositions they 

build representing the fundamental spin ½, spin 1 and spin 2 particles. Primary interactions 

are between spin zero particles borrowed from a Higgs type scalar field, and the zero-point 

vector fields. In the 1970’s models were proposed with preons as common building blocks of 

leptons and quarks [14-17]. In contrast with the virtual particles in this paper, some of these 

earlier models used real spin ½ building blocks. However, real substructure has difficulties 

with large masses if compressed into the small volumes required to approach point particle 

behaviour. It was probably because of this high mass/small volume problem that these earlier 

preon proposals fell out of favour. On the other hand our proposed virtual substructure 

borrows energy from zero point fields where the mass contribution at high k  values can be 

cancelled (section 3.2.1). As in earlier models this paper also calls the common building 

blocks preons, but here the preons are both virtual and spin zero. They also now build all spin 

½ leptons and quarks, spin 1 gluons, photons, W & Z particles, plus spin 2 gravitons, in 

contrast to only the leptons and quarks in the earlier models. (SeeTable 2.2.1) As these preons 

have zero spin they possess no weak charge. Primary interactions (section 2.2.1) can take 

place only with the zero point colour, electromagnetic and gravitational fields. The three 

primary coupling constants for each of these three zero-point fields are different from, but 

related to, secondary coupling constants.  

The behaviour of primary coupling is also entirely different from secondary coupling. 

Secondary coupling strengths vary (or run) with wavenumber k  (the electromagnetic 

increasing with k  and colour decreasing with k ). In contrast, we conjecture primary coupling 

strengths (or constants) do not run. In this paper virtual preons are continually born with mass 

out of a Higgs type scalar field, existing only for time / 2 .t E   At their birth, they interact 

while still bare with zero point vector fields; at this instant of birth 0t  . The primary 

coupling constants consequently are fixed for all ;k  there is no time for charge cancelling or 

reinforcing, which in secondary interactions forms around the bare charge progressively after 

its birth. The equations work only if this is true, and they also work only if the primary colour 

coupling constant is one. (Sections 2.2.2). The ratio between the primary and secondary 

colour coupling constants labelled C
  is thus (if primary colour coupling is one) the inverse 

of the secondary (or usual 1

3
  of QCD) colour coupling constant at the superposition cutoff at 

Planck Energy. (Sections 3.3&4.2.2 in [24]) To enable the primary coupling to colour, 

electromagnetic and gravitational zero point fields, preons need colour, electric charge and 

mass. There are three preons, red, green & blue with positive electric charge, and their three 

anticounterparts. Their mass borrowed from some type of scalar Higg’s field, or the time 

component of zero-point fields must always be non-zero. This is discussed further in section 

1.2.4. As there are eight gluon fields, superpositions are built with eight virtual preons for 

each virtual wavefunction k
 . The nett sum of these eight electric charges is 0, 2, 4, 6   , 

and never 6  . This leads to the usual 0, 1/ 3, 2 / 3, 1    electric charge seen in the real 

world. Various combinations of these eight preons in appropriate superpositions can build 

leptons and quarks, colour changing and neutral gluons, neutral photons, neutral massive 0
Z  

photons and the charged massive W   photons. (Table 2.2.1) 
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1.2.4  Photons, gluons and gravitons with infinitesimal mass ( 34
10 eV


 ). 

Einstein taught us that regardless of how fast a particle with mass moves, a ray of light always 

passes it at the same velocity c. The SM builds on this principle with one group of particles 

travelling at less than c, and another group at c: massive and massless, with a clear division 

between them. In the SM the neutrino family was included in the massless group.  

However, towards the end of last century evidence slowly emerged that this was not true, and 

the family of three neutrinos must have masses somewhere in the electron volt range. There is 

no explanation for this in the SM.  

Due to their very low mass, and normal emitted energies, neutrinos invariably travel at 

virtually the velocity of light c . Photons also have always been included in the massless group 

traveling precisely at velocity ,c  except in the case of the massive W  & 0
.Z  Massless virtual 

photons have an infinite range, which has always been seen as an absolute requirement of the 

electromagnetic field. On the other hand, this paper requires some rest frame (even if this 

frame can move at virtually c) in which to build all the fundamental particles. Table 6.2.2 

in[24] suggests photons, gluons and gravitons have 34
10 eV


  mass with a range of 

approximately the inverse of the causally connected horizon radius, and velocities sufficiently 

close to that of light their helicity remains essentially fixed. This allows some form of Higgs 

mechanism to increase this infinitesimal mass to the various values in the massive set.  (These 

infinitesimal masses are also in line with some recent proposals [18,19] where gravitons have 

a mass of 33
10 eV


  to explain accelerating expansion.)  

The virtual wavefunction we use is 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y    , an 3l 

wavefunction. This virtual 3l   property is normally hidden. In the same way as scattering 

experiments on spin 0 pions show spin 0 properties, and not the properties of the two 

cancelling spin ½ component particles, this 3l   property of the virtual components of 

superpositions is not visible in the real world. Scattering experiments can exhibit only the spin 

properties of the resulting particle. The individual angular momentum vectors 2 3L  of 

the infinite superposition all sum to a resulting: ( 3 / 2)
Total

L , 2  or 6  for spin ½ , 

spin 1 or spin 2 respectively, in a similar way to two spin ½ particles forming spin 0 or spin 1 

states. We also use the fact that the angle ( / 6)  to the  z  axis of the angular momentum 

vector for 1 2, 1 2s m    is identical to 3, 2l m   . 

 

 

 

                                                                                       

                                                                                        

 

 

 

 

 

 

2

 2 3

 

3, 2l m    

 

3

2
 

2
 

Spim 1/2 

Figure 1.1.2  Spatially dependant 3, 2l m    wave functions have the same angle ( / 6)  to 

the z axis as 1 2, 1 2s m   . It is proposed that all fundamental particles are built  from 

infinite superpositions of  3l   spatially dependant wavefunctions in appropriate m  states. 
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The wavefunction 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y     has eigenvalues 2 2 2 2

nk
n kP  with

nk
n kP , suggesting it borrows n  parallel k  quanta from zero point vector fields 

provided n  is integral. We can see this by letting k  allowing energy E n   by 

absorbing n  quanta   from the zero point vector fields (section 2.3.2). As spin 3 needs at 

least three spin 1 particles to create it, the lowest integral number n  can be is 3. The virtual 

3l   property can however be used to derive the magnetic moment of a charged spin ½, 

1/ 2m    state as a function of n . Section 3.5 in [24] shows 2g   Dirac electrons need an 

average (over integral n states) of 6.0135n  . Three member superpositions 
k n nk

n

c 
 

with 5,6,&7n   achieve this, creating Dirac spin ½ states. We also find that 6n   is the 

dominant member and each superposition k
 needs at least three members to make all the 

equations consistent for Dirac particles. Secondary interactions at any wavenumber k  can 

occur with k
  if integers n  change by 1 , thus changing the eigenvalues n kP  by k  

where this can be only a temporary rearrangement of the triplets of values of n . This is true, 

whether the interaction is with leptons, quarks, photons, gluons, W & Z particles, or gravitons. 

(Section 3.3) 

 

1.2.5 Superposition wavefunctions require only squared vector potentials  

The wavefunction 3 2 2 2
exp( /18) ( , )

nk nk
C r n k r Y    requires an invariant in all coordinates 

spherically symmetric squared vector potential to create it: 
2 2 4 2 4 2

/ 81Q A n k r . There are no 

linear potential terms in contrast with secondary interactions. The primary interaction operator 

is 2 2 2 2 2ˆ ,P Q A     with no linear potential terms included and Q  simply represents a 

collective symbol for all the effective charges concerned. As an example, the dominant 6n   

wavefunction of a spin ½ Dirac k
  requires a squared vector potential of 

2 2 4 2 4 2
/ 81Q A n k r 2 4 2

16 k r  (section 2.3.1). Primary coupling between the eight virtual 

preons and the colour, electromagnetic and gravitational zero-point fields produces a vector 

potential squared value for all infinite superpositions which can be expressed as: 

 
2

2 4 2

02 2
8 8 / (2 ) ( ) ( )(1 )

 
3 ( )(1 )

EMP p
im G s c k r sN dk

Q A
sN k

 

 

     
    

 

 

(Where the length of the complex vector is simply squared here.) The significance of the 

cancelling top and bottom factors ( )sN  is explained in section 2.1.2. Also the cancelling 

(1 )  factors are due to gravity and explained in section 4.2 in [24]. The primary colour 

coupling amplitude is conjectured to be 1 to each of the eight preons, and 
EMP

 the primary 

electromagnetic coupling. This equation applies regardless of the individual preon colour or 

electric charge signs, whether positive or negative (section 2.2.3). The primary gravitational 

coupling is to the particle mass 0
.m
 
The primary gravitational constant is P

G  divided by c  

to put it in the same form as the other two coupling constants. The magnitude of the total 

angular momentum vector of the infinite superposition is ( 1)
Total

s s L . This 
2 2

Q A  

without the gravity term generates superpositions with probability ( ) / ,N s dk k  where  s is 
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the superposition spin, 1N   for massive spin ½ fermion & massive boson superpositions, 

but 2N   for infinitesimal mass boson superpositions (Table 4.3.1 and its subsections cover 

this more fully plus section 4.2 in [24] includes gravity raising the superposition probability to 

(1 )( ) /N s dk k  where the infinitesimal   (not to be confused with infinitesimal mass) is 
2

0
2 /m Spin   45

7 10


  for electrons, and 34
10 

 for a 0
Z in Planck units 1c G   . 

The k
  superpositions require at least three integral n  members. The following three 

member superpositions fit the SM best (see Table 4.3.1 again.  

Spin ½ massive 1N   fermion superpositions                              
5,6,7

k n nk

n

c 


  . 

Spin 1 massive 1N   boson superpositions                                  
4,5,6

k n nk

n

c 


  . 

        Spins 1 & 2 infinitesimal mass 2N   boson superpositions         
3,4,5

k n nk

n

c 


  .                                      

                  

Below are infinite superpositions 
, ,s m




 for only spins ½ & 1. The symbol   refers to the 

infinite sum, s  the spin of the resulting real particle, m  its angular momentum state, and ss  a 

spherically symmetric state. Section 3.1.3 explains this format. Also, square cutoffs in 

wavenumber k are used here for simplicity.  Infinitesimal mass superpositions are introduced 

in section 6.2 in [24]. (Complex number factors are not included here for clarity.) 

 

 

 

( )

,1
,1/2, ,42

5,6,7 0

( )

,

,1, ,2

3,4,5 0

1
Massive             1 Spin , )

2

2 1
Infinitesimal mass 2 Spin 1,

k cutoff

nk ss

m n nk nk m

n nk

k cutoff

nk ss

m n nk nk m

n nk

N c dk
k

N c dk
k

 
  



 
  











  
   

  

  
   

  

 

 

 

 

(1.1. 1) 

 

 

 

In these infinite superpositions the probability that the wavefunction is spherically symmetric 

is always 2 2
1

nk nk
 

   and the probability that it is an m  state is 2
,

nk
  where nk

  is the 

magnitude of the velocity of the centre of momentum frame (see Figure 3.1.1), which is where 

the primary interactions that generate each nk
 take place.  This is similar to the superposition 

of time and spatially polarized virtual photons in QED. For example, spin ½ has probabilities 

of 2 2
1

nk nk
 

   spherically symmetric nk
  wavefunctions, and 2

nk
   ( , 2)

nk
m    

wavefunctions. Each k
  is normalized to one but the infinite superpositions 

, ,s m



are not 

normalized, diverging logarithmically with k ; the same logarithmic divergence that applies to 

virtual photon emission.  (Real wavefunctions must be normalized to one as they refer to 

finding a real particle somewhere, but this need not apply here.) Section 3.1 finds that 2m    

virtual wavefunctions have 2

nk
  probability of leaving an 2m    debt. Integrating over all k  

produces a total angular momentum for a spin ½ state of / 2 . (The procedures for spin 1 & 

spin 2 particles are covered in section 3.2.2.)  

This paper is about the primary interactions between spin zero preons and spin one quanta that 

build the fundamental particles. The SM is about the secondary interactions between them. 

(The weak force is only between spin ½ particles and thus a secondary interaction. It cannot 

be involved in primary interactions.) Apart from infinitesimal effects, such as infinitesimal 
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masses, the properties of fundamental particles covered in this paper should be consistent with 

their SM counterparts. All 1& 2N N  superpositions as in  Table 4.3.1 in [24] are 

conjectured to cutoff at Planck energy .
P

E  If this is so, both colour and electromagnetic 

interaction energies must cutoff at /
P

E n
18

2.03 10 .,GeV   or  1/ 6  of the Planck energy. 

(The expectation value  is 6.0135n   for spin ½ leptons and quarks Eq. (3.5.16) in[24] ). 

The electromagnetic and colour coupling constants at this cutoff are consistent with SM 

predictions assuming three families of fermions and one Higgs field. (See Figueww 4.1.1 and 

4.1.2 in [24]. 

Whereas the SM assumes massless and massive particles, infinite superpositions have an 

infinitesimal mass that, at all cosmic time, is approximately the inverse horizon radius. It 

proposes massive spin 2 gravitons that, with inverse radius squared radial probability 

wavefunctions, give galaxies MOND-like properties and could behave as dark matter.  

 

This paper finishes by looking at the relationship between the infinitesimal masses of the 

interacting photons and charge-parity symmetry, leading to a possible connection with the 

matter- antimatter anomaly. 
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Fundamental Particles as Infinite Superpositions 

2 Building Infinite Virtual Superpositions 

2.1 The Possibility of Infinite Superpositions 

2.1.1 Early ideas 

After World War II there was still much confusion about QED. In 1947 at the Long Island 

Conference the results of the Lamb shift experiment were announced [21]. This conference 

was perhaps the starting point for the development of modern QED: perhaps the pinnacle of 

accurate theory supported by experiment. QED is also about what we have called secondary 

interactions. (See 1.2.3.) Part 1 of this paper is about the much simpler primary interactions 

and we start it with an oversimplified semi-classical way of explaining the Lamb shift. We are 

going to imagine that the Lamb shift involves primary interactions when, in fact, it doesn’t. It 

is a real world secondary interaction experiment, and therefore our illustration is not the 

correct QED way of handling this phenomenon. Picturing it as a primary interaction however, 

with zero point fields, may help illustrate the possibility of connections between fundamental 

particles and infinite virtual superpositions. Hopefully this is in a similar manner to the way 

Bohr’s original simple semi-classical explanation of quantized atomic energy levels played 

such a large part in the eventual development of full three dimensional wavefunction solutions 

of atoms, and quantum mechanics. 

The density of transverse modes of waves at frequency   is 2 2 3
/d c    and the zero point 

energy for each of these modes is / 2 . The electrostatic and magnetic energy densities in 

electromagnetic waves are equal, thus for electromagnetic zero point fields:  

The total average field energy 
2 2 2 2

0 0

2 3
2 2 2

E c B d

c

    



 
   

    

or  
4

2 2 2

0 0 2 3
.

2

d
E c B

c

 
 

 
 

 

For a fundamental charge e  using 2

0
/ 4 ,e c   and provided 1,   this gives an 

                                  

2 4

2 2 2

2

2
average force squared of    

d
F e E

c

  

 
   

   (2.1.1)  

 

Thinking semi-classically, for an electron of rest mass m  this can generate simple harmonic 

motion of amplitude r , where 2 2 4 2
F m r  (if 1  ). Solving for 2

r  (where 2
r  is 

superimposed on the normal quantum mechanical electron orbit, C
/ mc  is the Compton  

wavelength, and / ) :k c           

2

2 2

2 2

2 2
      .

C

d dk
r

m c k

  

  

 
      

   

Integrating 2
r  (as directions are random): 

max

2 2 2

max min

min

2 2
 log( / )

k

Total C C

k

dk
r k k

k

 

 
  . 

The minimum and maximum values for k  can be chosen to fit atomic orbits, and a root mean 

square value for r  can be found. Combining this with the small probability that the electron 

will be found in the nucleus, this small root mean square deviation shifts the average potential 

by approximately the Lamb shift. This can also be thought of as simple harmonic motion of 
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amplitude ,
C

  occurring with probability (2 / ) /dk k  . It can also be interpreted as the 

electron recoiling by ,
C

  (provided Recoil
1  ) in random directions due to virtual photon 

emission with a probability of (2 / ) /dk k  .   

 

 

2.1.2 Dividing probabilities into the product of two component parts 

This probability (2 / ) /dk k  can be thought of as the product of two terms &A B , where A  

includes the electromagnetic coupling constant  , B  includes /dk k , and

(2 / ) / .AB dk k   This suggests that this same behaviour is possible if we have an 

appropriate superposition of virtual wavefunctions occurring with probability B , which emits 

virtual photons with probability A  (by changing eigenvalues nk
n kp

 
by 1n   ).  For 

example, if a virtual superposition occurs with probability B  ( ) /N s dk k , and has a virtual 

photon emission probability for each member of these superpositions of A 
1

( ) (2 / )N s  
 , 

then the overall virtual photon emission probability remains as above at AB  (2 / ) /dk k  . 

This applies equally whether it is virtual gluon/photon/W&Z/graviton etc. emission. Provided 

A includes the appropriate coupling constant this same logic applies regardless of the type of 

boson emitted. As is usual to get integral or half integral total angular momentum 2s  has to 

be integral and section 6.2[24] argues rhat N must also be integral.  (This paragraph is 

simplified to illustrate the principle and will later be modified in section 3.3.) 

 

In section 1.2.5 we said that these wavefunctions are built with squared vector potentials. If 

superpositions of them are to represent real particles they must be able to exist anywhere. This 

is possible only if they are generated by invariant fields. The only fields uniform in space-time 

are the zero point fields and looking at the electromagnetic field first we can use section 2.1.1 

above. Consider a vector r  from some central origin O  and a magnetic field vector B  

through origin ,O  then the vector potential at point r  is   / 2 A B r  and the vector 

potential squared is  2 2 2 2
sin / 4A B r  where the angle between vectors &B r  is  .                         

2 2 2 2
As  averages 2/3 over a spheresin  : / 6  A B r 

  

                (2.1.2) 

This requires the source of these fields to be spherically symmetric, where 2
B  here is the 

magnetic field squared at any point due to the invariant cubic intensity of zero point 

electromagnetic fields, also as in section 2.1.1. This is only true at higher frequencies, and we 

will find later that at cosmic wavelengths we need a similarly invariant spherically symmetric 

source redshifted from the receding spherical horizon.  Putting Eqs.   (2.1.1) and (2.1.2) 

together the vector potential squared is 

                                               
2 2

e A
2 2 2 2 4 2

2 4 2

4
6 3 3

e B r r d dk
k r

c k

   

  
    

 

                    (2.1.3) 

As in section 2.1.2 we can divide this into two parts, noting the inclusion of spin s and integer 

N in the numerator and denominator:   

                                                            
2 2 2 4 2

.
3

sN dk
e A k r

sN k





   
    
   

                       

(2.1.4) 
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But here a vector potential squared term  
2 4 2

3
k r

sN





 
 
    

occurs with probability 
sN dk

k

 
 
 

. 

Another way of looking at this is that a wavefunction 
k

  that is generated by a vector 

potential squared term 
2 4 2

3
k r

sN





 
 
 

 can occur with 
sN dk

k

 
 
 

probability.  

This is similar reasoning to that used in the semi-classical Lamb shift explanation of section 

2.1.1. In the first bracketed term of Eq. (2.1.4),  is the electromagnetic coupling constant, 

but the same logic applies for the eight gluon and gravitational zero point vector fields where 

we will sum appropriate amplitudes of these and square this total as our effective coupling 

constant in Eq. (2.1.4). But first we need to look at groups of spin zero preons that could build 

these wavefunctions. What mixtures of colours and electrical charges end up with the 

appropriate final colour and electrical charge for each of the fundamental particles or at least 

the ones we know of? 

 

2.2 Spin Zero Virtual Preons from a Higgs Type Scalar Field 

2.2.1 Groups of eight preons that form superpositions 

In this paper preons have zero spin and can have no weak charge. The only fields they can 

interact with (via primary interactions that build superpositions as in section 1.2.3) are colour, 

electromagnetic and gravity. In the simplest world there would be just one type of preon that 

comes in three colours, always positively charged say, with their three anti colours all 

negatively charged. We will indeed find that this seems to work. Looking at Table 2.2.1 we 

see that a minimum of 6 preons is required to get the correct charge ratios of 3:2:1 between 

electrons, and up and down quarks. To get vector potential squared values that make all our 

equations work however, we need to couple to all eight gluon fields requiring a total of eight 

preons. Table 2.2.1 has all the basic properties required to build infinite superpositions for the 

fundamental particles. We need to remember when looking at this table that from section 1.2.3 

the effective secondary charge is much less than the primary charge and we have no idea yet 

of the effective value of the primary preon electric charge. Particles only are addressed in the 

groups of preons in Table 2.2.1. The first point to notice, however, is that both the electron 

and the W


are predominantly antipreons, yet they are both defined as particles. Have we got 

something wrong? When we look at relativistic masses in section 3.2.1 we get the usual plus 

and minus solutions and Feynman showed us how to interpret the negative solutions as 

antiparticles. 
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Table 2.2.1 Groups of eight virtual preons forming the fundamental particles. The electric 

charges we measure in the real world are one sixth of the group electric charges in this table. 

The Higgs boson is discussed in section 8.2.4 in [24]. 

Fundamental 

Particles 

Preon colour Preon electric 

charge 

Group colour Group electric 

charge 

Spin ½  

Neutrino family 

Spin 1 photons, 0
Z   

Neutral gluons 

Spins 1 & 2 gravitons  

Possibly Higgs boson 

Any colour + 

its Anticolour 

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

  1 

-1 

 1 

-1 

 

 

 

 

Colourless 

 

 

 

 

0 

 

 

Spin ½ 

Electron family 

 

Spin 1  W   
 

Any colour + 

its Anticolour 

Antired 

Antired 

Antigreen 

Antigreen 

Antiblue 

Antiblue 

 1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

 

 

 

Colourless 

 

 

 

-6 

 

 

Spin ½ 

Blue up quark 

Family 

Red 

Antired 

Green 

Antigreen 

Green  

Blue 

Blue 

Red 

 1 

-1 

 1 

-1 

 1 

 1 

 1 

 1 

 

 

 

Blue 

 

 

 

+4 

 

 

Spin ½ 

Red down 

Quark family 

Green 

Antigreen 

Red 

Antired 

Green 

Antigreen 

Antiblue 

Antigreen 

 1 

-1 

 1 

-1 

 1 

-1 

-1 

-1 

 

 

 

Red 

 

 

 

-2 

 

 

Spin 1 

Red to Green 

Gluons 

Red 

Antigreen 

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

 1 

-1 

 1 

-1 

 

 

Red plus 

Antigreen 

 

 

 

0 
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If this also applies in anti preons then because they are zero spin, and the weak force 

discriminates between particles and antiparticles by their helicity, this discrimination can 

apply only in secondary interactions. The preon antipreon content of the groups in Table 2.2.1 

does not necessarily tell us whether they produce particles or antiparticles. We will discuss 

this further in section 3.2.1; also, as of now, there is still no good understanding of the 

predominance of matter over antimatter in our universe.  In Table 2.2.1 only one example of 

colour is given for quarks and gluons. Different colours can be obtained by simply changing 

appropriate preon colours. Various combinations of eight preons in this table are borrowed 

from a scalar field for time / 2T E   , this process continually repeating in time. 

Conservation of charge normally allows only opposite sign pairs of electric charges to appear 

out of the vacuum. Let us imagine that these virtual preons are building an electron, for 

example, whose electric charge exists continually unless it meets a positron and is annihilated. 

This charged electron is thus due to a continuous appearance out of and back into the vacuum 

of virtual charged preons in a steady state process existing for the life of the superposition, 

and not conflicting with conservation of charge. If the electron itself does not conflict, then 

neither do the borrowed preons that build it. 

 

2.2.2 Primary coupling constants behave differently and are constant 

QED informs us that the bare (electric) charge of an electron, for example, increases 

logarithmically inversely with radius from its centre. Polarizations of the vacuum (of virtual 

charged pairs) progressively shield the bare charge from a radius of approximately one 

Compton radius C inwards towards the centre. When an electron (for example) is created in 

some interaction the full bare charge is exposed for an infinitesimal time.  

Instantaneously after its creation, shielding due to polarization of the vacuum builds 

progressively outward from the centre of its creation at the velocity of light.  For radii ≥ C

we measure the usual fundamental charge e . There are similar but more complicated 

processes that occur to the colour charge. Camouflage is the dominant one where the colour 

charge grows with radius as the emitted gluons themselves have colour charge. At the instant 

of their birth the preons are bare and at this time, 0t   say, all the zero point vector fields can 

act on these bare colour and electric charges as there is simply no time for shielding and other 

effects to build. The primary coupling constants that we use must consequently be the same 

for all values of ,k  in complete contrast to those for secondary interactions. We don’t know 

what this primary electromagnetic coupling constant is, so we will just call it EMP
 . Also, we 

will find that to get any sense out of our equations the primary colour coupling has to be very 

close to 1. A coupling of one is a natural number and simply reflects certainty of coupling. 

Provided the secondary colour coupling can be in line with the SM, and there does not seem 

to be any other good reason to pick a number less than 1, we will make the (apparently 

arbitrary) assumption that the bare primary colour coupling is exactly 1.  In section 4.1.1 [24] 

we  will find that this seesms to be consistent with the SM.  
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2.2.3 Primary interactions also behave differently 

Let us define a frame in which the central origin of the wavefunctions 
k

  of our infinite 

superposition is at rest. The laboratory or rest frame we will refer to as the LF. The preons that 

build each 
k

 are born from a Higg’s type scalar field with zero momentum in this frame. 

This has very relevant consequences as their wavelength is infinite in this rest frame at time 

0t  , and after they become wavefunction k
 their wavelength is of the order 1/ k  for times 

0 / 2t E  .  This implies that there could possibly be significant differences in the way 

amplitudes are handled between primary and secondary interactions. 

 

Let us consider secondary interactions first with an electron and positron, for example, located 

approximately distance r  apart. For photon wavelengths r  both the electron and the 

positron each emit virtual photons with probabilities proportional to  , but for wavelengths 

r  their amplitudes cancel. Returning to primary interactions, zero momentum preons must 

always have an infinite wavelength which is greater than the wavelengths (or1/ k values) of 

the zero point quanta they interact with, for all 0.k  This implies that we cannot simply add 

or subtract amplitudes algebraically as the charged preons can be always further apart than the 

wavelength of the interacting quanta (except when 0,k   but we will see there is always a 

minimum k value, i.e. min
0k   in sections 5&6 [24]).In fact, if algebraic addition of 

amplitudes did apply in primary interactions, infinite superpositions for colourless and 

electrically neutral neutrinos would be impossible. So how can infinitely far apart preons of 

differing charge generate wavefunctions of all dimensions down to Planck scale? This can 

happen only if the amplitudes of all eight preons are somehow linked over infinite space, all at 

the same time 0t   contributing to generating the wavefunction k
 . This non-local 

behaviour is not new. All experiments confirm that what Einstein struggled to come to terms 

with is, in fact, true; he called it “spooky action at a distance”.  While these experiments are 

currently limited in the distance over which they demonstrate entanglement, there is now wide 

acceptance that it can reach across the universe. In the same manner wavefunctions covering 

all space can instantly collapse. We want to suggest that this same non-locality applies in 

primary interactions; our eight virtual preons all unite instantaneously at time 0t   across 

infinite space in generating each k
 . Also, the vector potential squared equations that they 

generate must always be the same for all the preon combinations in Table 2.2.1. This can 

happen only if the amplitudes of all eight are added, regardless of charge sign for primary 

interactions. This applies to both colour and electric charge.  

The opposite is true for the secondary interactions. At time 0t   all eight preons 

instantaneously collapse into some sort of virtual composite particle that for times 

0 / 2t E   obeys wavefunction k
 . The dimensions of k

  are of the same order as the 

wavelength of the interacting quanta, and the usual algebraic total electric charge and nett 

colour charge must now apply as in the group charges in Table 2.2.1. All of this may seem 

contrary to current thinking which has gradually been built up over several centuries of 

secondary interaction experiments; however, it may not be so out of place when viewed in the 

context of the counter intuitive results of entanglement experiments. The key point to bear in 

mind is that the predictions of this paper must agree or at least be able to fit the SM, or 
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secondary interaction experiments; as we may never be able to look into virtual primary 

interactions, but only observe their effects.   

Amplitudes to interact are complex numbers which we can draw as a vector. This applies to 

both colour and electric coupling, where these two vectors can be at the same complex angle 

or at different angles. The simplest case is if they are in line and we will assume this is true for 

both colour and electromagnetic primary interactions which are both spin 1. This seems to 

work and when we later include gravity, a spin 2 interaction, we find that the spin 2 vector 

only works if it is at right angles to the two in line spin 1 vectors. Let us start in a zero gravity 

world by simply adding the eight preon colour vectors of amplitude one and the eight primary 

electromagnetic vectors of amplitude 
EMP

  together, as all this only works if they are all in 

line.        
           

The total colour plus electromagnetic primary amplitude is   8 8
EMP

       

                    

            (2.2.1) 

This equation is always true regardless of signs as in section 2.2.3  

         
2

The colour plus electromagnetic primary coupling constant is        8 8  
EMP

     (2.2.2) 

Inserting this into Eq. (2.1.4) we get                                       

                                   

2

2 2 2 4 2
8 8

.
3

EMP sN dk
Q A k r

sN k





           
  

  

                  (2.2.3) 

 

Again we interpret this just as we did in section 2.1.2 and Eq. (2.1.4) as a vector potential 

squared term  

 

                

2

2 2 2 4 2
8 8

 occurring with probability    
3

EMP sN dk
Q A k r

sN k





   
   

   (2.2.4) 

 

                       

 

Where Q  is a symbol representing the entire eight colour and eight electric amplitudes 

combined, with s the spin and 1N   for massive superpositions, but 2N   for infinitesimal 

mass superpositions. Table 4.3.1 and section 6  in [24] and its subsections cover this more 

fully.) 

 

 

 

2.3 Virtual Wavefunctions that form Infinite Superpositions  
 

2.3.1 Infinite families of similar virtual wavefunctions 

 

Consider the family of wave functions where ignoring time:   
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2 2 2

( ) ( )

( ) exp( /18)

nk

l

nk

U nrk Y

U nrk C r n k r

 

 
  

                             

                                  (2.3.1) 

    

 U nrk  is the radial part of n k
 ,  Y   the angular part, nk

C a normalizing constant, and we 

will find that l  is the usual angular momentum quantum number. There is an infinite family of 

nk
 , one for each value k  where 0 k   in a zero gravity world.    

  

                                      
1 2 2 2

( ) ( ) exp( /Now put 18 )
l

nk
R nrk rU nrk C r n k r


                         (2.3.2) 

 

As we are dealing with zero spin preons we use Klein-Gordon equations [22]. The Klein-

Gordon equation is based on the relativistic equation 2 2 2 2 2

0
/E c m c p  and in a spherically 

symmetric squared vector potential the time independent Klein Gordon Equation is 

 

                                         

2

2 2 2 2 2 2 2

02
ˆ E
P Q A m c

c
   

 
      

 
                                      

 

(2.3.3) 

Using                                   
2 2

2 2

1 ( 1)R l l

R r r





  
 


        we get the time independent  

2 2 2 2

2 2 2 2

02 2 2
radial Klein Gordon equation   

(
 

1)R l l E
Q A m c

R r r c

  
    

  
  

    

   (2.3.4) 

For each nk
  the energy is nk

E a function of &n k , and we will label the rest mass as 0snk
m

 
a 

function of spin s , & ,n k  but also a function of the particle rest mass 0
m . Using different 

colours to more clearly compare the next two equations this becomes  

 

                                              

2

2 4

02

2 2

2 2 2

2 2

( 1)
nk

snk
Q A

E
m

r
c

R l

R r c

l 






 

 
   

    

                  (2.3.5) 

Differentiating ( )R nrk ( )rU nrk

2 2 2

1
exp( )

18

l

nk

n k r
C r

 
  twice with respect to r , multiplying 

by 2 and dividing by R            

                                                  

42 2 2

2 2

2 2 2 24 2
(

81

)

9

1 (2 3)nR l l

R r

lr k

r

nk  
  


                        

 

 (2.3.6) 

 

Comparing Eqs. (2.3.5) & (2.3.6) we see that l  is the usual angular momentum quantum 

number and the vector potential squared required to generate these wavefunctions is      
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44 2 4 2

2 2 2 4 2

81 3

n k r n
Q A k r

 
   

 
  

                             

 (2.3.7) 

   

2 2 2 2

2 2 2

02
The momentum squared i   

( 3)

9
s

2
 nk

nk snk

E l n k
m c

c


  p                     

 

(2.3.8) 

 

2 2 2 2
For  3 wavefunctions this beco &   me  s

nk nk
n k nl k  p p   

 

 (2.3.9) 

 

2.3.2 Eigenvalues of these virtual wavefunctions and parallel momentum vectors 

From Eqs. (2.3.8) &  (2.3.9) as k  , the energy squared 
2 2 2

nk nk
E c p 2 2 2

n  and thus 

  energy  considering onlif  3 y the positive solutio when n .    
nk

l k E n          (2.3.10)         

This suggests that n must be integral. If it is integral when k  , we will conjecture that it 

must be integral for all values of k. This is a virtual or “off shell” process, where energy can 

depart from 
2 2 4 2 2

0
E m c c  p  for time / 2T E   .We can also perhaps think of Eq. (2.3.9) 

as integral n  parallel momentum vector kp  quanta, transferring total momentum

nk
n kp  and energy E n   from the zero point fields

 
to generate the virtual 

wavefunction .
nk

  Using different colours for both operator and wavefunction, we can say 

that provided 2 2 4 2 4 2
( / 3)Q A n k r  as in Eq. (2.3.7) the operator 2 2 2 2 2ˆ ( )P Q A     applied 

to the virtual wavefunction 
3 2 2 2
exp( /18) ( )

nk nk
C r n k r Y    produces                        

2 22 2 2 2 2 2ˆ ( )
nk nk nk

P Q A n k     , where n is integral, but k is continuous as for 

free particles. Thus, we conjecture that: 

 

                      

3 2 2 2

2 2 2 2
eigenvalues 

exp( /18) ( ) are eigenfunctions with

 with continuous   but integral    . 

nk nk

nk
n

C r n k r Y

n k k

  

p
                  

             (2.3.11) 

Also, there are no scalar potentials involved, only squared vector potentials, so this is a 

magnetic or vector type interaction. Particles in classical magnetic fields have a constant 

magnitude of linear momentum which is consistent with the squared momentum eigenvalues 

of Eq.  (2.3.11). This also implies that each nk
 is formed from quanta of wave number k  

only and that secondary interactions with nk
 emit or absorb k  virtual quanta if n  changes 

by 1.  The wavefunction nk
 is virtual and in this sense both the energy nk

E  and rest mass 

0snk
m  in Eq. (2.3.8) are also virtual quantities borrowed from zero point vector fields and its 

time component or a scalar Higgs type field. We use these virtual quantities to calculate the 

amplitude that the wavefunction nk
  is in an m  state of angular momentum in section 3.1, 

and in section 3.2 to calculate the total angular momentum and rest mass. As in section 2.3.2 

above, we can think of nk
n kp  as n  parallel momentum vectors kp . As spin 3 (or 

3l  ) needs at least three spin 1 quanta to build it, n  must be at least 3. When 3n   we can 

think of  this as three of the eight preons each absorbing quanta k  at time 0.t   We will 

find that a spin ½ state has a dominant 6n   eigenfunction where six of the eight preons each 
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absorb quanta k . It needs at least two smaller side eigenfunctions 5n   & 7n   with 

either five or seven respectively, of the eight preons each absorbing quanta k  respectively at 

0t  . (Figure 3.1.4 illustrates the three n modes of a positron superposition.) 

From Eq. (2.3.7)  2 2
Q A 

4

2 4 2

3

n
k r

 
 
 

 2 4 2
16 k r  for this dominant 6n   mode. 

Thus using Eq.   (2.2.4) 

2

2 2 2 4 2
8 8

3

EMP

Q A k r
sN





 
 


2 4 2

16 k r for an 6n   mode. 

Now 1/ 2 & 1s N   for spin ½ fermions and 

2

2 8 8
16

3

EMP




 
 

  if we have only an 6n   

mode. Thus 8 8 24
EMP

     and
1

EMP
 

137.1, but this is true for an 6n   eigenfunction 

only, and we have a superposition where the amplitudes of the smaller side eigenfunctions 

5n   & 7n   determine the ratio between the primary to secondary (colour and 

electromagnetic) coupling amplitudes or the value of 
1

3
@

cutoff
k


 (Section 3.3).  The 2 2

Q A

required to produce this superposition with amplitudes n
c  is, using Eq. (2.3.7) 

 

                                                            

4 2 4 2

2 2

5,6,7

*
81

n n

n

n k r
Q A c c



   

                                          (2.3.12)                                                                               

Repeating the same procedure as above for three member superpositions using Eq. (2.3.12) 

we find the strength of EMP
  required increases considerably (see section 4.1  & Table 4.1.1 in  

[24]  As the secondary electromagnetic coupling 
1

@
EMS cutoff

k


must be constant for all spin ½ 

leptons and quarks, the amplitudes of the smaller side eigenfunctions 5n   & 7n   that 

determine this must also be constant for all the fermions, implying that Eq. (2.3.12) must be 

the same for all fermions. The same arguments apply to the other groups of fundamental 

particles but we return to this in sections 3.3 where we see that the same also applies with 

graviton emission. 

 

3 Properties of Infinite Superpositions 

3.1 The Amplitude that Wavefunction nk
  is Spherically Symmetric  

3.1.1 Four vector transformations 

The rules of quantum mechanics tell us that if we carry out any measurement on a real 

spherically symmetric 3l   wavefunction it will immediately fall into one of the seven 

possible states 3, 0, 1, 2, 3l m     [23]. But nk
 is a virtual 3l   wave function so we 

cannot measure its angular momentum. During its brief existence it must always remain in 

some virtual superposition of the above seven possible states and we can describe only the 
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amplitudes of these. So, is there any way to calculate these amplitudes, as they must relate to 

the amplitudes of the angular momentum states of the spin 1 quanta it absorbs from the zero 

point vector fields?  

 

First consider the 4 vector wavefunction of a spin 1 particle and start with a time polarized 

state which has equal probability of polarization directions. It is thus spherically symmetric, 

which we will label as ss .  Using 4 vector (t, x, y, z) notation 

 

                  In frame A, a time polarized or ss  spin 1 state is (1,0,0,0). 

Let frame B move along the z  axis at velocity /v c   in the z  direction. 

                  In frame B the polarization state transforms to ( ,0,0, ).   

But this is 2 time polarized ss states minus 2 2   z  polarized or 0m   states      

                  In frame B the probabilities are 2 ss  
2 2

0m    states.  

Now 
2 2 2 2 2

(1 ) 1         is an invariant probability in all frames and in removing 2 2 

 0m   states from 2  ss  states, the new ratio of spherical symmetry is 
2 2 2 2 2

( ) / 1       . Thus, a spherically symmetric state is transformed from probability 

1 in frame A, to 
2

1   in frame B. Also removing 0m   states from spherically symmetric 

states leaves a surplus of 1m    states, as spherically symmetric states are equal 

superpositions of  1 ,m    0 ,m  & 1m    states.  

 
2 2

Thus in Frame B the probabilities (1 ) 1  states are .ss m           (3.1.1) 

We can describe this as a virtual superposition of 
1

1  states.ss m


     
                                                                 

(3.1.2) 

 

As 
2

1   we have transverse polarized states, the same as real photons. Now transverse 

polarized spin 1 states can be either left ( 1),m    or right ( 1)m    circular polarization, or 

equal superpositions of (1/ 2) (1/ 2)L R  as in &x y  polarization.  If we think of 

individual spin zero preons absorbing these spin 1 quanta at 0t   they must also have this 

same 2 probability of transversely polarized spin 1 states.  If they then merge into some 

composite 3l   particle (as in Figure 3.1.4) for time 0 / 2 ,t E   the probability of it being 

in some particular state ( 3, 0),l m  ( 3, 1),l m   ( 3, 2)l m   or ( 3, 3)l m   , must be 

the same 
2
.  We initially write the amplitudes in these three equations in terms of nk

  & 

nk
 as this is the most convenient way to express them. Velocity operators are momentum 

operators over relativistic masses. Our eigenvalues are 
2 2 2 2

nk
n kp  for each &n k , and this 

allows the velocity operators to give constant 
2

.
nk

  Later in Eqs.  (3.1.11) and  (3.1.12) we 

write nk
 & nk

  in momentum terms. Even though the mass in these operators is virtual, we 

can still use it to calculate nk
 . For each k  and integral n  there will be a constant nk

  and 
2 1/2

(1 ) .
nk nk

 


    As we will see, nk
  can be thought of as the magnitude of the velocity of 

an imaginary centre of momentum frame in which these interactions take place. We will also 

draw our Feynman diagrams of these interactions in terms of  &
nk nk

  for convenience, even 

though this is unconventional. To proceed from here we define two frames as follows: 
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1) The Laboratory Frame (LF) or Fixed Frame as in section 2.2.3 

The infinite superposition has rest mass 0
m  and zero nett momentum in this frame. Each nk



is centred here with magnitude of momentum nk
n kp . Even though we have no idea of 

the direction of this momentum vector we will define it as the z  direction. The eight preons 

are born in this frame with zero momentum and can thus be considered here as being at rest or 

with zero velocity and infinite wavelength at their birth. The Feynman diagram of the 

interaction in this frame that builds nk
  is illustrated in Figure 3.1.3.  

 

2)  The Centre of Momentum Frame (CMF)  

This (imaginary) frame is the centre of momentum of the interaction that builds nk
 . The 

CMF moves at velocity nk
 relative to the laboratory frame in the z  direction or parallel to 

the unknown momentum vector direction .
nk

p  In this CMF the momenta and velocities of the 

preons at birth and after the interaction are equal and opposite. This is illustrated in Figure 

3.1.2  again in terms of  0
, , &

nk nk
m   . In the LF the velocity of the preons at birth is zero, in 

the CMF this is nk
  and after the interaction nk

  , where both nk
  and nk

  are in the 

unknown z  direction. In the LF the particle velocity (particle)
nk nkp

   is the simple 

relativistic addition of the two equal velocities nk
  as in Figure 3.1.1. 

 
Figure 3.1.1 Velocities in unknown but the same directions in different frames. 

 

3.1.2 Feynman diagrams of primary interactions 

 

Let us start with   

          
2 1/2 2 2

2

2
(Particle)  and (1 ) (1 )

1

nk

nk nkP nkP nkp nk nk

nk


     




     


  

(3.1.3) 

 

If the particle rest mass is 0
m  let each preon have a virtual rest mass 

0
/ (8 2 ).

nk
m s   

         

0

0
The eight preons are effectively a virtual particle of rest m s  

2
as

snk

nk

m
m

s
   

 

              (3.1.4) 

 

The particle momentum in the LF is zero at birth. After the interaction using these equations 

  

    

Laboratory Frame Centre of Momentum Frame Virtual Particle 
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nk

n kp  0snk nkP nkP
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 
  
 

2

2

1

nk
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



 
 
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2 2
(1 )

nk nk
c     

0The particle momentum after the interaction in the F 
2

2
L nk nk

nk

m c
n k

s

 
 p   

   (3.1.5) 

 

Using Eq. (3.1.4), in the LF the particle energy at birth is 

                                                               
2

2 0

0
2

snk

nk

m c
m c

s
   

                                                      

(3.1.6) 

 

In the LF the particle energy after the interaction is by using Eq. (3.1.3)  

2 2 2 2 2 20 0

0
(1 ) (1 )

2 2

nk

snk pnk nk nk nk

nk

m m
m c c c

s s


   


     

 

              (3.1. 7) 

 

In the CMF the momentum at birth is using Eq. (3.1.4)                              

                                                                   0

0
2

nk

snk nk nk

m
m

s


 


    

                    (3.1.8) 

 

In the CMF the momentum after the interaction is equal but in the opposite direction                            

                                                                                    0      
2

nk
m

s


   

                    (3.1.9) 

 

In the CMF the energy at birth, and after the interaction is 

                                                                      
2

2 0

0
2

snk nk

m c
m c

s
    

                                                   

(3.1.10)                                                       

                                                                                               

These values are all summarized in Figure 3.1.2 and Figure 3.1.3 but with 1c  .  

From  Eq.    (3.1.5)      nk
n kp 0

2

2

nk nk
m c

s

 
   and   nk nk

 
0

22

2 2

C
nk sn k s

m c
    

(where 
0

C
m c

  is the Compton wavelength). We can now express &
nk nk

   in momentum 

terms:    

                     
0

22
Let  

2 2

C

nk nk nk

nk sn k s
K

m c
     

              (3.1.11)    

 

                          

2

2 2 2

2
:     and  In 1terms of 

1

nk

nk nk nk nk

nk

K
K K

K
   


 

              (3.1.12) 

 

Each infinite superposition has fixed .
C  Each wavefunction nk

  of this infinite 

superposition has fixed &n s , thus nk
K k .  

                                    For example, we can put    nk

nk

dK dk

K k
   

               (3.1.13) 
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These simple expressions and what follows are not possible if 
0 0

/ 2
snk nk

m m s , and when 

we include gravity we find 
0 0

/ ( 2 )
snk nk

m m s  is essential (section 4.2 in [24]. 

 
Figure 3.1.2  Feynman diagram in an imaginary centre of momentum frame. 

 

Figure 3.1.3  Feynman diagram in the laboratory frame. 

The interaction in the Feynman diagrams above is with spin 1 quanta. The Feynman transition 

amplitude of this interaction shows that the polarization states of these exchanged quanta is 

determined by the sum of the components of the initial, plus final 4 momentum ( )
i f

p p


 . 

Ignoring all other common factors this says that the space polarized component is the sum of 

the momentum terms ( )
i f
p p  and the time polarized component is the sum of the energy 

terms 
0

( )
i f

p p .  We have defined our momentum as in an unknown z direction:  

          

0
The ratio of   polarization to time polarization amplitudes i

( )
s 

)
 
(

f

z

i f

i
p

z
p p

p




    

 

          (3.1.14) 

 

 

In the CMF ( ) 0
z

i f
p p  , thus an interaction in the CMF exchanges only time polarized, or 

spherically symmetric 1l   states.  In the LF the ratio of z (or 0)m   polarization, to time  

polarization in the LF is 
2

,
nk

        

      

                                      where    
0

0

0

( ) 2

( ) 2
f

z

i f nk nk

nk

i nk

p p m

p p m

 





 


 

                                    
(3.1.15) 

 
 

 

 Eight preons at birth:   

After merging:  

     After merging:  

 Eight preons at birth:  
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From section 3.1.1 these are probabilities of  
2

nk
 ss  

2 2

nk nk
  0m  states, or as 1l   here  

2
(1 )

nk
ss  +

2

nk
 1m    states.  

            

In the LF this is a virtual superpos
1

( 1 ) statition of  es. 
nk

nk

ss m


            

                

                (3.1.16) 

 

From section 3.1.1 as these quanta from the scalar and vector zero point fields build each nk


this implies that: 

          

In the LF  has virtual superposition amplitudes  
1

  states.
nk

n

nk

k

ss m


 

    

  
 (3.1.17) 

 

From section 3.1.1 appropriate  1, 1l m    superpositions can build any 3,   state.l m

Figure 3.1.4 is an example of such a nk
 for 5,6,&7n  3, 2l m    states. 

 

3.1.3 Different ways to express superpositions 

We have expressed all superpositions here in terms of spherically symmetric and m  states for 

convenience and simplicity. We could have expressed them in the form: 

 

1
3 2 1 0 1 2 3 2

7
nk

nk

m m m m m m m m


                        
 

This is equivalent to (as above we ignore complex number amplitude factors for clarity)   

                

1
2 where we have put m 2 in this example.

nk nk

nk

ss m 


       

Because all these wavefunctions are virtual they cannot be measured in the normal way that 

collapses them into any of these eigenstates, it is more convenient to use the method adopted 

here which is similar to QED virtual photon superpositions. 
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Figure 3.1.4  Eight preons forming 2m    states as part of a positron superposition. If a 

zero spin and zero momentum preon absorbs a quantum its momentum becomes p k  and 

its angular momentum becomes either 1,m    or an 0m   equal superposition of    1,m    

states. When it does not absorb a quantum it remains at both spin zero and momentum 0.p  

There is no significance in which preons have absorbed quanta. 
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3.2 Mass and Total Angular Momentum of Infinite Superpositions 
 

3.2.1 Total mass of massive infinite superpositions 

We will consider first the total mass of an infinite superposition, and to help illustrate, 

consider only one integral n eigenfunction nk
  at a time; temporarily assuming that the 

amplitude n
c of each nk

 has magnitude 1
n

c  . Each time nk
  is born it borrows mass from 

a scalar Higgs field (or a zero point field time component) and momentum from a zero point 

field spatial component. The mass that it borrows is exactly cancelled by an equal debt in the 

Higgs scalar field (or the zero point field time component) so this sums to zero for all k. (This 

is a different way of looking at what generates mass; however, the end result is identical.) But 

what about the momenta borrowed from the spatial component of zero point fields, do these 

momenta also leave momentum debts in the vacuum? At any fixed value of k the momentum 

is a constant of the motion in a squared vector potential 2
A . We can think of this as in any 

particular direction there is some probability of momentum nk
np k due to this 2

A field. 

When interacting with the magnetic or the spatial component of any electromagnetic field the 

velocity squared factor 
2

nk
  determines the rate of quanta absorbed. 

Our wavefunctions nk
  are generated from a vector potential squared term 2

A  derived in 

section 2.1.2 which in turn came from a 2
B  type term as in section 2.1.1. As discussed in 

section 2.3.2  the
 
eigenvalues 

2 2 2 2

nk
n kp  confirm the constant momentum squared feature 

of magnetic, or space mode interactions. Also in section 2.1.1 the scalar virtual photon 

emission probability is directly related to the force squared term 2 2 2
.F E  Magnetic type 

coupling probabilities are related to a magnetic type force squared term 
2 2 2 2 2 2 2 2

/F B c E     , where from section 3.1.2 and Eqs.   (3.1.14) &  (3.1.15) the ratio 

of this scalar to magnetic coupling is 
2

.
nk

  Thus when k    and the exchanged energy 

X
E  , 

2

nk
n  quanta k  are absorbed from the vacuum and    

    

                  
2

  we can expect a momentum debt of ) (
nk nk

debt n p k    (3.2.1) 

 

We could sum 
2

nkp & 
2

( )
nk

debtp  but both vectors nk
p and ( )

nk
debtp are antiparallel in the 

same unknown direction. We can pair them together giving a nett momentum per pair of:   

 

             
2

2 2
at wavenumber  .( ) ( ) (1 )  nk

nk nk nk nk

nk nk

n
nett d b n ke t 

 
     

pk
p p p k  

 (3.2.2) 

 

We have said above that the mass of each virtual particle is cancelled by an equal and 

opposite debt in the Higgs scalar field so we can now use the relativistic energy expression  

             
2 2 2

0

( )
k

n nk

k

E nett c




p times the probability of each pair at each wavenumber k.  

We will initially look at only 1N   massive infinite superpositions in Eq.  (2.2.4).  

Thus, using probability / /sN dk k s dk k   , also Eqs.  (3.1.11),  (3.1.12), (3.1.13),& (3.2.2) 
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2 2 2

0

( )

k

n nk

k

s dk
E c nett

k






  p

2 2 2

2

4

0 nk

n k s dk
c

k




 
2

2 4

0 2 2

0

4
(1 ) 2

nk nk

nk nk

K dK
m c

K K




  

                                          
2 2 4 2 4 2

0 0 02

0

1
 or  

1
n n

nk

E m c m c E m c
K



 
    

 
  

 

                 (3.2.3) 

 

This energy is due to summing momenta squared and it must be real, with a mass 0
m  for 

infinite superpositions of Eigenfunctions .
nk

  These superpositions can form all the non-

infinitesimal mass fundamental particles.  The equations do not work if the mass 0
m  is zero. 

(We will look at infinitesimal masses in section 6.2 [24])  Negative mass solutions in Eq. 

(3.2.3) must be handled in the usual Feynman manner, and treated as antiparticles with 

positive energy going backwards in time. If they are spin ½ this also determines how they 

interact with the weak force.  

 

3.2.2 Angular momentum of massive infinite superpositions 

We will use the same procedure for the total angular momentum of 1N   type infinite 

superpositions with non-infinitesimal mass in Eq.  (2.2.4).  

 

Wavefunctions nk
 3 2 2 2

exp( /18) ( , )
nk

C r n k r Y     have angular momentum squared 

eigenvalues 2 2
12L and the various m  states have angular momentum eigenvalues 

.
z

mL  We will treat both angular momentum and angular momentum debts as real just as 

we did for linear momentum. Even though m  state wavefunctions are part of superpositions 

they still have probabilities, just as the linear momenta squared above, and it seemed to work. 

Using exactly the same arguments as in section 3.2.1, if nk
  is in a state of angular 

momentum zk
mL , then it must leave an angular momentum debt in the vacuum of

 
2

( )
zk nk

debt m L  (or as in section 3.2.1) ( ) ( )
zk zk zk

nett debt L L L .  

   

     
2 2

2
( ) (1 ) (1 )   (if  is in state )zk

zk nk nk zk zk

nk

nett m m 


    
L

L L L   
      (3.2.4) 

 

But from Eq.  (3.1.17) the probability that zk
L is in an m  state is also 

2

nk
  so that  

 

2

2

2
including this extra  probability term: ( )  at wavenumber .nk

nk zk

nk

nett m k





L   
    (3.2.5)                                    

For an 1N   type infinite superposition 
0

( ) ( )

k

z zk

k

s dk
Total nett

k






 L L .  

2

2

0
2

nk

nk

dk
sm

k







   

Using Eqs.  (3.1.11) to  (3.1.13) 
2

2 2

0

( )
(1 )

nk nk

z

nk nk

K dK
Total sm

K K




L  

2

0

1

2 1
nk

sm

K



 
  

 
  

                                          ( )       or    
2 2

z

sm s
Total m m m   L  

                  (3.2.6)  
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Where m  is the angular momentum state of the infinite superposition and m  the state of nk
 .  

Thus for spin ½  particles with s 
 
½ in Eq. (3.2.6) / 4m m   but mcan be only   ½, 

implying the m  state of nk
  that generates spin ½ must be 2m   . An 1N   massive spin 1 

particle has 1s   with / 2m m  . ( 2N   is covered in section 6.2 in [24]) This is 

summarized in the following three member infinite superpositions ignoring complex number 

factors. 

 

  
,

1
2 ,1/2, 1/2 , 2

5,6,7 0

1
Massive ( 1) Spin , 

2

k
nk ss

n nk nk

n nkk

N c dk
k


  





  

 

 
   

  
    

   (3.2.7) 

 

       
,

,1, ,2

4,5,6 0

1
Massive ( 1) Spin 1, 

k
nk ss

m n nk nk m

n nkk

N c dk
k


  







 

 
   

  
    

   (3.2.8) 

 

The spin vectors of each nk
 with 2 3L , and their spin vector debts in the zero point 

vector fields, have to be aligned such that the sum in each case is the correct value: 

3 / 2L  , 2L or 6L  for spins  ½ , 1 & 2  respectively.  

Spherically symmetric massive 1N   spin 1 states are a superposition of three states 

1
1 0 1 ,

3
m m m             and using Eq.  (3.2.8) can be formed as follows 

,

,1, 1 , 2

4,5,6 0

,

,1, 0 , 0

4,5,6 0

,

,1, 1 , 2

4,5,6

1 1 1
 

3 3

1 1 1
Massive spin 1  

3 3

1 1

3 3

k
nk ss

m n nk nk m

n nkk

k
nk ss

m n nk nk m

n nkk

nk ss

m n nk nk m

n nk

c dk
k

c dk
k

c


  




  




  





  

 



  

 

  



 
  

  

 
   

  

 
   

 

 

 


0

1
k

k

dk
k





 
 
 
 
 
 
 
 
 
 

  


     

 

 

     (3.2.9) 

 

3.2.3 Mass and angular momentum of multiple integer n superpositions  

In sections 3.2.1 & 3.2.2 for simplicity we looked at single integer n superpositions nk
 . For 

superpositions 
k n nk

n

c  , we replace 
2

nk
K with

2

k
K . Equation  (2.3.9) appears to suggest 

2 2 2 2 2 2 2
*

k n n

n

c c n k n k p  and 
2

k
k np . In section3.5.3 in [24] we discuss 

why
2

k
k np but *

k n n

n

k c c n k n  p . Thus using Eq.  (3.1.11) 

         

2 2 2 2
2 2 2 22

  &  but   
2 2 2

C C C

k k k

k s k s k s
K n K n K n     

 (3.2.10)  
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Replacing 
2

nk
K with 

2 22 2
/ 2

k C
K k s n  in the key equations (3.2.3) &  (3.2.6)  does not 

change the final results. The laws of quantum mechanics tell us the total angular momentum is 

precisely integral  or half integral / 2 .  Looking at the above integrals used to derive total 

angular momentum we see that N must be 1 (we discuss N=2 in section 6.2) and s  must be 

exactly ½ or one for spin ½ & spin 1 massive particles respectively in our probability formula 

Eq.   (2.2.4). Also, these integrals are infinite sums of positive and negative integral  that are 

virtual and cannot be observed. If an infinite superposition for an electron is in a spin up state 

and flips to spin down in a magnetic field, a real 1m    photon is emitted carrying away the 

change in angular momentum.  This is the only real effect observed from this infinity of 

( 3, 2)l m    virtual wavefunctions all flipping to ( 3, 2)l m   states, plus an infinite 

flipping of the virtual zero point vector debts. Also, Eqs. (3.2.3) and  (3.2.6) are true only if 

our high energy cutoff is at infinity and the low frequency cutoff is at zero. We look at high 

energy Planck scale cutoffs in section 4.2 and   in section 6  low energy cutoffs [24] near the 

radius of the causally connected horizon.  

 

3.3 Ratios between Primary and Secondary Coupling 
 

3.3.1 Initial simplifying assumptions 

This section is based on a special case thought experiment that tries to illustrate, hopefully in a 

simple way, how superpositions interact with one another; in the same way as virtual photons, 

for example, interact with electrons. It is unfortunately long and not very rigorous, but it 

illustrates how, in all interactions between fundamental particles represented as infinite 

superpositions, the actual interaction is between only the same k  single wavenumber 

superpositions of each particle. We will later conjecture that an interacting virtual particle is a 

single wavenumber k  superposition only, and not a full infinite superposition. Only real 

particles whose properties we can measure are full infinite superpositions. The full properties 

do not exist until measurement, just as in so many other examples in quantum mechanics. This 

will be clearer as we proceed. It is also important to remember here, that because primary 

coupling constants are to bare charges (section 2.2.2), and thus fixed for all k, while secondary 

coupling constants run with k, the coupling ratios can be defined only at the cutoff value of k 

applying to the bare charge (sections 4.1.1 &4.2.2 in [24] ). From Table 2.2.1 there are six 

fundamental primary charges for electrons and positrons. But electrons and positrons are 

defined as fundamental charges. In other words, what we define as a fundamental electric 

charge is in reality six primary charges. Of course, we can never in reality measure six as their 

effect is reduced by the ratio between primary and secondary coupling. Because 

electromagnetic and colour coupling are both via spin one bosons their coupling ratios are 

fundamentally the same, but because of the above they are related as 2
6 36:1 .     

 

                                                   
1 36

          =      
Colour EM

 
  

                 (3.3.1) 
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We define the colour and electromagnetic ratios as follows (leaving gravity till section 6.2.6 

in [24])  

 

              
(Secondary) (Secondary)3

(Primary) 3 (Primary)

1 1
         and       

Colour EMS EMS

Colour Colour P EM EM EMP

  

     
      

   (3.3.2) 

 

The secondary coupling constants 3
 &  

EMS S
 

 
are the bare charge values, both at the fermion 

interaction cutoff near the Planck length Eq.4.2.10 in [24] ). Also we assumed in section 2.2.2  

that 3
1;

P
   thus from Eq. (3.3.2)  

 

                                       
1 1 18

3 3
@ 2.029 10

C S cutoff
k GeV   

             (3.3.3) 

 

In other words, provided 3
1,

P
   the ratio C

  (or )
Colour


 is also the inverse of the colour 

coupling constant 3
  at the high energy interaction cutoff near the Planck length. In this 

respect C
  or Colour

  is the fundamental ratio we will use mainly from here on. From the 

above paragraphs, to find the coupling ratios we need secondary interactions that are between 

bare charges. But this implies extremely close spacing where the effects of spin dominate. If 

the spacing is sufficiently large the effects of spin can be ignored but then we are not looking 

at bare charges. However, we can ignore the effects of shielding due to virtual charged pairs 

by imagining, as a simple thought experiment, an interaction between bare charges even at 

such large spacing.  We can also simplify things further by considering only scalar or 

coulomb type elastic interactions at this large spacing. We are also going to temporarily 

ignore Eq.  (3.3.2) and imagine that we have only one primary electric and or one colour 

charge. Consider two superpositions and (due to the above simplifying assumptions) imagine 

them as spin zero charges. QED considers the interaction between them as a single covariant 

combination of two separate and opposite direction non-covariant interactions (a) plus (b) as 

in the Feynman diagram of Figure 3.3.1 below. The Feynman transition amplitude is invariant 

in all frames [22], so let us consider a special simple case in a CM frame where we have 

identical particles on a head-on (elastic) collision path with spatial momenta:     

                                      

                                                        a a b b
      p p p p                 

(3.3.4)     

 

From Eq.        (3.3.4) the initial and final spatial momenta are reversed with mirror images of 

each other at each vertex. Of course, when we know momenta accurately we have no idea 

where the particles are when this takes place, so in reality there is no head-on collision. We 

are also going to assume in what follows that the vertices of this interaction are on opposite 

sides of the interacting boson superposition. While we have no idea where this boson 

superposition is centred, what we do know in this simple special scalar case is that the 

transferred four momentum squared is simply the transferred three momentum squared, and 

ignoring the minus sign for 
2

q  (due to 2
i ) in what we are doing here for simplicity we can say 

:
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2 2 2 2 2

( ) ( ) 4 4 .
a a b b a b

q p p p p      p p   
            (3.3.5)  

 
Figure 3.3.1 Feynman diagram of virtual photon exchange between two spin zero particles of 

charge e .   

Figure 3.3.2  All eigenfunctions nk
 in the groups of three overlap at a fixed wavenumber k.  

If we look at Figure 3.3.2 we see that at any fixed value of  k, all modes nk
  in the groups of 

three overlapping superpositions for the various spins ½, 1 & 2 occupy similar sized regions 

of space. The directions of their linear momenta are unknown but let us imagine some 

particular vector k  that is parallel to the above vectors a b
p p . As we are considering only 

scalar interactions, all these modes must be spherically symmetric or time polarized. Equation 

(3.1.16) says spherical symmetry is 1 /
nk

 and Eqs. (3.1.11) and (3.1.12) tell us 1
nk

   as 

0.
nk

   But we are considering bare charges at large spacings where the exchanged virtual 

photons have small momenta and are time polarized as in Eq.  (3.1.15). At a fixed value of k  

 

  

  

(a) (b) 

The Feynman diagram is drawn with 

a vertical photon line representing 

the superposition of two opposite 

direction and non-covariant 

processes (a) plus (b).  

The exchanged 4 momentum is:    

    . 

 

  

  

 
Spin ½ Fermion  

superpositions 

  

Infinitesimal mass 

spins 1 & 2  

Boson superpositions 

  

   

 
  

 

 

  

3
( 3)

k
n    

Massive spin 1  

Boson superpositions 
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they thus have momenta n k . Also, as they overlap each other, we can imagine units of 

 k quanta somehow transferring between these superpositions so that the values of n  in 

each mode can change temporarily by 1  for times /T E   . The directions of these 

momentum transfers causing either repulsion or attraction depending on the charge signs of 

the superpositions at each vertex, whether the same or opposite. 

 

3.3.2 Restrictions on possible eigenvalue changes 

Before we look at changing these eigenvalues by 1n    we need to consider what restrictions 

there are on these changes.  

From Eq. (2.3.12) superposition k
  requires 

4 2 4 2

2 2
*

81
n n

n

n k r
Q A c c  and Eq.  (2.2.4) informs 

us the available   

2

2 2 2 4 2
8 8

3

EMP

Q A k r
sN





 
 

    occurs with probability   
sN dk

k


 .  

For very brief periods the required value of 
2 2

Q A  can fluctuate, such as during these changes 

of momentum, but if its average value changes over the entire process then Eq.   (2.2.4) says 

that the probability /sN dk k  changes also, and we have shown in section 3.2.1 that this is 

disallowed. For example, in a spin ½ superposition 5 6 7
, , ,

k k k
   (see Table 4.3.1 in [24]) the 

average values of 
5

c ,
6

c &
7

c  must each remain constant. This can only happen if n  

remains within its pre-existing boundaries of (5 7)n  . For example, if 7
  adds  k (we 

will ignore the subscript k in nk
  from here assuming that it will be understood) it can create 

8
 , but 

8
c  must average zero, which it can do only if it fluctuates either side of zero, and 

n
c  cannot be negative. Similarly 4

c  must average zero, thus 4
  & 8

  are forbidden 

fermion superposition states. Keeping the average values of 
n

c  constant is also equivalent to 

a constant internal average particle energy (we have shown in section 3.2.1 that rest mass is a 

function of 2
* .

n n nk
c c p ). By changing these eigenvalues by 1n    there are only four 

possibilities: 6
 & 7

  can both reduce by  k  quanta; 6
 & 5

  can both increase by   k

quanta. If 6
  becomes 7

 ,  
7

c  also increases and 
6

c  decreases, but then 7
  has to drop 

back becoming 6
,  with 

7
c  decreasing back down and 

6
c  increasing back up in exact 

balance. If we view this as one overall process the average values of both 
6

c  and 
7

c  remain 

constant but fluctuate continuously. We can use exactly the same argument if 5
  increases 

which has to be followed by 6
  dropping, where if we view this as one process again, the 

average values of both  
5

c and 
6

c  remain constant. This is similar to a particle not being able 

to absorb a photon in a covariant manner, it has to re-emit within time / .T E   Just as 

transversely polarized photons are the equal left and right superposition of circular 

polarizations / 2 / 2L R , we can perhaps express Eq. (2.3.9) 
2 2 2 2

nk
n kp  as 

equivalent to: 

 

                        is the equal superposition / 2 / 2.n n n     p k p k k      (3.3.6)  

This superposition is in opposite directions of the vector ,k implying equal 50% probabilities 

of  momentum vectors for any pair of opposite directions. (It is a virtual superposition so 

neither of these two components can be observed.) Thus if n  changes by 1  say, there are 
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equal 50% probabilities of the momentum transfers  p k and . p k  And the same is 

true if n  changes by 1.  Spin 1 bosons transfer momentum ,  p k which means that two 

50% probability transfers are required, such as 5 6k k
   combined with a 6 5k k

   

provided the momentum directions add appropriately as in the Figure 3.3.3 top diagram  But if 

5 6k k
 

 
and 6 5

,
k k

  with n p k  keeping the same sign during this process, there 

is no nett 3 momentum transfer as in the lower half of Figure 3.3.3. The probability of these 

two processes is identical, and we will use this same probability for spin 2 graviton 

probability densities when looking at gravity which Einstein showed is not a force, as particles 

simply follow geodesics in the warped spacetime surrounding any mass. For all the two way 

transitions at both vertices, similar to those discussed above, the following is true:  

             5 6
Probability of all transitions similar to  is equal in either direction.          (3.3.7) 

As we are looking at virtual interactions between fermions and bosons we will use subscripts 

a for spin ½ and b for spins 1 and 2 superpositions in what follows.  

 

 

Figure 3.3.3  Covariant interaction (as in Eq.        (3.3.4) and Figure 3.3.1) between fermion 

(subscript a) and boson (subscript b and in boxes) eigenfunctions, with spin 1 photons in the 

top diagram, and spin 2 gravitons in the bottom diagram. Orange and magenta are used for 

bosons, blue and green for spin 1/2 to help identify the transitions at each of the four 

   

 

  
    

  

   

     

   

   

     

 

  

 

Spin 2 bosons do not transfer momentum or force as in GR. 
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spacetime corners. This is one process, but a superposition of two diagonal components 

splitting the 3 momentum k  equally. Momentum is transferred in the spin 1 case only, but 

real spin 2 gravitons however, as in gravitational waves from rotating binary pairs for 

example, do carry energy and momentum,  

We can think of the interactions in both the top and bottom of Figure 3.3.3 as a spacetime 

rectangle. Starting with the top left corner, the key factors are the superposition 

component/member amplitudes 6 4
& ,

a b
c c  then proceeding clockwise (the order is irrelevant) 

5 4
& ,

a b
c c  5 5

& ,
a b

c c and finally 6 5
& .

a b
c c  As this is part of one process, we can rearrange all 

terms and multiply them to get  4 4 5 5 6 6 5 5
( )( )( )( ).

b b b b a a a a
c c c c c c c c      

Putting 4 4 4 5 5 5
* , * etc. 

b b b a a a
P c c P c c   

                            4 4 5 5 6 6 5 5 4 5 6 5
( )( )( )( )

b b b b a a a a b b a a
c c c c c c c c P P P P      

 

   (3.3.8) 

However, our superposition members ( nk
  shortened to )

n
  are all Eigenfunctions with 

Eigenvalues  
2 2 2 2

nk
n kp  having equal probabilities of momentum vectors k  pointing in 

opposite directions, as in Eq.(3.3.7) and the following paragraph. Thus, we can interchange 

the red and orange boson 4 5
&

b b
   and also the blue and green fermion 5 6

&
a a

   in Figure 

3.3.3 with no change in exchanged momentum. These four possibilities increase the amplitude 

factor for this group by four, so that (if all other factors are one) Eq. (3.3.8)  becomes: 

 
2

4 4 5 5 6 6 5 5 4 5 6 5
2 ( )( )( )( ) 4

b b b b a a a a b b a a
c c c c c c c c P P P P           (3.3.9) 

 

But there are four different groups of four Eigenfunctions A, B, C & D as in Figure 3.3.4 

below, and we have only been considering group C above.  

                                 A                           B                         C                           D 

 

                

           

     

Figure 3.3.4 Interaction between the four Eigenfunction groups  A, B, C and D  

Using  Eq. (3.3.9), if all other factors are one the amplitudes for the groups in Figure 3.3.4 are:     
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   (3.3.10) 

 

These amplitudes are all numbers as 4 4 4 5 5 5
* , * etc. 

b b b a a a
P c c P c c  are just probabilities. But 

we can perhaps imagine these numbers as in the complex plane. From section 2.2.2 and 
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Figure 3.1.4, however, the three eigenfunctions forming each of the interacting particles are 

born simultaneously. It would thus seem reasonable to assume that the amplitudes of each 

group of three eigenfunctions have the same complex phase angle. So whether they are in the 

complex plane or not, provided they are all at the same angle we can get the overall 

probability of this virtual exchange by simply adding the four amplitudes A,B,C&D from Eq. 

(3.3.10) and squaring the total to get: 

 

 

 

2

2

4 5 6 7 3 4 6 5 4 5 6 5 3 4 6 7

2

4 3 5 6 5

Overall interaction probability if all other factors are one ( )

                       16

                        = 16 ( ) (

b b a a b b a a b b a a b b a a

b b b a a

A B C D

P P P P P P P P P P P P P P P P

P P P P P P

   

   

  
2

7
)

a

 

    

   (3.3.11) 

 

 

Using different colours again for common terms in each of the equations following and then 

using 3 3 4 4 5 5 5 5 6 6 6 6
* * * * * * 1

b b b b b b a a a a a a
c c c c c c c c c c c c        the interaction probability is

      

                            

   
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4 4

2
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2

64
** (1( ) 2 * (1 *) )

b b b ab a a a
A B C D c c cc c c c c      

  (3.3.12)               

We have assumed to here that all other amplitude factors are one. However at each vertex 

there are both fermion and boson superposition probabilities from Eq.   (2.2.4). Writing the 

superposition probability at each vertex /sN dk k  as 1/2 1
/ ,s N dk k  1 2

/s N dk k  for clarity 

where 1 1 
spin 1 ,  1 is etc.s N N   Including these factors (if all other factors are one) in Eq.   

(3.3.12) our overall probability at wavenumber k is  

 
2

1/2 1 6
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2 *2 * (
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(1 )1 * ) *
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k


  

 

The momentum per transfer is a total of  k and using Eqs.    (3.3.5),     (3.3.6) & 

  
4 4

( ) q k  then putting 1  the interaction probability is   

 
   

2

1/2 1 6

2

1 2 4 4 46 6 4

4

6
22 * ( * * )1 * ) (1

a a ba b b ba
s N c cs N c c c c

q

c c 
  

      (3.3.13)
 

This is the scalar interaction probability between two spin ½ fermions exchanging 

infinitesimal rest mass spin 1 bosons at very large spacings, where the fermions are effectively 

spin zero, imagining them as bare charges and all other factors being one. When exchanging 

spin 2 infinitesimal rest mass time polarized gravitons (as in  the bottom half of Figure 3.3.3 

with no 3 momentum) we can simply keep using wavenumber k in the denominator for the 

interaction probability between fermions and gravitons. If all other amplitude factors are one 

this interaction probability becomes (using subscript c for spin 2 and 2
2N N  for clarity): 
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   (3.3.14) 

 

And if, for example, two spin 1 photons exchange spin 2 gravitons (all infinitesimal rest mass  

with 2
2N N  ) the interaction probability if all other amplitude factors are one becomes      

       
   

2

2

2

1 2 4 4 2 4 4 4 44 4

4
 for 2 photons.

2 * (1(1 *2 * * ) )
c cb c cb b b

s N c cs N c c c c c

k
N

c
   

 (3.3.15) 

 

If two massive 1N   photons (as in Figure 3.3.2) exchange spin 2 gravitons the interaction 

probability if all other factors are one becomes 

        
   

2

2

2

1 1 5 5 2 4 4 4 45 5

4
 for 1 photons.

2 * (1(1 *2 * * ) )
c cb c cb b b
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k
N

c
  

 (3.3.16) 

 

According to GR (section 1.2.2) the emission of gravitons is identical for both mass and 

energy. Keeping all other factors (such as mass/energy) in Eqs. (3.3.14),  (3.3.15) and  

(3.3.16) constant, the graviton interaction probabilities must be the same in each. We can thus 

put them equal to each other and cancel out all the common red terms on the RH sides above:
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 (3.3.17) 

 

 

In this special case as in Eq. (3.3.4) we have shown that the time polarized interaction 

probabilities are the same whether 3 momentum is exchanged or not, and this equation for the 

above ratios is identical for both virtual spin 2 graviton and virtual spin 1 photon exchanges. 

Ignoring complex numbers for simplicity, we can use either 4 momentum q or wavenumber k 

interchangeably. Now assume that all other factors (other than coupling constants) are one, 

and remember that we are simplifying with a thought experiment by looking at spin ½ 

superpositions sufficiently far apart so we can treat them as approximately spherically 

symmetric or effectively spin zero, even if they are supposed to be bare charges with spin. 

Under these same scalar exchange conditions QED says that with electrons, for example:   

 

         The probability of scalar spin one photon exchange in Eq. (3.3.13)
2

4

4
= .   

q


  

   (3.3.18) 

(This probability is for one momentum k direction only, but the mode density of these is  

2 2
/k dk  . We can perhaps think of 

22 2

4 2

4 2k dk
dk

k k

 

 

 
   

 
 as an imaginary emission 

probability 
2

,
dk

k




 multiplied by an imaginary absorption probability 

2 dk

k




 in all possible 

directions.  

The rest of this paper is mainly about virtual particles which cannot be experimentally 

detected. However, as we will see, imaginary probability densities can have real world 
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consequences. This is similar to our postulated infinite virtual superpositions being 

undetectable, but the particles they generate can certainly be experimented on in the real 

world.  

This paper uses these imaginary probabilities throughout, as it allows a very simple 

approximate way to look at gravity using only very long wavelength time polarized gravitons. 

We demonstrate how it works in the next section on electromagnetic energy between charges.  

Let us now temporarily ignore the fact that gluons have limited range and imagine our thought  

experiment applying to colour charges exchanging gluons. The   of Eq.  (3.3.18) becomes 

the usual colour coupling 3
 . To get the fundamental coupling ratio labelled as C

 1

3



  

@
cutoff

k  we substitute the   of  Eq.  (3.3.18) with 
1

C
 


  as we assumed 

3
(Primary) 1.   

Substituting 1/2 1
2 1,  2 2,s s 

 1 2
1 & 2N N   and equating Eqs. (3.3.13) &   (3.3.18)         
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1

6 46 46 6
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But from Eq.  (3.3.17) the blue and green terms are equal (also the magenta terms) and we can 

solve for the fundamental coupling ratio by combining Eqs.  (3.3.17) &  (3.3.19).  
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 (3.3.20) 

 

The coupling ratio is fundamentally the same for colour and electromagnetism apart from the 

six primary electric charges of Eq. (3.3.1) because of the way electric charge is defined. 

Equations  (3.3.17),  (3.3.19) &  (3.3.20) tell us that for any interactions between two 

superpositions, the inverse coupling ratio always involves the product of the central 

superposition member probability by the probability of the other two members combined

spinN   of the first superposition, times the equivalent product for the other superposition.  

In section 4 in [24]  we introduce gravity and solve these ratios. Despite all the simplifications 

and lack of rigour, the above equations are surprisingly consistent with the SM, provided there 

are only three families of fermions.  
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4 CP Symmetry and the Matter-antimatter Imbalance  
 

When we drew Figure 3.3.3 we assumed equal time intervals for the diagonal terms, but this 

is only approximately true.  Using Equ’s, (3.1.11)and (3.1.12): 

0

22

2 2

C

nk nk nk

nk sn k s
K

m c
    and

2

2 2 2

2
in :  &  terms 1 of 

1

nk

nk nk nk nk

nk

K
K K

K
   


 so that

 1
nk

  when 1.
nk

K   with  1
nk

   for most values of wavenumber k when exchanging 

photon superpositions in electromagnetic interactions. However when wavenumber min
,k k  

the expectation value 1
nk

K  (see section 6.2 in [24]  ),  and the expectation value of spin 1 

photons is 3.98n  (Table 4.3.1 in [24] ), so that the velocity ratio of the diagonal 4n   and 

5n   terms is very approximately
5

4
 using the above equations, with a similar ratio of the 

elapsed times. As min
k  is approximately inverse to the horizon radius ( 61

10 Planck lengths 

now), any experiments in this current era will almost certainly show mirror symmetry if the 

time axis is reversed (unless the interacting wavenumbers are close to 61
10 .)Lp


  However, 

when matter and anti-matter were forming, the horizon radius was about 16
10  times smaller, 

and min
k 16

10 times larger. The diagonal terms, and the time elapsed in these very early era 

photon exchanges between electrically charged particles, may not have shown mirror 

symmetry, which Sarkarov demonstrated in 1967 is linked with the matter-antimatter 

imbalance [25]. 

  

Figure 4.1 Covariant interaction (as in Eq.        (3.3.4) and Figure 3.3.3) between fermion 

(subscript a) and photons (subscript b and in boxes) eigenfunctions. Orange and magenta are 

used for bosons, blue and green for spin 1/2 to help identify the transitions at each of the four 

spacetime corners. This is one process, but a superposition of two diagonal components 

splitting the 3 momentum k  equally.  

 

 

   

 

  
    

    
  

6a


  5
2 2

 
a

 
k k

  
6a



  

4b
   

6a


  

 

6a


  

2


k
5

2
 

a
 

k
 

 

Space 

Time 

This interaction is only mirror 

symmetric when the two diagonal 

interacting superposition nk
  

component velocities are identical 

which is not true when 
min

1.
k

k
   

6a


  



43 

 

5 Conclusions 
 

In the full previous paper building the SM fundamental particles from infinite superpositions 

[24] we found that they all had to have an infinitesimal mass that was always approximately 

inverse to the causally connected (or observable) horizon radius .
OH

R   

This infinitesimal mass requires an infinitesimal change to GR: 

4 4
(Local)

1 8 8
(Average)

2
.

G G
G T TR

c
TR g

c
    

 
        

In large regions of space the average values of  0 .GT  
    Space is flat and the Freidman 

equation components average zero. QM controls the expansion of space regardless of .  with 

or without inflation.  

Intergalactic voids have (Local)< (Average)T T   with negative G  and .R  

This paper shows that these infinitesimal masses could well relate with the matter-antimatter 

anomaly, especially as these inifinitesimal masses were much larger when matter was forming 

not long after the big bang and the observable radius was still very small. 
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