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Abstract  

 

 
Due to discrepancies in the SN-Ia-cosmology-project, at the time an increasing expansion 
was postulated instead of the previously assumed decreasing expansion. At the beginning of 
this work it is stated that this is a fallacy resulting from mutually contradictory premises, 
mainly geometric damping with and EM wave propagation without expansion. It is shown 
that the prevalent propagation function applies locally only, since MAXWELL's equations 
neither take into account, imply nor condition the expansion of the universe. 

 
In succession, an alternative propagation function with expansion is developed, which 
behaves like the classic MAXWELL solution in the first approximation for z ≤ 0.1. This repeats 
the positive comparison I made earlier with the observational data of the SN-Ia-cosmology-
project supplementing it by the latest high-z data z ≥ 0.9, at which point the MLE model is 
confirmed for this area too. 
 
Applying this model consistently, an additional evaluation mb(r) is carried out. A new, 
unexpected deviation emerges at r ≥ 0.1R. The observational data there is darker than 
calculated. The reason is the HUBBLE parameter, which depends on time and distance. Route 
sections that are further away expand faster than those that are closer. The greater the 
distance, the greater the value of H and the expansion speed v = Hr. With the help of a 
correction factor m from [29], a function mb(r) is set up that correctly traces the deviating 
distribution. This is proof that the expansion rate decreases over time and does not increase. 
 
German version available. Title of: „Beschleunigte Expansion – ein Trugschluß―. 
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2. Author-seminar paper 

 
At the beginning of the last century, the world of astronomy was still in order. Only one 

galaxy was known and the distances to most of the stars in it could be determined by parallax 
measurements  and possibly extended measurements based on them. Then it was discovered 
that, along with our galaxy, there is a huge number of other galaxies as well as galaxy groups, 
clusters and superclusters. Determining the distance to these much larger structures or parts 
thereof using the hitherto existing methods proved to be almost impossible, but was of general 
interest. 

 
Fortunately, Georges LEMAÎTRE and Edwin HUBBLE discovered the law named after latter, 
which states that the further away galaxies, the faster they move from us [v = H0 r]. 
Furthermore, the velocity-dependent frequency shift z of the metallic absorption lines in the 
spectrum of stars was discovered. 
 

Thus, it would have been so easy to use z to determine the distance to the respective objects. 
The problem with it is that we don't know the exact value of H0 respectively, that there was and 
is a huge number of various values – depending on the model used. Therefore, in order to 
calibrate the z-method, we need an alternative method to the determination of the distance. 

 
Since starlight is an electromagnetic phenomenon, it was assumed that it propagates in a 
vacuum according to MAXWELL's equations. What is important here is the so-called geometric 
damping. If we know the ―transmission‖ power, the luminosity L [W] of the celestial body, we 
may calculate the Poynting vector [Wm

–2
] or the astronomical equivalent, the flux F and the 

associated magnitude class mb (apparent bolometric brightness) in that we divide it by the 
spherical surface 4πr

2
. This is the value that the astronomer determines. The problem now, is 

that we don't know the exact value L, or rather that it varies even more than H0, depending on 
the type and size of the celestial body. Therefore, we need a certain type of celestial body 
which can be easily identified, i.e. differentiated from others which has a defined luminosity L 
(standard candle). Such objects really exist. These are the so-called supernovae (SN) of type Ia 
[74]. 

 
These are multiple stars in which a certain type, the explosion candidate, pulls matter away 
from a companion. Thus increases its mass until a critical value is reached. Then the candidate 
explodes as SN-Ia. The process is already very well described by today's model, so that the 
maximum luminosity LIa is known. Since there is a statistical spread of values on hand, we 
need a series of observations to determine the average. A comparison with the distances 
determined by z leads to the correct value of H0 and the world radius R then. Now we are able 
to create a 3D map of the galaxy distribution in the universe using only the z-values, because 
not all celestial bodies are SN-Ia and are just in the act of exploding. 

 
For this purpose, the Supernova Ia cosmology project has been initiated since 1988 [45], [72]. 
From 1994 on, the High-z Supernova Search Team [73] added more observational data. The 
aim of the investigations [45] was to determine the HUBBLE parameter and, of course, which of 
the hitherto established world models comes closest to reality. However, the investigation has 
caused more confusion than it has produced any reasonable results, as we will see. 

 
Comparing the observed (maximum) brightness mb with the respective value mz calculated 
from LIa on the basis of z, it turned out that the measured brightness is slightly smaller, i.e. the 
SN is darker than calculated. The deviation is visible from circa z = 0.1 on increasing more and 
more over and above. Therefore, the objects were guessed to be further away than assumed, 
possibly leading to a greater geometric attenuation. As reason one guessed now, that an increa-
sing expansion (H0 ~ T

n>1
) should exist instead of the previously assumed decreasing (H0 ~ T

–1
) 

one. And because thereof further contradictions arise, the whole issue even comes along in a 
package with fine-tuning, dark energy, dark matter and – oh yes – inflation. 
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Figure 1 

Contradictions in data analysis of 
the Supernova Ia cosmology project 

 
I depicted the whole thing as a diagram in Figure 1, however as a comparison of the two 

distances rz and rm, what's the same in my view. In principle we are concerned with a kind of 
proof experiment that has failed. But what could be the cause of the failure? The data itself can 
be regarded as correct with a clear conscience. The determination of z and mb is not rocket 
science, even with the means of 1988. The actual reason is a so-called informal fallacy.  
 

In [69] it‘s stated: Informal fallacies are, as the name suggests, wrong without any formal reason. Your premises 

are not correct. The derivation itself can be formally correct, but if one of the premises is factually incorrect, the 

argument will not fit either. 
 

Example All philosophers find Plato's allegory of the cave convincing. 

Jacques Derrida is a philosopher. 

As a result, he finds Plato's allegory of the cave convincing. 
 

Formally speaking there is nothing wrong with the argument. The error lies in the first premise, which is factually 

incorrect. With it, the whole argument lapses.  

 
It looks similar when premises contradict each other. I made the effort to illustrate the premises 
used as well as the suspected causes in Figure 1. As it can be seen, all the blame is being 
projected on expansion only. Something can't be right if the supernovæ are further away than 
calculated, so → Accelerated expansion. At the same time however, you can see that we are 
dealing with two contradictory premises here. Once decreasing expansion at z, the other time 
no expansion, stationary state at mb or no matter whether yes or no. On the other hand, it‘s yet 
somewhat surprising that there is no increased geometric damping, since the sphere of the 
wave front is expanding at the same time too. And the surrogate justification Accelerated 
expansion always contradicts one of the premises or the comparison, and is therefore nonsense. 
 

According to [70], the principle ―Ex falso quodlibet applies, rather ex falso sequitur quodlibet (Lat. ‗anything 

follows from what is wrong‘), shortened to ‗e.f.q.‘, more clearly ex contradic-tione sequitur quodlibet 

(Lat. ‗anything follows from a contradiction‘), denotes in the narrower sense one of the two laws valid in many 

logical systems: 

 
1. From a logically – not just factually – incorrect sentence follows each arbitrary statement. 

2. From two contradictory sentences follows each arbitrary statement. 
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[…] According to the ‗ex falso quodlibet‘, any statement follows from a contradictory theory. With it however, the 

theory becomes pointless. A theory from which everything follows cannot be used to make distinctions, cannot give 

us answers to our questions, and cannot help us make our decisions. Thus, the ‗ex falso quodlibet‘ means that a 

contradictory set of premises is worthless in practice. 

 
Therefore it astonishes all the more if both, [72] and [73] praise the Supernova Ia cosmology 
project as evidence of an accelerated expansion. PERLMUTTER probably deserved his Nobel 
Prize for organizing and implementing the actual project, but not for its evaluation. The reason 
is not the investigation itself, but the lack of a correct world model, such as the one in [29], as 
well as one or more incorrect premises. At all, the case in which we obtain the correct result 
using two incorrect premises usually works with incorrect data only. 
 

Therefore, let's return to the increased geometric damping caused by the expansion of the 
spherical surface of the wave front. So it's about the wave propagation itself, i.e. about the 
MAXWELL expressions and the propagation function. Because it works so pretty in the lab, it‗s 
naturally assumed that it also applies to the wave propagation with distances z  ≥ 0.1. What if 
not?  

 
Such a length definitely expands. In the expressions  H=0,  E=0, α=0, β=ω/c and in the 
propagation function E– = E e

jωt–γr
 no extension at all can be found. Therefore, we should 

endevour to find a propagation function with expansion that behaves like MAXWELL‘s solution 
on a small scale. Furthermore, this should also explain cosmological redshift. 

 

In [71] it says: The expansion of the universe must not be interpreted in such a way, that galaxies in space-time are 

moving away from each other (relative motion). It is space itself that expands, the galaxies are carried along 

[correct]. Gravitationally bound objects such as galaxies or galaxy clusters do not expand [wrong]. […] In contrast, 

an electromagnetic wave that propagates freely through an expanding space-time the expansion motion is being 

impressed directly: If space-time increases by a factor ε during runtime, it also happens with the wavelength of the 

light [correct].  

 

This cosmological redshift differs fundamentally from the redshift caused by the Doppler effect, which only 

depends on the relative speed of the galaxies during emission and absorption. Thus, the escape velocities of distant 

galaxies derived from cosmological redshift are directly attributable to the expansion of space-time (recession 

velocity). Already at distances from a few 100 megaparsecs on [z ≥ 0.1] the share of Doppler effect is negligible.  

 

Furthermore, it follows from the GR that the observed escape velocities do not cause relativistic time effects, as 

described by the SR for motions in space. A cosmological time dilation still occurs because the photons emitted 

later by an object have to travel a greater distance due to expansion. Therefore, physical processes with redshifted 

objects appear to proceed [...] increasingly slowly. 

 
You can see that there is a wide variety of models and opinions and the comments [correct] and 
[wrong] are not necessarily relevant either, as they refer to the model described below, in 
which data is used, which is primarily in the local area being accessible by present-day 
technical means. It are in particular the universal natural constants and their relationships with 
each other as well as the electron's charge, mass and similar values as well as the known 
physical laws.  
 
As fundamentals therefore serves a cosmologic model based on a lecture, delivered in German 
language by Prof. Cornelius LANCZOS on the occasion of the EINSTEIN-Symposium 1965 in 
Berlin. See [1] also in English. It‗s a model with variable natural constants with expansion. 
That leads to a reduction of commonly known contradictions, such as those between SR and 
GR with strong curvature, at the redshift in relation to the expression hω = mc

2
 and much more. 

 
Since some of the variable natural constants also affect the observer, i.e. he is affected by them 
himself, some of the changes cancel out. A virtual relativity principle applies. The laws of 
nature just seem to be the same in all frames of reference. 

 
With the help of the electron mass and charge, the relations to the corresponding PLANCK units 
may be precisely determined. That makes it possible to calculate all natural constants outside 
the atomic nucleus as a function of the reference system or space and time to at least 10 
decimal places, including the HUBBLE parameter and the CMBR temperature. Especially 
because of this influence I named the line element appearing in the model the Metric Line 
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Element (MLE). Unlike the MINKOVSKIan line element, it's about a physical object and not a 
mathematical abstraction. 
 
In contrast to similar models based on the hydrogen atom, where the ratio Fg/Fe is 
approximately 1:10

40
, this model is based on the PLANCK length with a ratio of 1:1. The 

theoretical electrotechnics custom notation is used in the work (j instead of i). Deviantly, the 
letter β is used for the Lorentz factor γ, since it is already heavily overused avoiding confusion 
with the propagation rate γ = α+jβ definitely.  
 

 
I. Attention, the PLANCK charge q0 in this model is defined differently than usual. 
 

 
The following considerations are particularly aimed at the development of an alternative 
propagation function for EM waves, as well as its application to the observational data of the 
Supernova Ia cosmology project. See [29] for further information. 
 
 

3. Cosmological model 
 

3.1. Specification of the model 
 
 In his lecture LANCZOS the metrics to be built like a (regular) cubic face centered space-

lattice of MINKOVSKIan line-elements, periodically in all directions. For mathematicians, 
however, these only exist on paper, while LANCZOS regards them more as physical objects. 
Thus, in future, we want to call them Metric Line-Elements with the abbreviation MLE. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 
Cubic face-centred crystal lattice (fc) 

 
 
We accept  LANCZOS‗ assumption. Such a cubic face-centered space lattice (fc) is shown in 

Figure 2. According to [48] Such a system behaves isotropically. Simply let‘s go out from the 
MAXWELL equations, that in fact, even beside the known methods according to [1], should can 
be derived on the basis of an infinitesimal interference on the lattice. Now, at first we want to 
consider these equations less mathematically but more according to their content. 

 
div  B = 0        div  D = ρ 

curl E = –Ḃ     curl H = i + Ḋ       (1) 
 

As well for the electric as for the magnetic field-strength the operator curl for rotation (also rot) 
appears. Let‘s assume that a rotation would really take place here. Thereto we look at the 
model figured in Figure 3 that is to imagine three-dimensional however. 
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3.2. Forces in the model 

 
A ball-capacitor (Figure 3) with the radius rc and the charge of q0 moves on an orbit with the 

angular frequency 0, the radius r0 and the velocity c=const (speed of light). The capacity 
results in C0= 4π0rc. the energy stored in this capacitor in 

 
2 2

0 0
0

0 0 c

q q1
W

2 C 8 r
        (2) 

  

 
Figure 3               
Metric line-elements  
Physical dimensions and mutual coupling 

 
and with r0= 4rc and C0= 0r0 

 
2

0
0

0 0

q
W

2 r
 (3) 

 
Furthermore this energy even should have a mass m0. Since this mass is rotating its mass-

moment of inertia results in 
 

2
0 0J mr   (point-mass)       (4) 

 
According to our formulation, applies0=c/r0 and we receive for the kinetic energy, that 
should be equal to the electric one, 
 

2 2

0 0 0 0

1 1
W J m c

2 2
        (5) 

 
Since the capacitor does not have any mass itself, the mass m0 of the charge is given by 

2 2

0 0 0
0 2

0 0 0

q q
m

c r r
           (6) 

 
The 2

nd
 expression of (6) we get from the known relation 

 

0 0

1
c  ,            (7) 

 
which has a strong similarity with the formula for the resonance-frequency of a loss-free 
oscillatory circuit on the first look 
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00 0 0 0 0

1 1 c

rL C r
       (8) 

 
Then for the centrifugal force (amount) Fz = m0 r0 ω0

2
 applies: 

 
2 2 2

2 20 0 0
Z 0 0 02 2

0 0 0

q q
F q

c r
        (9) 

 
Figure 4 
Magnetic field-strength in one and  
in several conductor loops 

 

Fz is directed outwardly. Expression (9;3) represents with the exception of a factor 1/4 the 
COULOMB law (repulsion), only that there is no second charge, that could wield a repelling 
force, here. Centrifugal force and COULOMB-force would just be of same magnitude. To 
guarantee, that mo doesn‘t vanish in the infinite, a force is required, able to eliminate the 
appearing centrifugal force. Thereto it must be directed contrarily and of same quantity. 

 
Since we are concerned with the circular motion of a charge here, we can even talk about a 

current i0 = 0q0. This current generates a magnetic field at which point even an inductivity 
occurs (1 turn). Simplifying, we now assume, that the inductivity should be L0= 0r0. That 
agrees with the equation for a coil with one turn as well: 

 

0

8r 7
L r ln

r 4
 ,         (10) 

 
in which r represents the inside-radius, r´ the wire-radius of one single short-circuited turn 
(r=1). If r´=0.5114 r applies, the bracket-expression yields 1 and we get the aforementioned 
expression. This is, as said, only a model, since our coil doesn‘t consist of wire. Rather one 
should imagine the charge and current something like „spreaded― across the space. According 
to [20] the magnetic field-strength H0 (in future always figured as vector, H is the HUBBLE-
parameter) in the centre of the conductor loop (left) amounts to 
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0

0

i

2r r0H e            (11) 

 
er is the unit-vector. The negative sign results from the definition of the field-strength as 
difference between zero-potential (r=) and potential in the distance r. Since there are several 
MLEs in the fc lattice whose magnetic fields are superimposed, we finally get for H0: 
 

0

0

i

r r0H e           (12) 

 
and for the magnetic induction 
 

0 0 0 0 0
0 2

0 0

q cq

r r
r r

0 0

e e
B H          (13) 

 
Simultaneously, we are concerned with a moved charge in the magnetic field. So, a 

LORENTZ-force Fm= q0(c B0) will apply. It is directed inside. For the simplification, we want 
to look at the system along the x-axis again. Therefore, we can set for the amount of the 
attractive force Fm= – q0cB0. We get using 
 

2 2 2
0 0 0

m 2 2
0 0 0

c q q
F

r r
             (14) 

 
Expression (9), just with inverse signs. Centrifugal force and LORENTZ-force cancel each other. 
Now, we can determine even the rest-mass of the magnetic field: 

 

2 2 22
0 0 0 0 0 0 0 0

1 1 1
W i L q r m c

2 2 2
       (15) 

 
2

0 0
0

0

q
m

r
            (16) 

 
As it can be proven easily, this expression is identical to (6). Now, we want to determine the 

gravitative attraction of the magnetic and the electric rest mass (we imagine it as point-masses 
in the centre of the orbit). We can write on reason of the mass-equality 
 

2 2 4

0 0 0
g 2 4

0 0

m q
F G G

r r
.             (17) 

 
Let‘s now look at the energy stored in C0 once again (3). Since this represents only the half of 
the total-energy of the MLE, we can write 
 

2
0

0 0
0 0

q 1
W

2 r 2
h          (18) 

 
Then, following expression arises for the charge: 
 

00
0

q c
Z

hh           (19) 

 
In the following, deviating from the historical definition, this charge is named the PLANCK's 

charge or even the charge of the MLE. In this connection, Z0 stands for the vacuum wave-
propagation impedance Z0 =√ ⁄ . This represents because of equation (7) a similarly 
invariable quantity like c. Herewith we have already »linked the lattice-oscillations with 
HEISENBERG‘s uncertainty principle« by the way, as it LANCZOS demands in his lecture. From 
(17) and (19) we get:  

 2 2 2

0 0 0 0 0
g 4 4

0 0

c q qG
F G

r c r

h h
 (20) 
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and after expansion with c
2 

 
2

0
g 3 4

0 0

qG
F

c r

h
         (21) 

 
Now let‘s have a look at the first fraction Gh/c3 somewhat more exactly, so it represents, 

with the exception of a factor of 1/2π, exactly the square of PLANCK‘s elementary-length, how 
we already know it from other models. If we now state that 

 

0 3

G
r

c

h
 (22) 

 
should be, we also get for the gravitational-force expression (14) as well as (9) 

 
2

0
g 2

0 0

q
F

r
 (23) 

 
In brief, we are faced with the PLANCK mass m0, which has the PLANCK charge q0, moving in 
its own magnetic field, at which point the centrifugal force and the LORENTZ force cancel each 
other. Attention, the PLANCK charge q0 in this model is defined differently than usual. 
 
 
 

3.3. The Metric line-element as oscillatory circuit 

 
Having considered so far only the case of electric and magnetic mass which are equally large 

– charge and flux 0 would have its effective-values and m0 would describe an orbit in this 
case – the MLE doesn‘t behave quite so simply. So it suffices however to assume an orbit for 
later contemplations. As already more above suggested, there is an oscillatable system with a 
capacitor and a coil available, that shall (in the moment) be interconnected via a loss-free 
medium, namely the vacuum. So, we can make even an equivalent circuit for it (Figure 5), the 
one of an undamped parallel-oscillatory circuit: 

 
 
 

 
 
 
 
Figure 5  
Equivalent circuit  
of a static MLE 
 
 
 
 
 
 

 
Figure 6  

Courses of charge and induction 
with labelling of the track-points 

 

 Phase-angle  = 2t 

-1.

1. 2. 3. 4. 5. 6.

-0.5

0.5

1.

1

qo Bo

2 3 4 1 56 75
 

  
We already have specified the equation for the resonance-frequency in (8). If L0 and C0 

behave like a parallel-oscillatory circuit however, even all values like q0,0, H0, etc. have to 
change time wise according to harmonic functions. The same even is valid for the distance r0. 
The temporal course of q0 and B0 (H0) in detail of the marked track-points is figured in Figure 
6. The exact track-function arises from (33), (35) and (37) of [29] using the following formula: 
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2
20

0 0 0
0 0

q
W sin 2 t

r
h         (24) 

 
Rearranged to r0 by neglecting the fixe phase-angle π/2 with  =20t: 

 

0
0 0 0

0 0 0 0

q c
r( t) 1 cos 4 t (1 cos 4 t)

2 2 2
    (25) 

 

0rr( ) (1 cos 2 )
2

             or in x and y to      (26) 

 
Figure 7 
Real track-course in the xy-plane 

 

0rx( ) (1 cos 2 ) cos
2

        (27) 

0ry( ) (1 cos 2 ) sin
2

        (28) 

 
The exact course is figured in Figure 7. In the xy-plane it corresponds exactly to the course of 
the envelope of the POYNTING-vector S (like r) of a HERTZian dipole [24]. 
 

 

Figure 8         
Idealized and actual trajectory 
of the MLE in three-dimensional representation 
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For most further examinations, it suffices to go out from an orbit simplifying by 
consideration of effective-values only. Significant is the shape of a dipole (vector E0) by the 
true track-course (Figure 7 and 8), since the charge q0 is equally large at the respective bend 
points of the track however affected with opposite sign. This dipole may be oriented in all three 
directions at will and it corresponds in principle to the HERTZian dipole. 
 

An possible expansion of this of model is achieved by the temporal increase of r0. The model 
however is only valid, if the expansion-velocity of r0 is smaller than c/2. If it is larger, so there 
is no more rotation anyway. The motion proceeds rectilinear as well as curvilinear then. It has 
no more exact track-function declared. That would be also rather pointless, as we will still see 
later. 

 
 

3.4. Disadvantages of the static model 
 
With the described static model, we have realized case (13 [1]) σi = λ and »the direction of 

the main-axes remains uncertain. The smallest interference here can have the consequence of 
an at will strong rotation of the main-axes.« The cause is following: With L0 and C0, it is a 
matter of ideal components. That means, the Q-factor Q0 of such an oscillatory circuit would 
be infinite with it, the bandwidth zero. The resonance-super-elevation is also infinitely with an 
infinite Q-factor however (voltage u0 and current i0). Therefore it has no exact phase and 
amplitude declared. This is just identical to the uncertainty of the main-axe‘s position however. 
 
Another disadvantage is that the model doesn‘t change time wise. That means, all median 
values including r0 remain constant forever. Now it is a known fact however, that the cosmos is 
expanding and the same should happen with the metrics too. Maybe, this is even the cause of 
expansion? We use this supposition as base and formulate our second hypothesis with it. 
 

 
II. The expansion of the cosmos is evoked by the expansion of the metric lattice/ 
 radiation-field. 
 

 
Furthermore, the question of origin and isotropy of the cosmologic background radiation 
remains unanswered. In order to avoid these disadvantages, we want to make dynamic the 
model. 
 
 

3.5. Dynamic model 
 

If we want to achieve an expansion of the metrics, so we must see to take away energy from  
the MLE. Now one assumes yet the vacuum as loss-free, since the propagation-velocity of 
electromagnetic radiation is independent from the frequency. Let‘s introduce the conductivity 
0=1/0, so for the complex wave-propagation-impedance (j is the imaginary unit, as used in 
the electrotechnics) applies 

 

0

0 0

j
Z

j
             (29) 

 
and on reason of (8) for c 

 

0 0 0

j
c

j
         (30) 

 
Two extreme-cases result from it. While (30) passes into equation (7) for a non-conductor, we 
get for an ideal conductor 
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0 0

j
c           (31) 

 
Therefore generally applies: in a loss-affected medium, the wave-propagation-impedance 
becomes complex and with it c too. Since c determines the propagation rate  = +j = j /c, the 
attenuation rate would become unequal to zero and even moreover frequency-dependent with 
the appearance of an imaginary part of c. It applies 
 

2

0 0

0 0

1 1
1 1 sinh arsinh

c 2 c 2
      (32) 

 
That means, additionally to the geometrically caused damping an additional damping e–x 

would appear and one could define a lower cut-off frequency for the space (–3dB/). Only if 
the conductivity is zero, that wouldn‘t be the situation. All this does neither has been observed 
in the vacuum and the wave-propagation occurs with light speed for all frequencies. The 
vacuum just acts like an ideal non-conductor [20]. 

 
Nevertheless, we want to try to find a solution, taking all these facts into account. At first we 

extend our equivalent circuit by the loss-resistor R0R (Figure 9), index R stands here for a series 
connection of circuits, as well as by the shunt-resistor R0. 

 

 
 
Figure 9 Figure 10 
Equivalent circuit with Equivalent circuit with 
series-resistor shunt-resistor 

 
With our further contemplations, now we have to decide in favour of one of both equivalent 
circuits. For the conversion of both impedances applies 

 
2

0
0

0R

Z
R

R
            (33) 

 
We decide in favour of the second model, since a very large loss-impedance is the best appro-
ach to a non-conductor. Starting with Figure 9 we first define the loss-impedance R0R which 
must be obviously very small in this case, in reference to a cube with the edge length of r0 to 
 

2

0R 0R

0 0

1 r 1
R A r R

A r
      (34) 

 
From it we obtain for R0 

 
2

0 0 0 0R r Z               (35) 
 
Evidently, our MLE is a system of second order. By introduction of R0, we can now define 

even two time constants, namely 
 

0 0 0L C   and  1 0 0R C          (36) 
 
With 0, a time-constant of second order, it is with largest probability a matter of the reci-

procal of the angular frequency of our MLE. Which value in the nature then now that 1 can be 
assigned to? An additional temporal damping of electromagnetic waves doesn‘t appear as you 
know. Since R0 has to be very large, then the same is applied to 1. We now assume that 1 can 
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be identified with the reciprocal of the HUBBLE-parameter H. This hypothesis is substantiated 
by the fact that H is a time-constant of first order, whatever is valid for 1 too. We can write 
then 

2

0 0 0 0

2

0 0 0 0 0 0 0 0 0 0

r 1 1 1
H

r R C r L C

&
.        (37) 

 
Furthermore generally applies H = n/t; n is a constant factor which depends on the used 

model (radiation-/dust-cosmos), t is the time and equates with the age here. Next we want to 
define the Q-factor of the oscillatory circuit according to [5] 

 
2

0 0 0 0
0 2

0 0

W R
Q

P u

h
         (38) 

 
and because of u0= – 0 0 as well as ([29] 36) 

 

0 0
0 0 0

0

0
02

0 0

R R 2
Q Zr

Z

h
    (39) 

 
The numerical value according to [29] is about 8.3404711·10

60
. If we go out from the last 

expression of (37), we can even write for H 
 

2

0 0 0 0 0 0

0 0 0 0 0 0 0

c
H

r r Z Q
         (40) 

 
Now we could think, up to the determination of H it is far no more. Unfortunately, the value of 
0 is unknown however. It can be received e.g. from the astronomically determined value of H. 
But we use the current values from [29]. 

 
3

0

0

c

G Hh
           (41) 

 
with 1.36977766·10

93
 AV

–1
m

–1
. In this connection a value of 68.6241 kms

–1
Mpc

–1
, has been 

set up for H, that is 2,223925·10
–18

s
–1

. Possibly, this value is rather not the correct one. One 
recognizes the magnitude of 0 however. Furthermore applies GhH = const 
 

Now that further on our model. Using the relationship H = n/t and the third expression of 
(37) we are already able to determine the time-function of r0 

 

0

0 0

t
r

n
     and       (42) 

 

0

0 0

1 1
r

2 n t
&           (43) 

 
with it we get for the HUBBLE-parameter H 

 

0

0

r 1
H

r 2t

&
  and  0 0

2

0

r r
1

r
q

&&

&
    (44) 

 
just the relationship for a radiation-cosmos. This is nor further remarkable, since we have 
assumed the MAXWELL equations however. q is the dilatory-parameter (do not confuse with the 
charge). It follows n=1/2 and we can write 

 

0

0 0

2t
r      and  0

0 0

1
r

2 t
&        (45) 
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2

0 0 0 0 0R C r
t

2 2
            (46) 

 
 
 
 

4. Further contemplations 
 

4.1. Definition of further base items 
 

At first the base items of the theoretical electro-technics. They apply independently from the 
model (47). Beneath (48) the most important PLANCK-units are shown. The introduction of the 
specific conductivity of the vacuum turns out to be the missing link among each other and even 
to other values. 
 

0 0

1
c     0 0 0

0

0 0 0

L
Z

C q

E

H
    (47) 

 

0 3

0 0

G 2t
r

c

h
     

2

0 0 0
0

0

c
m

G Z

h
0 0 0 0Z q Zh h   (48) 

 
One single line-element can be specified by the model of a lossy oscillating circuit with 

shunt resistor (FIgure 10). One special property of that model only is, that the Q-factor of the 
circuit equals the phase angle 20t of the Bessel function. It applies Q0 = 20t. The value 0 
corresponds to the PLANCK-frequency in this connection. 
 

5

0
0

0 00 0

c 1 c

G 2 t rL Ch
  0

0 5

0

t1 G
t

22 c

h

     

 (49) 

 
2

0 0 0
0 0 0 0 0 2 2

0 0 0

R R 2 tc
Q 2 t r Z

Z v

h

  

    (50) 

 
2

0 0 0 0 0
0 2

0 0 0 0 0 0 0 0 0 0 0

r 1 1 1 1
H

r R C L C r 2T Q

&
   (51) 

 
Except for the quantities of subspace μ0, ε0, κ0 and c all other ones are functions of space, time 
and even of the velocity v with respect to the metric wave field. The reason is, that the 
spatiotemporal function of the metric wave field should emulate the relativistic effects and it 
really does. The GR-dependencies aren‘t considered here furthermore. 
 
That makes the PLANCK units depend on the frame of reference, which is even defined by 
them. And all of them are bound by the phase angle Q0. But the variations mostly cancel each 
other creating the impression, that the values are constant. Reference-frame-dependent values 
are marked with a swung dash e.g. Q

~
0 being constants by character. 

 
Still important are the values with a phase angle Q1 = 1. They describe the conditions directly at 
the particle horizon. They are constants too, because they are defined only by quantities of 
subspace. Thus, they are mostly qualified for reference-frame-independent conversions of 
certain values, so-called couplings. One example is the conversion of the magnetic flux υ1 to 
the magnetic field strength H1 = υ1/(μ0r1

2
) as basis of a temporal function containing reference-

frame-dependent elements (r0). r1 would be the so-called coupling-length then. Expression (54) 
shows the relations to the PLANCK-units and to the values of the universe as a whole. 

 

L0    = µ0 
r0 C0 = ε0 

r0 

R0R = 1/(κ0 
r0) Series resistor 



17 
 

17 

1

0 0

1
r

Z
1 0 0M h 0 0

1 1

0 0 1

1 1
t

2 2t
     (52) 

 

2 2 2

0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0R Q r Q r M Q m T Q t Q t Q Q H   (53) 

 

1 1 0 1 1 0 1 0Z q Z Qh h h h
   

           (54) 

 
The action quantum ħ1 and ħ̂ 1 is not a quantity of subspace, but the initial action, our universe 
„got― in the early beginning. That value is the only one „set-screw―, with which „one― could 
exert influence on the future appearance of the universe. All other values are „hard-wired― with 
Q0 depending on space and time. There is no „fine-tuning― either. With expression (48) right-
hand and (54) it‘s about an effective value, i.e. ħ, υ0 and q0 are temporal functions too. At least 
still the definition of NEWTON‗s gravitational constant: 
 

3 3
2 2 0

0 0 0 0 1 0

rc 2c t R
G c c

H M mh h
 (868 [74]) 

 
With these relationships we are now able to set up a differential equation for the oscillating 
circuit. Let‘s have a look at Figure 11. 
 

Figure 11   
Voltages and currents 
at the oscillatory circuit 

 

4.2. Differential equation and solutions 
 

4.2.1. Specification of the differential equation 
 
 
We have a parallel-oscillatory circuit with the inductivity L0, the capacity C0 and the loss-re-

sistor R0 on hand. Furthermore, the voltage u0 is connected to all components simultaneously. 
In the node A the three currents i1, i2 and i3 unify. The KIRCHHOFF‘s first law applies: 

 
i1 + i2 + i3 = 0          (55) 

 
Furthermore applies because of u0 = d0/dt and 0 = i1L0 

 
 

1 0
0

d(i L )
u

dt
         (I) 

 

0 2

0

1
u i dt

C
       (II) 

 

0 3 0u i R     (III) 

 
 

Now equation (I) can be resolved as follows 
 

1 0 01
0 0 1

d(i L ) dLdi
u L i

dt dt dt
        (56) 

 
and we get the following differential equation 

3

0
0 0

c
G Hh
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0 0
1 1

0 0

L u
i i

L L

&
&  or         (57) 

 
y´+ f(t) y  = g(t)        (58) 

 
0 0

0 0

dL dL
dtf (t)dt L dt L

0M(t) e e e L .          (59) 

 
Now, we are able to resolve for i1 [21] 

 

1

1
i g(t)M(t)dt C

M(t)
        (60) 

 
With C = 0 we get then 

 

0
1 0 0

0 0 0

u1 1
i L dt u dt

L L L
        (61) 

 
Now, we rearrange equation (II) for i2: 

 

0 0 0 0
2 0 0

d(u C ) du dC
i C u

dt dt dt
       (62) 

 
We receive the value of i3 directly by rearrangement of (III) so that we can write 

 
 

1 0

0

1
i u dt

L
        (I) 

 

0 0
2 0 0

du dC
i C u

dt dt
    (II) 

 

0
3

0

u
i

R
            (III) 

 
 
Put into (55) we obtain 

 

0 0
0 0 0

0 0

du dC1 1
u dt C u 0

L dt dt R
       (63) 

 

SInce u0 = υ· 

0 equation (63) turns into 
 

0 0 0 0 0

0 0

1 1
C C 0

R L
&&& &         (64) 

 
and after division by C0 

 

0
0 0 0

0 0 0 0 0

C 1 1
0

C R C L C

&
&& &   .        (65) 

 
This is the differential equation of a parametric amplifier. But on reason of the definition of 
C0 = 0 r0 we also can write 

 

: 
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0
0 0 0

0 0 0 0 0

r 1 1
0

r R C L C

&
&& &    .         (66) 

 
Of course it is somewhat difficult to imagine, that the capacitor quasi shall grow with the 
metrics. But considering C0 as a basic quality of space, whereat its size depend on the 
dimensions of the MLE, it should be somewhat less difficult however. If we now assume, that 
no expansion would take place at all, equation (66) would change into the normal differential 
equation for a loss-affected oscillatory circuit with shunt-resistor with the well known solution: 
 

2

0

0 0 0 0

1 1

L C 2R C
  .          (67) 

 
Then however, we would get for the speed of light: 
 

2

2

0 0 0 0 0

1 1
c

2 r
  ,           (68) 

 
That would even mean that the (maximum-)speed of light is not constant. The constancy of the 
light speed however is a basic statement, that we may not negate. To the luck our metrics is 
expanding and the first partial factor of υ0 in equation (66), namely H is 0. According to (37) 
furthermore both augmenters are identically and we can write 

 

0 0 0

0 0 0 0

2 1
0

R C L C
&& &   or       (69) 

 
2

0 0 0 0 02H 0&& &          .      (70) 

 
Equation (70) is very interesting. If we want to determine the time-function of υ0 however, we 
now have to insert (39) and (40):  

 

0
0 0 0

0

1
0

t 2 t
&& &         or      (71) 

 

0
0 0 0

0

1
t 0

2 t
&& &          .      (72) 

 
With it we have laid down the differential equation for our model. When studying the 
literature, this type of differential equation has not been found and POOLE's equation [17] did 
not achieve the goal either. For the first time solution in [29], only an integration with the 
power series approach [21] comes into consideration. Since I will have found a better solution 
way later on (same result) and we will need the image function anyway, I would like to present 
the alternative here. 
 
 
 
4.2.2. Solution by LAPLACE-transformation  

 
LAPLACE-transformation: Also suitable for solving the differential equation, provided that 

the inverse transformation is possible. So we start from (72) and determine the image function: 
 

y x   +   y +  a y   =   0             (73) 
 

According to the differentiation-rule [22] applies:  
 

L  {y} =  p y(p) –         mit   =      (74) 

 

f 0

(0 )
f 0

( )

t0
lim

d f (t )

dt

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Fortunately we have already solved the differential equation in [29] and know the initial values 
for t = 0. Therefore applies:  

 
L  {y} =  p y(p) – 1   .       (75) 

 
We get for the second derivative: 

 
L {y } =  p2y(p) – p  –    with the initial values 1 and 0  (76) 

 
L {y } =  p2y(p) – p         (77) 

 
We require the LAPLACE transform for the product of y and t however. According to the 
multiplication-rule and (75) applies: 

 
L {tn f(t) } =  (–1)n F(n)(p)        (78) 

 
dy (p)

dp

''
   =  2p y(p) + p2 y (p) – 2p y(p)      (79) 

 
L {y t} = 1 – p2 y (p) – 2p y(p)       (80) 

 
Substitution in (73) results in: 
 

2

a p
y (p) y(p) 0

p
   with the solution        (81) 

 

2

1

a p 1a adp CCp p p 2pt1

1

C a 1
y(p) e e e e

p p 2pt
   (82) 

 
The function InverseLaplaceTransform[υ1 E^(–(a/p))/p,p,t] really turns out expression (87) 
now. That equals the general solution with the hypergeometric function 0F1. 

 

0 0 1y a F ;1; Bx                  (83) 
 

1
2b 1

0 1 b 1F (;b;x) (b)( jx) J ( j2x )            Hypergeometric function 0F1 as per [17] (84) 
 

Jn is the Bessel function of n-th order, just 
 

0

0 1 0F (;1; Bx) (1)( jBx) J ( 4Bx )              (85) 
 

0 0y a J ( 4Bx)              with   0
0 i

0

1
ˆa 2 B x t

2
/   (86) 

0 0 0 0
0

0

0 0

2 t
a (J a Q )J            (87) 

 

0 0
0

0

0a 2J t
2 t

    

 with    0
0

02 t
     (88) 

 
If we take a closer look at the root expression of equation (88), it should be equal to the angular 
frequency ω0 and depend on time. The bracketed expression is the same as the term 2ω0t = Q0 
then. Since it´s about a differential equation of second order and the degree of the Bessel 
function is integer, the universal solution is: 

 

0 i 1 0 0 2 0 0
ˆ (c J (2 t) c Y (2 t))        (89) 

 
Even in this case c1 and c2 can be imaginary or complex. According to [22] it‘s often opportune 
to consider the two functions (Hankel functions) 

 

0

(1)

0 0H (x) J (x) Y (x)     and        (90) 
(2)

0 0 0H (x) J (x) Y (x)            (91) 

f 0

(0 )
f 0

(1)
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as linearly independent solutions forming the universal solution 
 

(1) (2)

1 0 2 0y(x) c H (x) c H (x)         (92) 
 

With it, the general solution (89) reads then: 
 

(1) (2 )

0 i 0 0 0 0
ˆ (H (2 t) H (2 t))          (93) 

 
For our further examinations, we set c1 and c2 in (92) equal to 1. Then we get as specific 
solution (94) and for the approximation, envelope curve and effective value: 
 

(1)

0 i 0 0 i 0 0
ˆ ˆJ (2 t) Re(H (2 t))        0

0 i 0

0

2 t
ˆ J        (94) 

0 0

0

2 1
cos 2 t

42 t
    Approximation  (95) 

 

i
0

0

ˆ2
ˆ   

2 t
         Envelope  (96) 

 
1
2 11

0 0 0 0 0

0

0 0  q qQ Q
2 t

: : :h  Effective value  (97) 

 
The exact course of 0 (94), the approximate function (95), as well as of the approximate 
function of the envelope curve (96) and of the effective value (97) is shown in Figure 12. Also 
depicted are the original Bessel functions, which you can‘t see however, because they are 
completely covered by the approximation. 
 

 
 
Figure 12 
Course of magnetic flux as well as of approximation-  
and envelope-functions across a greater time period 

 
Thus, with greater arguments, no differences are statable, neither in the amplitude, nor in the 
phase. Most important for the quality of the approximation is the course in the striking distance 
of t = 0. The exact course of 0 as well as of the envelope functions (96) and (97) for small and 
very small values of t is shown in Figure 13. The course of the 1

st
 derivative q0 = ħ/υ0 J1(2ωt) 

([29] 123), has been omitted.  
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Figure 13 
Course of flux as well as of the approximate-  
and envelope-functions nearby the singularity 

 
All data up to this point is a summary. Please see [29] for the exact derivation. From this 
section we take over the time function (93), the PLANCK frequency ω0 and, because of c = ω0r0, 
the definition of the PLANCK length r0.  
 
 

4.3. Laplace-transform 
 

4.3.1. Time domain 
 
The time function (93) describes the course of υ0 in the particular MLE. This is very 

important, but we are much more interested in the transfer function for EM waves. The idea 
behind this model is that these waves propagate as interference of the time functions of the 
individual MLEs connected in series. To do this, we first need to determine the frequency and 
phase response of a single MLE. The LAPLACE transformation is advantageous for this purpose. 
 

(1) (2 )

0 i 0 0 0 0
ˆ (H (2 t) H (2 t))             Time function (93) 

 
4.3.2. Figure domain

1
 

 
To do this, we first need the figure function. We have already calculated this in the previous 

section. Starting from (72), we can therefore write 
 

0
0 0 0

0

1
t 0

2
&& &             Differential equation (72) 
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a p 1a adp CCp p p 2pt1

1

C a 1
y(p) e e e e

p p 2pt
  Figure function (82) 

 
C1 has the form of a time constant. With the primary function it‗s about a differential equation 
of 2

nd
 order with only one time constant 1 = 1/(2a) = 0/0 = 1/ω1 = 2t1 which occurs twice. So 

we do not have the problem of deciding which time constant belongs where. The value 

                                                 
1
 Alternative names: complex variable domain, s-domain, we use p instead! 
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resulting from H0 [49] has a magnitude of 6.46396·10
–105

s. In the figure domain with C = –1 
then applies to the magnetic flux: 

 

1

1
Cpi

0
1

ˆ
(p) e

p
           (98) 

 
For signals with a duration of t» 1 it‘s about an ideal I-gate (Integrating circuit) with a kind of 
inverse T-gate (Dead time circuit). It would be interesting too in that sense, to find the type of 
function, the model was activated with at the point of time t =  0. Comparative contemplations 
lead to the conclusion that it could have been a DIRAC-impulse (t) with the LAPLACE 
transform L {(t)} = 1, which even agrees with the model of big bang in the best manner. The 
multiplication in the figure domain, corresponds to the convolution in the time domain: 

 
 

0
0 i 0

0

2 t
ˆ (t) J         (99) 

 
At the beginning, there was the »NOTHING« with the physical qualities 0, 0 and 0. Then, 

something was there suddenly (magnetic DIRAC-impulse). The DIRAC-impulse is an impulse 
with infinite amplitude and a duration of t0. The integral below this impulse is equal to 1. 
This would speak in behalf of a finite initial value (Bessel-J). The response of the model 
(overshoot with a mean value of 0) can also be observed on electronic systems of second order 
using a DIRAC-like agitation (needle-impulse) but not using a jump- or ramp-function. The 
DIRAC-impulse is already known for a long time. Using technical methods however it won‘t be 
to realize whether at present nor in future. So far, there were even no parallels in nature, only in 
form of an approximation as needle-impulse. This way, another mathematical function would 
have found its exact correspondence in reality.  

 
In any case, it‘s about a forced process. On the assumption, that it was actually a DIRAC-

impulse, we get promptly for the transfer-function G(p): 
 

1

1
Cp

1

1
G(p) e

p
          (100) 

 
Btw. the figure function of the simplest I-gate, the generic RC-low-pass-filter, reads 
G(p) =K/(1+pτ1). The course of the transfer-function for the magnetic flux and of the charge q0 
(first derivative) is depicted in Figure 15, at first by setting C = 0, since it has only an influence 
on the scale of the y-axis. Both functions point out a null at p = +0, a pole at  p = –0 and a 
maximum at the point of time 1 resp. 1/2. For longer impulses, the function changes into the 
one of an ideal I-gate. The contradiction in the earlier editions (D-gate, high pass) rather should 
have pointed out the error in (82) to me. 

 
The PN-diagram doesn‘t need to be figured separately, null at p = +0, pole at p = –0. The num-
ber of poles is equal to the number of the nulls (realizability-condition). There are no pole in 
the left half-plane p<0 (stability-condition). Since the pole is located at the point 0, the system 
is loss-free anyway but still a passive component. That state is also named marginally stable. 
 
With pole in the left half-plane, the system could come into an oscillation by itself. With pole 
in the right half-plane at p > 0, losses appear, so that the oscillation grinds to a halt after a 
certain time, in contrast to reality, where oscillation whether hasn‘t yet faded away even today 
nor probably in the future. The null in the origin (+0) points to a blocking of higher 
frequencies. 
 
Physically speaking it‘s about a low pass. Since the null is in the right half-plane (p≥0), it‘s just 
about a minimum-phase-system. Systems of this category have, according to [26], the quality 
of attenuation and phase being associated by the HILBERT-transformation. Since there are no 
conjugate complex pole available, even no resonance-effects appear.  
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Figure 14 
Transfer-functions (figure domain) 
for magnetic flux and charge (C=0) 

 
From the figure-function we have read that it deals with a low pass of 2

nd
 order. In general, 

such a system has a frequency-dependent attenuation. However, this stands in contradiction to 
the observations, resulting in a constant frequency response across all (technically observable) 
frequencies.  

 
 

4.3.3. Frequency domain 
 

To the calculation of the complex frequency response of our model we start with equation 
(100), in that we replace: p =  + j A substitution p = j doesn‘t emerge any useful result, 
since the system is still oscillating so that the associated Fourier integral doesn‘t converge at 
all. The convergence is forced by the term . The frequency response of the magnetic flux 
gives also information about the vacuum wave propagation, since the separate dipoles (MLE) 
are interconnected via the magnetic field (resonant coupling). The value of  arises from the 
half inverse of the right-hand time constant of (71). The free parameter can be determined to 
C = 1 with the help of the initial condition G(j) = 1. 
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1 1
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That yields the following expression (complex frequency response): 

 
2

21

2

e
G(j ) cosθ sinθ j sinθ cosθ

1
    (103) 

 
The locus curve of frequency response in comparison with the one of a generic low pass is 
shown in Figure 15. Since both curves don‘t cut the y-axis, there is no aperiodic borderline 
case in this system.  
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Figure 15 
Frequency response locus curve 

 
For frequency and phase response we get further 
 

2

21

2

1
A( ) e

1
          (104) 

 

2

sinθ cosθ
B( ) arctan arctan

1cosθ sin θ
          (105) 

 
We have got the right-hand expression of (105) by means of subtle application of the cor-
responding addition theorems and substitution. In this connection –arctan Ω relates to the I-
share, ζ to the inverse T-share. Both functions (BODE-diagram) are depicted in Figure 16. The 
damping course (–6 dB/decade) points to a system of 2

nd
 order.  

 
Interesting is the cosine of the phase response cos B() = cos υas well. This value is used 

e.g. in the electrotechnics for the calculation of efficiency (power). It figures the size of the 
mutual coupling factor of the separate MLE‘s. Interestingly enough, because of cos υ = cos (–υ), 
this value is not affected by the above mentioned error in (82). 

 

2 2cos cos arctan cos arctan
1 1

   (106) 

 
Then equation (103) also can be written in the following manner: 
 

2 2
2

2 2

1
ln (1 ) j

21 1

2

1
G( j ) (cos jsin ) e e

1
    (107) 

 
Figure 16, the BODE-diagram shows frequency- and phase-response up to ω1/10, after expan-
sion until ω0/10, that‘s at least 1.855·10

42
s

–1
 resp. 2.952·10

41
Hz, to be equal to 1 (0dB) 
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constantly, exactly as observed. Technically speaking we are light-years away from the upper 
limit. There is also a lower cut-off frequency given by the requirement, that the wave length 
λmin = 2cT must fit the universe‘s extension. The value ωmin is equal to the HUBBLE-parameter 
H0, as can easily be proved. 

 
Figure 16 
BODE-diagram: Frequency response A(ω) 
and phase response B(ω) of the system 

 
The course of cos υis shown in Figure 17. Furthermore the course of the second term in υis 
depicted. You can see that it only takes effect from frequencies near onwards. 
 

 
 
Figure 17 
Course of phase angle,  
cos φ and of the expression θ 

 
Finally, the phase- and group delay in dependence on the frequency should be examined. Both 
functions are depicted in Figure 18. They are defined in the following manner: 

 

Ph 2

B( ) 1
T (arctan )

1
 Phase delay  (108) 

22

Gr 2
1 1

2 θd
T B( ) 2

1d
     Group delay      (109) 
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Figure 18 
Group- and phase delay 
 

 

It are the same functions as with the wrong solution, but just negative. Are negative delay 
times physically possible? The answer is – Yes. That comes about very frequently in techno-
logy and is not a breach of causality. See [50] for details. 
 

 

 

 

4.3.4. Properties of the model 

 

The following statements are applied to one single MLE only. More exact statements for 
wave-propagation as such are worked out later. You can see here quite clearly that fre-quency- 
and phase-response proceed approximately exact straight-line (0 dB) until one third of the 
frequency 1 and that phase-true. A noticeable attenuation and phase-shift does not occur until 
approximate one tenth of 1. Since the amount of 1 is so extremely high (the supreme measu-
red frequency, cosmic radiation is about 10

42
Hz), this effect does not have been observed so far 

however. 
 

The amplitude ascends around 1, only to descend again irrevocably (Figure 16). There 
actually turns out a slight high-pass-behaviour within a low-pass. However, since the value 
cos  strongly declines above 1 /2 (Figure 17), and with it the mutual coupling coefficient of 
the MLEs, both influences cancel each other, a mere hillock remains (Figure 19).  

 
The frequency response across two MLE‘s with the coupling coefficient k = cos υ is shown 

in Figure 19. The damping course (–12dB/decade) points to the fact, that it‘s about a group-
delay-corrected low pass of 2nd order. The expression 1+2 even occurs in the filter-theory 
and corresponds to the form-factor of a calibrated equally-tuned dual-circuit filter with 
identical attenuation-course [26].  

 
With respect to the sampling-theorem we expect, that only frequencies below 0 /2 are 

transferred. Strictly speaking, the previous statements apply to the universal wave-field only in 
accordance with [1]. The propagation of radio waves or photons, as we understand, in reality 
takes place as propagation of interferences of this wave-field. Since the MLE‘s figure non-
linear systems, several side frequencies occur. But only the sum- and difference-frequency 
0± are important. With the other frequencies, no power-conversion is achieved (property of 
a non-linear circuit). But for the cut-off frequency of overlaid signals only the sum frequency is 
relevant. Since overlaid signals are being more red-shifted than the universal wave-field, the 
„relative cut-off frequency―, i.e. the spacing between the overlaid frequency ω and the cut-off 
frequency ω0/2, ascends continuously with rising age.  
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Figure 19  
Frequency response for the transfer  
to the adjacent MLE 

 
The course of group delay shows that the ―processing‖ of changes in the magnetic induc-tion 

of lower frequencies actually takes place ―instantaneously‖. The transfer to the adjacent MLE 
takes place on the basis of a resonance-coupling with a phase-shift of π/2 = 0tv. For the delay 
time tv we get the following expression then: tv = π/(20) = π r0 /(2c). For the transfer rate of c 
(the half circumference of the field-line of the vector H0 proceeding through the centre of the 
track graphs of both MLE‘s is equal to π r0/2), we receive an amount of: 

 

0

v 0 0

r 1
c c

2 t
       (110) 

 
With it, the vacuum-wave-propagation-velocity directly arises from the phase-shift /2, 

which comes about with magnetic resonance-coupling of two oscillatory circuits. This effect 
even can be observed in technology with discrete components, which is figured in [26] extensi-
vely. With frequencies near ω1the phase delay TPh, multiplied with 2, has to be added to tv. 
However, an accurate formula for c for this case (critical photons) cannot be stated at this 
point, because we consider the single MLE only. We will work out an exact expression for the 
wave-propagation-velocity in section 5.3.2.5. being valid near t = 0 as well. 

 
Further, we can say, that the propagation-velocity c decreases the more approaching to ω1. 

However, this value exactly corresponds to that value, at which the track-curve (Figure 7) is no 
longer defined. A phase-transition occurs, the rotation ends. There is only the straight-line-
expansion then. 

 
With it the phase-shift to the adjacent MLE also adds up and achieves a value of , a 

destructive interference appears, a wave-propagation isn‘t possible at all (coupling-factor 
k = cos(π/2) = 0). Furthermore, c and also the wave impedance Z become complex, with the 
effect, that real and imaginary part take on the same value. That‘s the case of an electrically 
conductive medium.  

 
All that arises from the going smaller and smaller value of R0, resulting from descending r0, 

and the Q-factor. That means, the impedance achieves the magnitude of the complex 
impedances XC and XL short-circuiting them more and more. Above ω0, R0 only determines 
the behaviour of the system then (electric conductor). However this is not applied to the wave-
field as such. Reverse behaviour appears here. Near t = 0 as well as  = 0the field-wave 
impedance behaves like a non-conductor. First at larger distance, the behaviour approaches the 
one of an ideal conductor, as we will still see later. Decisive for it is the mutual coupling-factor 
of the MLE‘s however. 
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Now a wave-propagation-velocity different from c does not contradict our primary 
assumption c = const and nor the SRT for so long, while its value is smaller or equal to c. This 
is always guaranteed even with frequencies near 1respectively in the time just after the big 
bang. The previous results don‘t just stand in contradiction to prevailing discoveries. 

 

5. Propagation function 
 

First, we briefly want to review the classic theory of MAXWELL's equations in order to work 
out, using analogies, an alternative solution that meets the requirements of our model. The 
equation-system (111) is under-determined, so that there is more than one solution fulfilling 
these equations. 
 
5.1.  Classic solution for a loss-free medium 

 
In accordance with the previous discoveries, the cosmic vacuum seems to be a loss-free 

medium. It applies  = 0 (space-charge-density) as well as  = 0. To the reminiscence here the 
MAXWELL equations once again: 

 
 div B = 0       div D = 

 curl E = – Ḃ curl H = i + Ḋ       (111) 
 

Furthermore applies: 
 

        D =      E       B = H i = E 
 

 curl E = – Ḣ curl H = Ė           (112) 

curl curl
t t

H E
E H  

 
The solution will be skipped here because I presume that it is known to the reader, if not, see 
[29]. Finally, we receive for μr = εr = 1 

 

 

2

2 2

1
0

c t

E
E E    

2

2 2

1
0

c t

H
H H      (113) 

 
 is the D‘ALEMBERT-operator. Simplified with propagation in x-direction only: 

 

0

2 2

2 20

d d

dx dt

EE
   0

2 2

2 20

d d

dx dt

HH
     (114) 

 
After division by d2E resp. d2H, multiplication with dx2, division by μ0ε0 and subsequent 
extraction of the square-root, we will receive the known expressions for the wave-propagation-
velocity c (phase- and group velocity) as well as the field-wave-impedance ZF = μ0c: 

 

0
F 0

00 0

dx 1
c c Z Z

dt
     (115) 

 
The underlining stand for complex values. Since the product μr 

εr is always larger than 1, the 
maximum wave-propagation-velocity is equal to c. It has an all-pass-behaviour on hand, no 
lower cut-off frequency exists and the wave-propagation-velocity is independent from the 
frequency. For the propagation rate γ applies: 

 

   =   α + j β     =    ± j ω /c    =    ± j ω √       (116) 
 

In this connection is  the attenuation rate (α = 0) and β the phase-rate. Except for the 
geometrical attenuation (S ~ r 

–2) in this case just no additional attenuation appears. Then, for 
the propagation-function (into x-direction) we get (analogously for H——): 

 

Divergence · F = div F 

Rotation × F =  rot F  =  curl F   

Nabla  = (∂/∂x, ∂/∂y, ∂/∂z) 

Laplace ∆  =  (∂2/∂x2, ∂2/∂y2, ∂2/∂z2) 
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t x(t x/c) jje eE E E          (117) 

 
This solution is good for normal extents, which normally occur in nature, but fails with the 
Supernova Ia cosmology project at x ≥ 260 669 Mpc (z ≥ 0.1). The reason is that this model does 
not take into account, imply, or condition either expansion or cosmological redshift in any way. 

 
 
 

5.2.  Classic solution for a loss-affected medium 
 
At a loss-affected medium (e.g. water) ρ = 0 applies as well as κ > 0. E– and H—— are understood 

as complex time-functions. Equation (112) is then: 
 

curl curl
t t t

H E
E H    (118) 

 
When propagating in x direction only, it leads to the following solution: 

 
2 2 2 2

2 2 2 2

d j d d j d

dx dt dx dt

E E H H
        (119) 

 
That would be a case with E ≠ 0 and H ≠ 0 then. For μr 

= εr = 1, we get after division by d
2
E– 

as well as d
2
H—, multiplication with dx

2
, division by the double bracketed expression, deparen-

thesizing of –j and extraction of the root the known expressions for the propagation-velocity 
c = dx/dt and for the field-wave impedance ZF: 

 

0
F

0 0 0

jj
c Z

( j ) j
     (120) 

 
The propagation-function is the same like (117) however with the variant values for α and β 

(121). For κ = 0 this solution passes into case 5.1. The propagation-velocity is dependent on 
and and amounts to c at most There is a lower cut-off frequency. Since α ≠ 0, an additional 
attenuation of the electromagnetic field-strength (POYNTING-vector) appears to the geometrical 
one. With extreme values of  nonlinear distortions occur because of different group- and 
phase velocity.  
 

0 0

1 1
sinh arsinh cosh arsinh

c 2 c 2
   (121) 

 
This solution describes wave-propagation in a medium of whatever qualities and zero space-
charge-density. In no way, it describes the type of wave propagation that we observe in a 
vacuum. One application would be the propagation in water or in a plasma. But then μr 

≠
 
εr 
≠

 
1 

applies and we have to leave out the zeros in (120). 
 
If we apply the value κ0 for κ, then there is no wave propagation at all, since we are at the 
transition to the aperiodic borderline case then. This is examined in more detail in [29] section 
4.6.5.2. A hypothetical EM wave already extinguishes after about 3 periods. This means, EM 
waves cannot propagate independently, but only with the help of a specific medium, for 
example the metric wave field. This solution also explains neither the expansion nor the 
cosmological redshift. 

 
 
 

5.3. Solution for a medium with expansion and overlaid EM-wave 
 
In order to be able to specify the propagation function of an overlaid EM wave, we must first 

determine the propagation function of the subjacent metric wave as transport layer, since both 
are wave functions, competing with respect to subspace. Now to the solution. 
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5.3.1. Propagation function of the metric wave field 

 
In contrast to MAXWELL, which used the first term of the harmonic solution ejt as ansatz, 

we choose the first term of expression (93), obtained as an independent solution of the 
differential equation (72). It‘s about the temporal function of the magnetic flux υ0 there, 
relating to one single MLE, from which the charge q0 can be derived. For the propagation 
function however we need the magnetic and electric field strength H and E. The relation: 
 

A

dAB    with B = µ0 H             leads to       0

2

0 0

ˆ

r
H

   

 (122) 

 
Because of r0 indeed the right-hand expression depends on the frame of reference. Moreover 
we are rather looking for the starting value at T = 0. The temporal function is just known. 
Hence, we must carry out a reference-frame-independent coupling only. The coupling-length rk 
is not arbitrary in this case. Because the imaginary part of the Hankel function is coming from 
infinity, the starting value 0 is defined at the point 20t = Q0 =1. The coupling-length at this 
point is r1 as already predicted more above. This value is denominated as H1 and E1. With 
respect to the fact, that (97) is an effective value, we obtain the following relations: 
 

01

2 2

0 1 0 0 0

q 1
2 2

r Z r
1E    0

2

0 0

2
r

1H       (123) 

 
(1)

1 0 0H (2 t)E E    
(1)

1 0 0H (2 t)H H     (124) 
 

Here again, the real part of the vector corresponds to an orientation in y-, the imaginary one 
in z-direction, x is the propagation direction. As already stated, there is an analogy between the 
exponential function ej2t and the Hankel function. Both are transcendent complex functions 
and periodic respectively almost periodic. E– and H—— are understood as complex time-functions 
again. We start with the same values as in the previous case: ρ = 0 as well as κ0 > 0. Since in the 
time just after big bang there is a pure radiation-cosmos and because we are considering the 
MLE, just the empty space, here the vacuum solution only can be of interest anyway. Equation 
(112) reads then: 

0 0 0rot rot
t t

H
E H E     (125) 

 
We continue in that we substitute with the first term of equation (93). The coupling-length of rk 
cannot be chosen freely. Because the imaginary part of the Hankel function comes from in-
finity the initial value of υis defined at the point 2ω0t = Q0 = 1. The coupling-length there is r1. 
 

(1)

0 0H (2 t)E E    
(1)

0 0H (2 t)H H     (126) 
 

In this connection again, the real-part corresponds to the vector‘s orientation in y, the 
imaginary-part to the one in z-direction, while x is the propagation direction. As already 
noticed, an analogy exists among the exponential-function e

j2ω0t and the Hankel function. Both 
are transcendent complex functions being periodic respectively nearly periodic. In the 
following, we want to find out, whether this base leads to a solution of the MAXWELL equations 
too. It is however to mark that ω0 is time-dependent in this case. Therefore we will first work 
with the correct time-functions: 
 

(1) (1)0 0
0 0

0 0

2 t 2 t
H HE E H H     (127) 

 
Let‘s proceed now like in 5.2. (analogously for H—— 

— 
): 

 

(1) (1)0 0 0 0 0
1 1

0 0 0 0 0

2 2 t 2 t
H H

t 2 2 t 2 t

E
E E     (128) 

 
The minus sign is caused by the derivative of the Hankel-function. Furthermore applies, 
according to the calculating rules for cylinder-functions [22]: 
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(1) 2 (1) (1)

0 1 0 0 0 0 2 0H (2 t) t (H (2 t) H (2 t))
t

E
E E       (129) 

 

(1) 2 (1) (1)

0 1 0 0 0 0 2 0H (2 t) t (H (2 t) H (2 t))
t

H
H H      (130) 

 
As next, we de-parenthesize the expression for the Hankel-function of 0

th
 order so, because of 

(126), we can write for the first derivative as expression of the original-function: 
 

(1) (1)
2 22 0 2 0
0 0(1) (1)

0 0 0 0

H (2 t) H (2 t)
t 1 t 1

t H (2 t) t H (2 t)

E H
E H   (131) 

 
We require the second derivatives as well. These we determine to the best, in that we 
differentiate the right expression of (128) once again (analogously for H—— 

— 
): 

 
2

(1)0 0
12

0 0

2 t
H (uv uv)

t t 2 t

E
E E& &       (132) 

 
For u and v, we get the following expressions: 

 

0
0u u

2t
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(1) (1) (1)

1 0 0 0 0 2 0v H (2 t) t H (2 t) H (2 t)    (134) 
 

(1) (1) (1) (1)0
0 2 0 1 0 0 0 2 0

1
v H (2 t) H (2 t) H (2 t) H (2 t)

2t 2
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Replacement of the second expression of (132) results in: 
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2 (1) 2
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t

E
E E          (136) 
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t

H
H H          (137) 

 
Now, we put (131) into (125) obtaining: 

 

(1)
2 2 0

0 0 0 0 0 (1)

0 0

H (2 t)
curl t 1

t H (2 t)
H E E      (138) 

 

Expression (138) even can be written more simple: 
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2 0 2 0
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(1)

2 2 0
0 0 (1)

0 0

H (2 t)
curl t 1

H (2 t)
H E          (141) 

 

0For curl we obtain by substitution immediately:
t

H
E  

 
(1)

2 2 0
0 0 (1)

0 0

H (2 t)
curl t 1

H (2 t)
E H        (142) 

 
We apply the rotation-operation to both sides again: 
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(1) (1)
2 22 0 2 0

0 0 0 0(1) (1)

0 0 0 0

H (2 t) H (2 t)
curl curl curl t 1 t 1 curl

H (2 t) H (2 t)
H E E    (143) 

 
(1) (1)

4 2 2 0 2 0
0 0 0 (1) (1)
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H (2 t) H (2 t)
curlcurl t 1 1

H (2 t) H (2 t)
H H H     (144) 

 
2

2 (1)
2 20 2 0
02 (1)

0 0

H (2 t)
curl curl t 1

c H (2 t)
H H H        (145) 

 
The result for E– is analogous. We continue like in section 5.2.: 
 

2 2
2 2 (1) 2 2 (1) 2

20 2 0 0 2 0
02 (1) 2 (1) 2
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02 (1) 2 (1) 2
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With propagation only into x-direction, the partial derivatives for y and z will be zero again 
and it applies=d

2
/dx

2
 (analogously for  H—— 

): 
 

2
2 2 (1)2 2

0 2 0

2 2 (1) 2

0 0

t H (2 t)
1

x c H (2 t) t

E E
       (148) 

 
After rearrangement, we finally get for the wave-propagation-velocity c and field-wave-impe-
dance ZF:  

(1) 2
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2 0

(1)

0 0

c 1
c

j t H (2 t)
1

H (2 t)

 with    
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2 0
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2
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c 1
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Z 1
Z
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   (150) 

 
We see that the propagation-velocity converges to zero for large t. The same is applied to the 

field-wave impedance too. We have to do it with a quasi-stationary wave-field (standing wave) 
filling very well the requests on a metrics. The propagation-velocity is complex again. A 
decomposition into real- and imaginary-part works out quite difficult, but it‘s mathe-matically 
possible however. The solution for c reads:  
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c1 1 2

Q c Q 1 Θ
 RhoQ = 2/#/Abs[Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] & 

            (152) 

0
2

1 1
arctanθ arg

2 21 Θ  

PhiQ = Arg[1/Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] –π/2 & 

                                                 
1
  For programming reasons, expression (149) produces a slightly different result than (151) with AB. In order to maximize 
accuracy, the calculation of values and graphics is completely switched to the functions (149) from this edition on. 

(151) 
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The factor ½ arises from the 4

th
 root. Expression (149) may be split into a real- and an 

imaginary part (153). A starts at +∞ converging to –1. The course resembles the function 
1/A

2
<–1 approximately, which cannot be used well as approximation however. B has a course 

like 1/B
2
 and is converging to zero. The same is applied to ζthen. The bracketed expression 

converges to one with it. For Q0 ≥ 5 the approximation 0
2

 Q0
2

 ≈ Q0 applies with Δ ≤ 1%. 
 

1

2 0
j arctanθ j

0 00 00 0

c 1 1 c c
c cos arctanθ jsin arctanθ e e

Q 2 2 Q Q
  (153) 

 
Unfortunately (153) cannot be transformed into an expression similar to (121) with area-
functions, so that the ambiguity of the arctan-function leads to a partially wrong result. Thus 
we should better calculate with the following substitution: 

2 2arctanθ arg ((1–A B ) j2AB)     
1 π

arg c arccot θ
2 4

    (154) 

 
While the real-part of c is defined as the velocity in propagation direction, the imaginary-part 

can be interpreted as a velocity rectangular thereto. The appearance of an imaginary part in c 
means also that there is an attenuation anywhere (refer to Figure 22). A numerical handling of 
(149) even can be processed with »Mathematica« resulting in the course figured in Figure 20. 
Since the Hankel functions, with larger arguments, can be expressed well by other analytic 
functions, we will try to declare approximative solutions later. 
 

   
Figure 20 
Propagation-velocity in dependence  
on time (linear time-scale) 
 

Figure 21  
Propagation-velocity in dependence  
on time (logarithmic time-scale) 
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In the coarse, the propagation-velocity behaves proportionally to t–1/4, as we will still see later. 
Overall, Figure 20 strongly reminds to the smooth curve of a discrete MLE (Figure 13). Near 
t=0 it looks somewhat differently however. A logarithmic scale helps on in this case (Figure 
21). As exact examination emerged, have real- and imaginary-part of c the same amount from 
20 κ0t/ε0 on approximately. We must pay attention to this with the specification of an 
approximation function. 
 

With it, the world-radius (wave-front) of this model doesn‘t expand with c but with 
0.851661c only. That figures no violation of the SRT anyway. This means that wave sections 
that are emitted later virtually overtake the wave front. Since the ratio of  real and imaginary 
part is different, it does not happen on the same path – rather, the wave fronts cross each other. 
 

To specify the propagation-function, let‘s have a look at the classic solutions (117), (155) 
once again and at our primary function (126). 

xj t c j t x j( t j x)
( )

e e eE E E E         (155) 
 
In contrast to (117) the argument in the expansion case is real. Strictly speaking, it's not the 
Hankel function but the modified Hankel function M0

(2)

= I0(z) –j K0(z) what's the equivalent to 
the exponential function. It applies I0(z) = J0(jz) but only for purely imaginary arguments. With 
complex arguments, the real part cannot be placed as a factor in front of the Hankel function in 
the form of e

a
×e

jb
, as usual with exponential functions, since the power laws don't apply to 

Hankel functions. This is only possible for larger arguments z. However, the modified Hankel 
function is generally not used. Therefore, we use for the base the ―ordinary‖ Hankel function 
adapting the propagation-function accordingly. To avoid contradictions with the classic defini-
tion of propagation rate – real-part equals the attenuation rate, imaginary-part equals the phase-
rate – the propagation-function should read as follows then (analogously for  H

— 
): 

 

(1) (1)

0 0 0 0

x
H 2 t H 2 t j x

c
( )E E E      (156) 

 
This is not quite the classic expression for a propagation-function. Attention should be paid to 
the factor 2 which can be assigned both to the frequency, as well as the time-constant. With the 
definition of propagation rate = +j it obviously belongs to the frequency since  depends 
on phase velocity dx/dt, but not on the half of dx/(2dt). Equating both arguments of (156) we 
get then: 

20
0 0

2
j Z 1 Θ

c
          (157) 

 
From (153) the reciprocal of c can be determined very easy. Due to (116) we get for γ: 
 

0 0t1 1 1
cos arctanθ jsin arctanθ

c c 2 2
          (158) 

 
2

0 0 02 2 t 1 1
j cos arctan θ jsin arctanθ

c c 2 2
     (159) 

 

0 0 0

1 1
Z cos arctanθ jsin arctanθ

2 2
          (160) 

 
Upon closer inspection you can see that α and β are actually swapped with respect to their 

effect (α = phase rate, β = attenuation rate). Dies wird dadurch verursacht This is caused by the 
fact that a rotation about 90° (j) occurs during propagation (Figure 26 of [29]). x turns into y 
and y into –x. The damping α decreases exponentially from infinity starting at time t=0.At this 
point in time, one can say that there is basically no more attenuation. However, this does not 
apply if we consider cosmological time periods. 

 
At the point of time 0.897 t1 (Q = 0.947), the function β has a zero-passage. This supplies the 

somewhat particular course in logarithmic presentation (Figure 23). It‘s about a phase-jump of 
180° in this case. Possibly, this is even that point, in which the wave-front, sent at the point of 
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time t = 0, is passed by the faster, later transmitted. Furthermore, even the formation of the 
crystalline structure of space takes place approximately to this point of time (folding of parable 
into rotation). Up to this point of time, the space is closed, after it open. From the point of time 
100 t1 on we are able to declare, referring to Figure 23, the following approximation: 
 

1/20 0
0

0
4

0 0

0 10

Z (1 j)
(1 j) Z (1 j) Q

2 t r2 t
   (161) 

 
These relationships can be derived as well graphically from Figure 23, as explicitly using (157) 
by application of (162). However, it‘s necessary to multiply (157) with j, in order to take 
account of the 90° turning (Figure 26 of [29]). Then, to the approximation γ = 2ω0/c is applied. 
The factor 0Z0 is the reciprocal of our r0 with a Q-factor of 1, marked with 1/r1. Phase rate and 
attenuation rate are the same from 100 t1 on approximately. This is the behaviour of an ideal 
conductor. 
 

 
Figure 22 

Phase-rate and attenuation rate 
in dependence on time (linear scale) 

 
 

 
Figure 23 
Phase rate and attenuation rate 
in dependence on time (logarithmic scale) 
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Possibly a lot of known physical effects like e.g. superconductivity and electron conductivity 
of the vacuum are basing hereupon. For we have already found an approximation, still 
remain c and ZF. In Figure 21 we have already figured the course of c. To the graphic deter-
mination of an approximation, we require the logarithmic representation however (Figure 24). 
To be considered is the fact, that the imaginary part is actually negative. 

 

 
 
Figure 24 
Propagation-velocity in dependence  
on time (double logarithmic) 
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5.3.1.1. Propagation function 

 
Now we want to set up a propagation function. The normal form is E=Ê e

jωt−γx
 with γ = α+jβ. 

But with the exact solution (161) there is a case on hand, at which α and β contain both 
damping- and phase-information and the wave function isn‘t harmonic either. That way we 
aren‘t able to form a reasonable propagation function. Therefore, we try an approximate 
solution with variable coefficients. 
 
 
5.3.1.2. Approximate solution 

 
In the case t » t1 phase- and attenuation rate are of the same size. Thus, the model behaves 

similar to a metal. There α does not stand for a damping, but for a rotation, namely as long as, 
with vertical incidence, a value of π is reached so that the wave exits the metal in the opposite 
direction after a minimal intrusion. The depth of penetration depends on the material 
properties, the wave length and the angle of incidence. In case of this model the material 
properties aren‘t constant either, γ decreases with t and x. Hence it suffices to a rotation of  90° 
only and the wave remains in the medium (vacuum). In any case, there is a rotation too.  
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To cope with it, we do a rotation of the coordinate system about π/4. That corresponds to a 
multiplication with √  and we get a purely imaginary solution. So becomes α=0 and γ=jβ and 
the exponentially related attenuation vanishes. Indeed, we still have to multiply the result with 
√  and to replace x by r.  

 
Despite α=0 the amplitude of E– and H—— is decreasing continuously. That‘s caused by the Hankel 
function alone, resp. by the radical expression in (165). With it amplitude and phase are firmly 
interlinked (minimum phase system). Now the rotation angle in space is equal to ζ+π/4. But a 
separation of phase- and damping-information isn‘t possible yet. But we can work with very 
high precision using the approximation equations in this case. To the general Hankel function 
H 0

(1)(ωt−βx) the following approximation applies (analogously for H—): 
 

(1)
j ( t x)

4
0

2ˆ ˆH ( t x) e
( t x)

E E E      (165) 

 
Instead of γx only the product βx with the phase rate appears in the exponent, since the 
amplitude rate is already emulated by the radical expression. With t»0 the angle π/4 can be 
omitted. After rotation and transition xr and ωω0 turns out: 

 

0 0(1)
j (2 t 2 r )

1 4
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E1 is the peak value of E with Q0=1. Indeed are both ω = 2ω0 and β = 2 β0 (with double 
frequency even the phase rate must be doubled) no constants at all. That means, they depend 
on t and r at the same time, limiting the manageability of the approximation very much. You 
can see that also with the phase velocity vph. It is defined in the following manner: 

 

     

 

   c2
tω2

c2

β

ω2
v

0

0
ph         for t»0   (167) 

 
Thus, the phase velocity is equal to the double absolute value of propagation velocity. That‘s 
caused by the factor 2, since phasing with double frequency propagates with double velocity 
too. For interest, also the group velocity should be stated here: 

 

      c2
ωdβd

1
v

0

gr              for t»0   (168) 

 
Except for the algebraic sign both results are equal. That means, the propagation takes place 
free from any bias. Further to the approximation. With (128) in section 4.2.2. we had already 
found a very good approximation, almost exact, for the same temporal function. 

 
0 0 0 0j (2 t 2 x) j2( t r )
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2 t
   (169) 

 
Now, expression (169) enables to define an equivalent-α = α0 and, with it, even an equivalent-
γ0 = α0 + j2β0, in order to get it up to the normal form for propagation functions.  
 

0 0j2 t r
2 e1E E          with   0 0 0 0

0 0

0 0

2 Z 2 Z1
ln 2 t r j

2r 2 t 2 t
      (170)

 
 
That‘s already a big step forward. Unfortunately, both 0 and  depend on time. It‘s not 

critical for 20t, because it‘s multiplied by t anyway. Else with , it should depend on r only. 
To the substitution of t in (229 et seq.) we firstly put (163) left-hand into t = r/| c |. The real 
propagation velocity becomes effective here and not vph or vgr. Then we rearrange after t. 
Putting into (169) right-hand we get: 
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With it, we obtain for  and the product r the following expressions: 
 

2 1

3 3
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1 2r 2
ln 2 t j

2r r r r
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1 2r 2r
r ln 2 t j

2 r r
   for t»0    (178) 

 
Last but not least the time t can be completely eliminated. The value γ is proportional to r –1/3

 
and, even more important, the product γr is proportional to r

2/3
. Unfortunately, as already said, 

we can explicitly state γ(r) by approximation only. With the exact function (160) a separation, 
especially from t is impossible. But generally speaking, an exact solution is not required at all, 
since the approximation yields very good results until a striking distance to the particle horizon 
at Q0=1, see Figure 13. Therefore, we won‘t follow up that matter at this point. 

 
All hitherto stated approximations are based on the 4D-expansion-centre {r1,r1,r1,t1}. But it‘s 

more practicable to find a function, related to another centre. Most suitable seems to  
be the  point, where we are, the point being. At first we substitute the time according to tT

~
+t. 

The swung dash stands for the initial value at the point t=0 (nowadays) describing an inertial 
system. Hence it‘s about a constant. Because of T

~
 = t1Q

~
0
2
 we are able to factor out Q

~
0. The 

direction of time doesn‘t change. To the temporal part applies: 
 

1

2
0 0

t
2 t Q 1

T
%

%
       

      (179) 

 
For the spatial part β0 we build up the inertial system once again using the substitution r1R

~
 . 

Because of R
~
= r1Q

~
0
2
, as well as r̃  Q

~
0 = −r, now we are measuring from the other end, we can write 

for 2β0:  
        Exactly → 
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Actually I should have to write r̃  instead of r. But because it‘s the argument of the function the 
tilde has been omitted. The right-hand expression considers the fact, that r0 as smallest incre-
ment never can be underrun. The value α0 is definitely determined by the envelope curve of the 
Hankel function, else it would be equal to zero. With it, we obtain for  and the product r:  
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With r0 we have already found one elementary length. But LANCZOS speaks about another 

one [1]. That‘s the wave length of the metric wave field λ0=2/. The approximation of λ0 must 
be divided by 2 once again, due to the double phase velocity. Hence λ0=2/ applies. To the 
comparison the expression for r0 once again: 
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      (185) 

 
Though λ0 is smaller than r0 and not identical to HEISENBERG‘s elementary length with it. λ0 

now is in the range of 10
–68

m. Thus, LANCZOS was wrong in that point. But it only has been a 
guess on his part. In fact, it‘s about the wave length of the wave function forming the metric 
lattice itself. Expression (183) until (185) only represent the temporal functions. Then, the  
functions of time and space read as follows. 
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The temporal course of λ0 (r=0), and of r0 (r=0) is shown in Figure 25 and 26. Figure 26 is a 
little bit deceptive. It looks like r0 is smaller than λ0. In fact, the curve of r0 cuts the one of λ0 
with an argument of 100 t1 at 10 r1. The phase jump, not visible in Figure 26, occurs with an 
argument of 0.0525. 
 

      
 
Figure 25           Figure 26       
Course of λ0 exact logarithmic scale Course of λ0 exact and approxi-  
 mation as well as r0 linear scale 
 

We only know the local age T, which results from the local HUBBLE-parameter (189). It quasi 
represents the temporal distance to the expansion centre. But we are able to determine 
the spatial distance to the world radius R. This forms a spatial singularity (event horizon) with 
it. The value arises from the ansatz (190): 

 

0
0 0

(H) 1
2 t r with r 0 T

H 2H
  (189) 

 

0 0 0

0

(H) r
R 2ct

H H
   with 2ω0t = 0           (190) 

 
3

0
4

0 0 0

0 0

H c 1
Z

G rh
   Phase rate of the metric wave field         (191) 

 
Hence, the value of β0=1/r0 even can be obtained from (221), in that we replace time with the 

HUBBLE-parameter H0. To R applies:  
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0

26 101.22471·10 m 1.2946·10
c

R Ly 3.96896 Gpc
H

  (192) 

 

0

26 101.34803·10 m 1.4249·10
c

R Ly 4.36862 Gpc
H

  (193) 

 
That‘s about 13 billion light years for H0 = 71.9963 kms

–1
Mpc

–1
. The result (193) for the 

alternative value of H0 = 68.6241 kms
–1

Mpc
–1

 has been calculated with the help of (1049 [29]) 
and the CODATA2018-values. The local age has the character of a time-constant and amounts 
only to the half, namely 6.6/7.1 billion years. The world radius (great circle) is equal to cT. 
More extended time-like vectors up to 2cT are possible due to expansion and propagation of 
the metric wave field (cf. Figure 27). The particulars are described in sections 3.3.2. of [49], 
resp. 4.5. of [29] in detail.   
 

Figure 27        
Expansion velocity and world 
radius without a correction factor 
 
 

5.3.2. Propagation function of the overlaid wave 
 
5.3.2.1 The metric wave field as conduction 

 
We assumed, that the vacuum is not loss-free by introduction of a specific conductance 0. 

With it, we could find a maximally rational solution of the MAXWELL equations, which fills 
the requests to a metrics, being not in contradiction to SR. According to [1], the propagation of 
photons takes place as an interference of this wave-field. Furthermore we determined, that this 
happens exactly with the speed of light, at which point it should be added here that this is only 
the case with respect to subspace (zero vector). 

 
With the wave propagation as an interference of the metric wave field, we want to consider 
now, different conditions occur. As generally known, solution 5.2 can also be determined in 
that we solve equation (66) without expansion, based on the equivalent circuit in Figure 11, if 
R0∞. With a solution with expansion, R0 depends on place and time and is also close to 
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infinity. If we count back using the approach κ=κ0, we get a value close to zero. In order to 
restore correspondence with reality, we are just forced to use another model. 

 
In section 4.3.2. we had determined that the MLE as per Figure 11 behaves like a low pass of 

2
nd

 order for overlaid signals. Therefore, we want to transform the equivalent circuit of the 
MLE into a low pass. The exact procedure is shown in Figure 28. First we disconnect the 
circuit at the marked position elevating the coil L0. Thus, the proper low pass (centre right) is 
just ready. Although, the therein contained loss-resistor R0 only characterizes the losses within 
the MLE. If we now want to model wave-propagation, we must daisy-chain a lot of these 
elements (Figure 29).    

 
We examine the coupling of two line elements in the interval r0. The coupling factor shall be 

equal to 1. The coupling itself takes place via the magnetic field (Figure 4). And exactly with 
this coupling there are further losses not characterised by the resistor R0. This can also be 
interpreted as the exclusive losses of the capacitance C0. For the coupling-losses, we introduce 
yet another impedance R0R, already know from Figure 10, assigning it to the inductivity L0,  
after all, it‗s a matter of losses during the inductive transmission. The value of R0R is generally 
calculated according to (34). 

  

 
 

Figure 28 
Conversion of the equivalent-circuit of the MLE into a low-pass 
under consideration of the additional coupling losses 

 

 
 

 Figure 29 
 Line-equivalent-circuit with shunt-resistor 

 
The interesting thing is that all these values R0, R0R, L0, C0 and G0 change over time, but only 
very slowly, so that we speak of a quasi-static process. However, quasi-static changes can be 
generally neglected when solving differential equations. Nevertheless, they do have an effect in 
the end, as we will see. 
 
So we use the model of a conduction to describe wave propagation in the vacuum. As a result, 
we hope to find a propagation function similar to that, we found by application of the classic 
solution for a loss-free medium (E = 0 and H = 0), which is not in contradiction to the 
observations. 
 
At least, we already transform the impedance R0R into an a second parallel loss-resistor R0, 
with the help of (33), bunching both together to the total-loss-conductance G0 with which 
G0 

= 2/R0 applies. Figure 28 centre and right are equivalent. 
 
 

5.3.2.2 Approximate solution 
 
First we want to check, if we cannot use solution 5.2. applying a substitution to 0 (μr=εr=1). 

Yes indeed. But we don‘t get a constant in this case, since R0 isn‘t static. We introduce a 
substitute value 0R for that purpose. With the help of (39), (45), (161) and (190) we obtain: 
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R is the world-radius 2ct. Then, inserting (196) into (120) we obtain for the complex propaga-
tion-velocity c and the field-wave-impedance ZF: 

 

F 0

j t j t
c c Z Z

1 j t 1 j t
    (197) 

 
Now light speed will only be reached in infinite time. Nevertheless, the propagation speed is 
close to c. The remainder is filled up by the propagation velocity cM of the metrics, so that the 
total velocity is equal to c in turn, which was a basic assumption of this work. The same result 
is also obtained from the solution of the telegraph equation [5] (198) for the transient state 
(c1 = 0) by inserting the values for C0, L0, G0 as well as R0 = 0. 
 
Figure 29 shows the associated equivalent circuit. Furthermore, we yet derive with respect to 
∂r, that is each low-pass gate now represents the properties of a conductive section of the 
length ∂r. The discrete components turn into the capacity, inductivity and conductance 
covering C′0, L′0 and G ′0. Since the vacuum in this model has a finite structure with the smallest 
increment r0, ∂r  r0 applies. Fortunately r0 is sufficiently small, so that we can work with the 
difference-quotient. For the coverings we get C′0 = C0/r0 = ε0, L′0 = L0/r0 = μ0 and G ′0 = ε0/t = κ0R 
then. With it, the fundamental physical constants 0, 0 and the substitutive value κ0R are iden-
tical to the capacity, inductivity and conductance covering of our ―conduction‖, the metric 
wave field.  
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This corresponds to a loss-affected line in general. Because of E = –u/r0 as well as H = –i/r0 we 
obtain after division by r0: 
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This way, the MAXWELL equations can be derived directly. Unlike 5.2. however, the parameter 
0R decreases steadily in this case. The solution itself is not loss-free. A damping-factor 
different from zero occurs, which can be attributed to the variable parameter κ0R. Therefore, it 
is also named parametric attenuation. Starting with (199), we get for the line-/field-wave-
impedance (ZL 

= ZF): 
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ZL = 



 

R 0  j L 0
G 0  j C 0

    
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1 jt
    (203) 

 
That‘s the same solution as (197). Because of Z0=0c, even the expression for c applies. 
Altogether it‘s about an autonomous solution with different properties as the hitherto 
introduced ones. Since no discrete components are involved, the attenuation takes place 
completely free of noise. The solution is distortion-free. Even no scatter occurs with it.  

 
Because of the currently low value of 0R (3.93821·10

–29 
Sm

–1
), the attenuation is not detect-

able nowadays. Thus, it seems, that wave-propagation would proceed according to the classic 
loss-less solution. But strictly speaking, it applies only in a universe without expansion 
(κ0 = κ0R = 0) and figures a special-case of the solution introduced here. Now, let‘s have a look 
at the propagation-velocity c in detail. 
 

 
III. The metric wave-field behaves for overlaid electromagnetic radiation-fields 
 like a conduction with variable coefficients. This conduction behaves in the 
 first approximation like the classic loss-less vacuum solution of Maxwell’s 
 equations, at which point the speed with respect to the subspace is c=const.  
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c c c c c
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    (204) 

 
Thus, we have formulated an important condition. With the metric wave function and the 
superimposed EM-wave we are dealing with two competing wave functions. The value of c is 
defined by the properties of the subspace μ0 and ε0 (7). Therefore, both wave functions must 
share c. Since one function represents an interference of the other, only the sum of the complex 
amounts comes into question here. That corresponds to a geometric addition (PYTHAGORAS): 
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   (205) 

 
This expression is even achieved from the line element (262 [29]) after division by dt2 with 
c2 = ds2/dt2. cM is the propagation-speed of the metrics. With it, the overlaid wave moves always 
rectangularly to the metrics with exact c (Figure 32). After rearrangement of (204) we obtain: 
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       (206) 

 
Since it‘s about an approximative solution with expression (276), we want to try, whether it 
already can be simplified. With y = 1/(20t) we get for 20t »1: 
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2

2H 1 2y 1
2H 2H 1

2y 2y2y y

1 2y y

   (207) 

 
We finally receive after substitution: 
 

0 02H t 1 2H 2 t       (208) 
 
Because of H = 1/(2t) (radiation cosmos) the frequency decreases according to ω ~ t–3/4. But we 
are particularly interested in the wavelength λ =√ π/β =√ πc/ω. The sign of (193) has been 
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neglected. The factor √  stands here instead of 2, as even already with λ0, to cancel rotation 
around π/4 of the coordinate-system applied with the definition of the approximative formula 
of γ(r). Then we get the following result: 
 

0

3/4 3/2

0

0 0

c 1 R
t Q

H 2 t 2 t
: :         (209) 

 
To this we must remark that we have assumed, for the previous contemplation, the expansion-
centre as basis of the coordinate-system, at which no length is actually defined. More essential 
qualities result from it for the two singular points. 
  

 
For the spatial singularity (expansion-centre) applies: Each length, measured 
from this point, always has the quantity R/2. Each period, measured at this point, 
always has the amount T, each frequency 2H. It’s about an event-horizon. It’s a drain 
of the electromagnetic field. To the approximation applies r=∞, t=∞. 
 

 

 
For the temporal singularity (wave-front) applies: Each length, measured 
from this point, always has the quantity r1/2. Each period, measured at this point, 
always has the amount t1, each frequency 2 1. It’s about a particle-horizon. 
It’s a source of the electromagnetic field. To the approximation applies r=0, t=0. 
 

 
A particle horizon on the inside is an event horizon on the outside and vice versa. It looks 
similar to the magnetic and electric fields. No matter at which pole you are located, you always 
believe that you are at the centre, since all field lines always converge rectangularly to the 
observer from all directions (Figure 31). Except that he is unable to really reach the particle 
horizon. I can't say whether the two poles are connected in the background like with the 
horseshoe magnet. In any case, there is more than only one event horizon, once for the universe 
as a whole, as well as a huge number what with black holes. 
 

  
 
Figure 30 Figure 31 
Poles and field lines in the electric field Horizons and field lines in the gravitational field 
 

 
The spatial singularity is only suitable as basis of a space-independent temporal, the temporal 
singularity only as basis of a time-independent spatial coordinate-system. As basis of a four-
dimensional space-temporal coordinate-system, both singularities are equally inappro-priate. 
Seen from the spatial singularity, all time-like vectors have an equal frequency and wave-
length. We must pay attention to this on a coordinate-transformation to our local coordinates. It 
applies t = +t′ and for the wavelength λ: 
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C is an arbitrary constant, it disappears on a retransformation. Expression (211) represents the 
temporal dependence. To the determination of spatial dependence, we must visualize that this 
case differs from the preceding λ0 and r0.  

 
Having to do until now with a wave-field which shows different conditions at different 

places (quantity of r0, propagation-velocity etc. – therefore different dependences of space and 
time), the circumstances are deviating in this case. It is about a purely time-like vector, which 
propagates everywhere with the same velocity, namely c. The dependence on space and time is 
identical to it, following the same function. Even R/2 expands time-like with a constant 
velocity of c. Just only, we have to replace t by r. Therefore we expand the fraction in (211) 
with 2c obtaining: 

 
3 3

4 4
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2cT R

% %
% %              (212) 

 
With it, the overlaid wave doesn‘t behave like the metrics r0 as well as λ0 concerning 
wavelength and frequency. But differences exist also between r0 and λ0. There are even more 
differences then again. So, the distance, the light covers from the source to the observer, is 
different from the distance, a material body must cover. Latter one amounts to R/2 maximally, 
while theoretically whatever large distances are possible in the first case. This is clearly the 
behaviour of a particle-horizon. We denote the first as time-like (incoming vector), the second 
as space-like distance (outgoing vector). See section 7.5.2. of [29] for details.  

 
With the help of (212) we can also find a substitution for the expression β being applied to 

signals overlaid to the metrics. In contrast to (179), which applies to the metrics itself, because 
of λ  = 2 c/ω  = 2/β, we get for the phase rate β of the overlaid wave (not the β0 of the metrics): 
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    (213) 

 
We introduce the two right-hand functions to the better presentation. Such, we can incorporate 
the cosmological redshift into the propagation function now. With the propagation of overlaid 
waves, β is not identical to α obviously. We obtain α and β from (121) if we replace κ0 with κ0R 

  

1 1 1 1
sinh arsinh cosh arsinh

c 2 t c 2 t
   (214) 

 
For ωt ≫1 outside the near field of a beaming dipole (inside other relationships apply any-
way), with help of the approximations arsinh arsinh ε ≈  ε, sinh ε ≈ ε, cosh ε  ≈   ε

2
/2 follows: 
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       (215) 

 
With it, we get for the phase rate β the same result, as with the classic solution for a loss-free 
medium. It fits the observations. Deviating from this, an attenuation rate α ≠ 0 applies. That 
also causes an attenuation of the amplitude, which could actually be the cause of the darkening 
of the SN-Ia. But it‘s so small that it can only be detected on cosmological scales with z ≥ 0.1.  
 
For the amplitude response A of the electric and  
magnetic field-strength applies the following: 
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Also A′= –1Np/R [Neper]. Both expressions are 
equivalent. With it, the half-life period (–6dB) is 
about 1.382T, the half-life width about 0.691R.  
 
1 We use the standard unit of measurement in electrical engineering,  
 dB [decibels]. The 20 applies to the electric [V/m] and magnetic [A/m]  
 field strengths. For the Poynting vector [W/m

2
] the 10 is used. 

 
Figure 32 

Propagation velocity of the metrics and  
of an overlaid electromagnetic wave 

0

M

c
c

2 t

α ≈ 90° 
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The parametric attenuation is so low that it can be largely neglected, as it is far below the 
geometric one. It obviously also occurs with the metrics included. However, it is independent 
of this, as can be easily be seen from (203). The influence of the metrics is given by r0 and, as 
you can see, all r0 cancel each other. With it, our solution (215) completely emulates wave-
propagation and –attenuation admittedly, but not the cosmologic red-shift. 
 
Since it is not caused by the electrical properties of the conduction or space, but rather by the 
conduction itself, it belongs in the propagation function as factor Ξ(r). Just once imagine the 
following: A line is flowed through by an alternating current. A certain wavelength appears. If 
this line is manufactured from an ideally elastic material now and one pulls at an end, so the 
line is stretched. Simultaneously, also an enlargement of the wavelength occurs with simul-
taneous diminution of the conducting-velocity (c in sum). 
 
In order to incorporate red-shift, we divide the part  (the attenuation rate  is not affected) by 
the bracketed expression of (212) obtaining our substitute-γ, c and ZL, it applies R = r0Q0: 
 

 

H
j (r)

c c

% %
      c = c   ZL = Z0      (218) 

 
Expression (218) is the propagation rate for signals, which are overlaid the metrics 

(γ = α+j β). The non-zero attenuation rate α describes the so-called parametric damping, caused 
by changing parameters of the conduction during expansion. In addition, of course, geometric 
damping occurs too. However, latter one is generally not represented in the propagation 
function, as there are special cases without it, e.g. lasers.  
 
The solution is applied to the entire domain r≫r0, however not shortly after BB, in the 
proximity of the (of a) temporal singularity and with very strong gravitational fields (black 
holes). Thereto, the complete solution 5.3.8. is required. The expressions (215) and (218) are 
sufficient for solving the SN-Ia problem. Thus, we are now able to set up a propagation 
function. 

 
 
 

5.3.2.3 Propagation function with red-shift and parametric attenuation 
 
We assume the solution of the telegraph equation for the transient state [5]. The equation-

system is also known as conducting-equations. 
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           (219) 

 
In this connection, the index 1 means the input-signal, the index 2 the output-signal. We now 
replace in the following manner: 
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er is the unit-vector. Furthermore, ZL ≈ Z0 applies (transient state) and u = i Z0. Then we get as 
solution of (219): 

 
j t r j t r

(t)e e22 1 1E E H H %       (221) 

 
This solution is identical to (117) but it considers the cosmologic red-shift only for  (218). We 
also must notice the temporal dependence of the expression jt, i.e. at the source of the signal. 
The right expression of (221) is used for it. With it, we have found a solution explaining as 
well the propagation as the cosmologic red-shift of electromagnetic waves. 
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5.3.2.4. Complete solution with frequency and phase response 

 
If we want to find a solution, being valid even in the proximity of very strong gravitational 

fields  and/or of the temporal singularity, we are forced to calculate with the complete formula. 
In section 4.3.2. we had noticed that the space owns also an upper cut-off frequency. Solution 
(221) shows all-pass behaviour and doesn‘t reflect the real circ-umstances anyway, but it‘s 
adequate for more than 99% of all cases. A solution with consi-deration of the cut-off 
frequency (downward the frequency is really restricted by the age only) must be a complete 
solution. Therefore, let‘s try to find first an approach for a comp-lete solution with and without 
consideration of the cut-off frequency. We go out from (204), however using the correct 
expression for the propagation-velocity cM of the metrics (153): 
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j arctanθ
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   (222) 

 
We reconsider the absolute value function, although it should be noted that the angle α, which 
also depends on ζ, even may be unequal to π/2 (Figure 94). Therefore, the cosine-rule applies:  
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analogously for Z0 = μ0c. After reiterated substitution, we get the following solutions: 

 
4

4

y
2H

1 y
  with

1
   

2
1 M 2M

x 2

c c
y cos 1 sin

c c
     (225) 

 

The second solution is applied to space-like photons. Obviously, similarities exist with the 
reciprocal of (207). The value of y tends to 1 for Q0 »1. Since the real transfer-function is 
independent from the metrics, (215) is also applied to the complete solution in the far field 
t »1. We continue as in 4.3.5.4.2. To that purpose we first transform: 
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The transition from the exact solution to the approximation will be descripted more exactly in 
section 5.3.1. The factor 2 turns out by itself with it, that means, with the exact solution the 
rotation of the coordinate-system is automatically done by the function. We are interested in 
the wavelength =2π/=2πc/ once again: 
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Q Q
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2 2
Q      for  Q≫1 (782 [29]) 

 
C is that arbitrary constant to the conversion upon the R

4
-coordinate system once more. The 

function rK (782 [29]) i.e. R(Q) describes the exact dependence of R concerning the phase-
angle/Q-factor Q. The definition of A and B can be taken from (151). We were already able to 

                                                 
1
 See (621 [75]) relativistic dilatation factor  with v=cM, see also section 5.3. 
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set R(t) = 1 + t/  in the approximation. With the complete solution it is unfortunately impossible, 
because R is propagating and expanding at the same time (see section 6.2.3.1. of [29]). The 
relation R = r1Q0

2
 exactly applies only for Q0 ≫1. The spatial and temporary dependence of R 

for zero-vectors is given by the right expression of (228). Furthermore  = 0 and R( ) =  
applies. Finally, we get for the wavelength and frequency: 
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All values except c and area function of the phase-angle/Q-factor Q0 = 20t. For just two 
kinds of photons and neutrinos we define the eight functions

1
 x(r) and  x(t): 
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Responsible for the insertion of the right relationships (substitution r = ct) is the reader 

himself. But the function is explicitly calculable yet. (218) and (221) are applied. This is the 
complete transfer-function without consideration of the cut-off frequency. It is valid even in 
strong gravitational fields and at the „edge― of the universe. 
 
 
5.3.2.5. Frequency- and phase response 

 
In section 4.3.2. we have worked out the transfer-function of a single MLE of the size r0.  

The solution is applicable for the metric wave field itself, but it can also be used for 
superimposed waves if we understand the superimposed wave as an interference of the 
differential equation (70). In this case, we have to apply ω0 for σ in (101) instead of ω1, it 
applies Ω  ω/ω0. First, let‘s have a look at the share of the total attenuation factor α, caused by 
ωg, which can be calculated from the amplitude response A(ω). Only the real part is being 
transferred. In connection with the phase-angle υγ in reference to the length r0 = c/ω0 applies:   
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 Ψ(ω) = 0 for     ω ≪ ω0   (234)           

 
The share Ψ(ω) depends on space and time indeed, since it depends on Ω too, on the ratio of 
two frequencies, changing according to different functions (ω~ t

–3/4
, ω0~ t

–1/2
). The negative 

sign arises from the re-exchange of the integration limits. With it the change doesn‘t cancel 
out. In the approximationΩ~ t

–1/4
 applies. 

 
But the cut-off frequency affects the phase rate β The more approaching the cut-off 

frequency, all the more the phase-shift υ (106) is making noticeable, caused by the  ascen-ding 
phase delay TPh (108) during the transfer from one MLE to the other (t1t0). Since the phase-
defects add up, there‘s going to be a retardation of the overall phase-shift Φω). This causes a 

                                                 
1
 See (621 [75]) relativistic dilatation factor  with v=cM, see also section 5.3. 
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ramp down of the propagation-velocity onto values smaller than c (permitted), so that ω 
remains unchanged and λdeclines on the other hand. The smaller value of | c | affects α and βin 
the same manner. With the nowadays manageable frequencies however, the phase-defect is 
practically equal to zero.  Before we can calculate on, we already have to convert the phase-
shift Φω) into units of wavelength however. It applies Φω) = 1+TPh/Tω, at which point Tω is 
the period of ω: 

2

1
( ) 1 arctan

12
  Φ(ω) = 1   für ω ≪ ω0   (235) 

 
With it, we can specify the following universal propagation-function for the vacuum: 
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The complete solution with frequency response is not required in most cases. One possible use 
case is the calculation of the spectrum of the CMBR in [46]. We will work with expression 
(237) there. In cases, where the cut-off frequency plays no role, applies Φ() = 1.  

 
 
 

5.3.3. Cosmologic red-shift and distance to the source 
 

In order to clarify the discrepancies with the SN-Ia cosmology project, we also need a 
relation enabling us to calculate the distance r to the source using the redshift z. Depending on 
the world model used, there are many different variants. This point has already been discussed 
in detail in section 2. and [71]. As already explained, it‘s space itself that expands. 

 
While the SN-Ia cosmology project relies on the standard model (ΛCDM), we prefer the MLE 
model [29] already used with the determination of the propagation function in the previous 
section for reasons of consistency of the premises. Regarding the ΛCDM, there does not seem 
to be any major deviations with the function r(z) if we abstain from such luxuries as the 
cosmological constant Λ and the parameters Ωb and Ωm. But then it's just a CDM (Cold Dark 
Matter) universe. And if that only means normal matter which has been cooled so much that it 
no longer radiates and which can't be recognized as a dark nebula in front of a radiation source, 
then it's no wonder either. 

 
According to the MLE-model, directly from (212) an expression for the cosmologic red-shift 

can be derived: 
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v is the escape velocity. Now one often claims in the literature that this could be also larger 
than c. But this is not the case. Reason for the wrong claim is a cardinal-mistake that is liked to 
do even by experts again and again and, I don‘t want to exclude myself here, in the first edition 
also by myself. One simply substitutes  with the current value at the observer, obtaining 
escape-velocities larger c then.  
 

A further erroneous conclusion is that signals with z > 1.28 should come from regions behind 
the event horizon =2c , or better, they should have covered a distance greater than . 
However, this contradicts the observations. It should be noted, that we assumed a radiation 
cosmos in which the world age is 2T. The world radius (4D great circle) expands with c. 
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As long as the options of observation were restricted to smaller z-values, this was not 
noticeable at all. Meanwhile, already objects with a red-shift of z =  6 have been found and the 
red-shift of the cosmologic background-radiation has even a value of z = (2Q0)

3/2
  ≈ 10

90
, as 

described in section 4.6.4.2.3. of [29]. However, the reason for the high values of z is not that 
the universe is actually much larger than assumed. Even if this would be the case, no zero 
vectors with a length greater than =2c  could exist, since they return to their starting point 
having covered this distance, i.e. they are a closed-loop. 
 

The real mistake is the misinterpretation of (240). The expressions are based on the 
propagation function (221) and this is always related to the starting point of the wave, the 
signal source. So it applies to outgoing vectors only. Therefore, we must always substitute  
with the value at the source to the point of time of emission, and all distances and the velocity 
v are always been referred to the source then. The expansion of the universe since that point 
of time namely, is already included in the exponent 4/3, as one easily can recognize with the 
help of (210). By the way, this is also applied to calculations according to the classic model of 
cosmology, even if the exponent may differ from 4/3 there. For this reason, I have marked both 
values with the upward-arrow  for outgoing vectors. It reminds something to the wiring sign 
of a transmitting aerial, which may serve as mnemonic device. 

 
However, we don't know the exact value of  as it is linked to the distance of the source 

from the observer, which we actually want to determine. What we do know, however, is the 
value 


. Since the distances r and r


 as well as the velocities c and c


 are equal, a simple 

relation, that works with the value 

 at the observer, can be found. We do the following 

approach: 
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After reducing to r, we get the following expressions for r and v: 
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The expressions (240) and (243) yield the same result when substituting the correct values. The 
contradiction has been solved with it. But it is not yet the whole thing. Was auf den Wert r 
zutrifft, trifft auch What applies to the value r applies to , 0 , ω

~
0 and ω~ in the propagation 

function too, i.e. if you work with 

, also these values must be corrected. You only ever work 

with either the values at the source or those at the observer. In more final case, the expressions 
 and ω must be multiplied with a correction-factor. For the world-radius R applies: 
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By using of (239) can be shown that the expression (z+1) is corresponding to the relativistic 
dilatation factor . Then further (z+1)

2/3
 ~ β

–2/3
 ~ Q0 applies and: 
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An exception forms the frequency ω. In contrast to H~Q0

–2
 resp. ω0~Q0

–1
 applies ω~Q0

–3/2
:  
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
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1
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         ˜   ˜ (z 1)         ˜   ˜ (z 1)        ˜   ˜ 

1

(z 1)
  (248) 

 
To the correction of  and , we next consider the product r: 
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With it, the parametric attenuation is really unattached from the frame of reference, exactly, as 
determined by the solution of the telegraph equation. The remaining quantities depend on the 
respective reference frame however. With it, we can define the universal propagation function 
using the values at the observer. At first however once again correctly with arrows for the 
values at the source: 
 

j t r j t r
(te e )22 1 1E E H H %          (251) 
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
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 ()  | c |≤  c  | ZL|≤  Z0  (324) 

 
These expressions may even applied to pass-through signals, followed up into future. In this 
case, we must insert the values at the observer instead those at the source, doing just so, as if 
the observer would be the source. The distance r indeed is defined in reference to the observer 
then. The same applies even to z. At the place of the observer applies z  = 0, which is not 
favourable straightaway, since z is defined absolutely in general, namely on the basis of the 
red-shift of the absorption-lines of stars. Therefore however, a propagation function, using the 
values at the observer, with which r and z are defined in reference to the source, would be 
suitable better. This arises to: 
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After having figured the real relations extensively once again, it was simply necessary, we 

now come to the real topic. In Table 1, which has been gathered from [27] in excerpts, some 
quasi-stellar radio-sources are figured with distance-information. The values marked with an * 
have been taken from the original, the rest has been calculated. H is always the local HUBBLE-
parameter H0. 
 

For the interpretation of the measuring results, the author used, willy-nilly, the classic model 
of cosmology with several parameters (parabolic and elliptical). Since the elliptical model with 
q=1 has the best fit with my model, the elliptical values have been taken over. Therefore, one 
must not expect an exact agreement with the values calculated by me. In order to document the 
mistake in the first edition more exactly, in column 3 have been figured the escape-velocities 
>c calculated with the wrong value of 



˜ R . Column 4 is containing the correct values. 
 

Column 7 shows the incorrectly calculated distances according to (240) for a value of 
H0 = 55 kms–1Mpc–1. One can see, the values are too high, H0 has been estimated too low. One 
furthermore sees, that the author of [27] committed the same cardinal-mistake obviously. 
Indeed, the values are only shifted in reference to the photometric distance in the logarithmic 
presentation (Figure 33), which corresponds to a multiplication. The corresponding factor has 
been determined with statistical methods. It amounts to 1.38±0.08. That results in a probable 
value of the HUBBLE-parameter of 75.89±4.4 kms–1Mpc–1 (column 6). The correlation-
coefficient to the photometric values is 0.792. The value of H0 is within the limits determined 
with modern methods. Obviously, one can achieve right results even with wrong data com-
paring two wrong results… 
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*               

        
Source 

*          

         
z 

 
Escape 
velocity 

[v/c] 

 
Escape 
velocity 

[v/c] 

* Distance
photo-

metric  

[Gpc]  

Distance  
[Gpc]  

Eq.(312)  

[H=76]  

Distance  
[Gpc] 

Eq.(312)  

[H=55]  

*           
 Distance  

geometric 

[Gpc]
  

Distance  
[Gpc] 

Eq. (315)  

[H=76]  

3C  273B 0.158 0.108 0.089 0.470 0.427 0.588 0.420 0.484 

3C   48 0.367 0.259 0.170 1.100 1.023 1.408 0.800 0.928 

3C   47 0.425 0.302 0.188 1.270 1.194 1.644 0.900 1.025 

3C  279 0.536 0.386 0.218 1.610 1.528 2.103 1.070 1.187 

3C  147 0.545 0.393 0.220 1.630 1.555 2.141 1.090 1.198 

3C  254 0.734 0.542 0.260 2.200 2.143 2.950 1.310 1.416 

3C  138 0.759 0.562 0.265 2.280 2.222 3.059 1.340 1.441 

3C  196 0.871 0.653 0.283 2.610 2.583 3.555 1.450 1.542 

3C  245 1.028 0.783 0.305 3.080 3.100 4.267 1.590 1.662 

CTA 102 1.037 0.791 0.306 3.110 3.130 4.308 1.600 1.668 

3C  287 1.055 0.806 0.309 3.160 3.190 4.391 1.620 1.681 

3C  208 1.109 0.852 0.315 3.320 3.372 4.642 1.660 1.716 

3C  446 1.404 1.110 0.345 4.200 4.392 6.046 1.870 1.877 

3C  298 1.436 1.139 0.347 4.300 4.506 6.202 1.890 1.892 

3C  270,1 1.519 1.214 0.354 4.550 4.802 6.610 1.940 1.929 

3C  191 1.946 1.612 0.382 5.830 6.376 8.777 2.160 2.078 

3C    9 2.012 1.675 0.385 6.030 6.627 9.122 2.190 2.097 
 
Table 1: Some quasi-stellar radio sources 
 
 

All results of Table 1 are visualized in Figure 33. One sees that the values, calculated cor-
rectly according to expression (243) with 75.89 → 76 also fit well the geometrical distance 
(light-way) calculated by the author of [27]. The correlation-coefficient between these two 
data-series amounts to 0.795. This corresponds to the one of the incorrectly calculated values 
approximately. We pursue the 76 as an astronomically determined value for later comparison, 
since the failed evaluation of the SN-Ia project data naturally only allows a standard H0 besides 
the standard model. 

 

 
 
Figure 33 
Distance in dependence on the 
red-shift for elliptical models (q =1) 
 

 
The difference in the ascend of both pairs of curves is to be attributed to the application of 

the classic model of cosmology and is also an indication of the discrepancy in the SN-Ia 
cosmology project. 
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5.3.4. The HUBBLE-parameter 

 
In order to replace the world radius R = c/H0 in the calculation, we need also the correct value 

of the HUBBLE parameter H0 for a correct calculation. In addition to various astronomically 
determined values, two main values have been established in the meantime, with the so-called 
HUBBLE-tension in between. These can even be calculated precisely using the MLE model. The 
key is the exact value of the phase angle Q0 = 2ω0t of the time function υ0 (93). This can be 
easily calculated from the PLANCK-, electron and proton mass according to (255). With 
H0 = ω0/Q0 we are able to determine H0 then: 
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     [71,99]            (256) 

 
An extremely precise solution is possible within the framework of the Concerted System of 
Units [49] and [29]. The program to the calculation of the values also can be found in the 
appendix. The alternative value of H0 arises from the ratio of the classical electron radius re and 
the PLANCK-radius r0. In order to match both solutions, we also determine the so-called tension 
factor δ. It corrects the curvature of the electron radius. 
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 (259)  

 
Which of both values is the correct one shall be determined during the evaluation of the SN-Ia 
project data. It is (255) and (257), I can tell you that much. It is also important to note that the 
constant wave count vector rK expands with v = 3/4 c at the world radius (Figure 27). So 
H1 = 3/2 H0 applies for the universe as a whole. This follows from [29] Section 4.5.2. 
 

Expression Q0 H0 H0 H1 H1 QED 

 [1] [s
–1

] [kms
–1

Mpc
–1

] [s
–1

] [kms
–1

Mpc
–1

] Correction Factor 

(TAB1) 7.5419·1060 2.460·10–18 75.8903 3.691·10–18 113.836 –  

(256) 7.9498·1060 2.448·10–18 71.9963 3.500·10–18 107.995 1.00000  0 

(257) 8.3405·1060 2.224·10–18 68.6241 3.336·10–18 102.936 1.01612   
(255) 8.3405·1060 2.224·10–18 68.6241 3.336·10–18 102.936 –  

(COBE) 8.3397·1060 2.224·10–18 68.6307 3.336·10–18 102.946 –  

 
Table 2 

HUBBLE-parameters as a function 
of local quantities (overview) 

 
The COBE-value is obtained from the measured CMBR temperature in that we rearrange 
(477 [29]) for Q0 which corresponds to (255) in principle: 
 

–1 10
0 0

5
51

2 2 Q Q 2.725 1.6436049K =
18k 1

1
8k

258 10kT
hh

 (477 [29]) 

 
However, the table is not complete. Strictly speaking, the number of possible solutions is 
unlimited. But there is only one correct solution. So if you have chosen a value from the table 
at random and found that the real measured values do not match your model, simply try 
another one. 
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6. The Supernova-Ia cosmology project verification 

 
At this point we have gathered all the information to verify the measurement data from the 

SN-Ia cosmology project by means of the MLE model. Since we only use this one model, the 
premises are consistent. Before we go on into detail, at first yet another section, which deals 
with the fundamental values of observation, being focused to physicists, astronomers and 
technicians, which as known, work with different units of measurement. So it‘s difficult to 
understand one another. 

 
 

6.1. Measurands and conversions 
 
Since we want to deal with one concrete project, only the quantities, which are specifi-cally 

relevant for the supernova-cosmology-project, should be exemplified. In reality, in physics, 
astronomy and radio-astronomy there is yet a large number of further quantities. I recommend 
[44] to any interested person, which the information given here, is based on. 

 
Initially with the project, astronomic objects, supernovae of the type Ia, which appear to the 

observer as punctual objects with a certain luminosity, have been observed. The measured 
luminosities were compared with the redshift z (238) and with the luminosities predicted by the 
various world models. What do we mean by luminosity however? 

 
In astronomy there are four types thereof at all, once the apparent brightness, the bolometric 

brightness, the absolute and the absolute bolometric brightness. It is given in magnitudes [m, 
mb, M, Mb]. It is about a logarithmic unit of measurement, which is defined historically. With 
the bolometric brightness, the entire frequency domain in accordance with the STEFAN-
BOLTZMANN radiation-rule is considered, it‘s about the logarithm of the quotient of the two 
values power and surface [Wm

–2
], which the physicist marks as POYNTING-vector S. In the 

astronomy, this value is called flux F, in the technical department field-strength S.  
 

With the non-bolometric values the unit of measurement [Wm
–2

Hz
–1

] is used. The mea-
surements are dependent on frequency and bandwidth then. But for us only the bolometric 
values are of note. Another important value is the (bolometric) luminosity L. In the physics and 
in the technical domain it is marked as power P as well as level p. Unit of measurement is the 
Watt [W] as well as the decibel [dB]. Thus, we can define: 
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F0

   2.5lg
L 4r2

L0 4r2
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L  
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 Brightness   (260) 

 
As usual with logarithmic units of measurement, always a reference-quantity F0 as well as L0 is 
needed. The values has been taken from [42] and [44] and read as follows: 

 



F0   2.5110–8Wm–2 L0   3.091028W      (261) 
 

A star with the luminosity L0 has exactly 0 magnitudes (written 0
M

). The absolute brightness 
(flux) is defined in a distance of 10pc of the source, but it has no meaning for us. Even in the 
technical domain there is such a logarithmic dimension, the dB (decibel): 

 



S  P   10lg
S  

S0

 dB   10lg
P 4r2

P0 4r2
 dB   10lg

P  

P0

 dB Field-strength/level (262) 

 
Another, more rarely used logarithmic unit of measurement is the Neper p[Np] = ln(P/P0). The 
original definition of P0 comes from the telecommunication and is defined as a power P = 1mW 
on 600. But in the radio-technology and with it even in the radio-astronomy this value is not 
used, since we are concerned there with much smaller quantities in general. Therefore, the 
following relative values are used: 

 



S0   1 pWm–2   1012Wm–2 P0   1 pW   1012W           (263) 
 
In order to avoid a confusion with the historical definition, instead of dB mostly the unit 
dBpWm

–2
 or dBpW as well as dBpWm

–2
Hz

–1
 or dBpWHz

–1
, if there is not the entire spectrum 
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included. The power P at the input of a receiver with adaptation simply results from the 
POYNTING-vector S, the effective surface A of the antenna used and the gain G of the antenna: 
 



P[dBpW]   S[dBpWm2]10lgA[m2]G[dB]     (264) 

 
Since the decibel is also a logarithmic unit, a simple conversion is possible into the astronomic 
units. For P[dBpW], Mb[M], S[dBpWm

–2
], mb[m], L[W], F[Wm

–2
] applies: 

 
P = 404.9 – 4 Mb Mb = 101.225 – 0.25 P           (265) 

  

S = 44 – 4 mb mb = 11 – 0.25 S      (266) 

 

P = 120 + 10 lg L L = 10 

0.1P−12      (267) 

 

S = 120 + 10 lg F F = 10 

0.1S−12      (268)  

 

L = 10 

28.5−0.4
 

M
b

  Mb = 71.225 – 2.5 lg L     (269) 

 

F = 10 

−7.6−0.4
 

m
b

  mb = 19 – 2.5 lg F      (270) 
 
All obscurities should be removed with it, so that we can turn to the results of the supernova-
cosmology-project. 

 
 

6.2. Measurement data from the Supernova Cosmology Project 

 
The results of the project were published by PERLMUTTER in [45] in detail. Unfortunately, 

the website is meanwhile orphaned, i.e. it still exists, but the links to graphics and tables are 
dead. Fortunately, these are now available on the new, updated homepage. 

 
For a better understanding of what a type Ia supernova actually is, I recommend the work of 

HERRMANN [42]. The most important thing is that an SN-Ia has a maximum absolute 
brightness resulting from its structure. If the star is larger, a supernova of a different type 
develops, which can be recognised by its characteristics. Thus, an SN-Ia can be used as a 
standard candle, although the brightness is slightly lower than the maximum, as not all SN-Ia 
reach the maximum brightness. 

 
The apparent bolometric brightness at the observer has been compared by PERLMUTTER in a 

diagram with the associated red-shift z. Even HERRMANN [42] and HEBBEKER [43] are using the 
same diagram, at which point in [43] is deferred in detail to the common standard-big-bang-
model once again, being based on the classical EINSTEIN evolution-equation with and without 
cosmologic constant. 

 
The observations now submitted, that further (older) SN-Ia appear somewhat darker, as they 

actually should be according to the standard-model without cosmologic constant ( = 0). The 
case  = 0 just doesn‘t fits the observations. The possibility that SN-Ia could have had other 
properties earlier is ruled out by all the authors, including myself. 

 
Rather, the deviation is interpreted in such a way that Λ should have a value other than zero, 

which means that the expansion rate of the universe, i.e. the HUBBLE-parameter, is not 
decreasing at the present time, as has always been assumed, but increasing on the contrary. 
Thus, the observed SNae would be farther away, than it would arise from the measured red-
shift z. The lower brightness would be explained with it. However this leads to incon-gruities 
with other observations. In order to avoid them, a complicated construct is used, which 
demands extremely exact synchronizations to the point of time T = 0 and even afterwards, 
which appears to be pretty implausible, because nobody can exactly say, on which physical 
phenomenon this effect should be based on. 
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While PERLMUTTER contents himself with the hint on the option  ≠ 0, HERRMANN and 
HEBBEKER even demand the existence of „dark matter― with hitherto yet unknown qualities 
and of an effect with the name „quintessence― which should be the cause for the increasing 
expansion-rate, quasi a sort of anti-gravity. For my part, however, I consider this hypothesis to 
be erroneous, since the discrepancy can be explained even more simply, only with the help of 
known physical rules (Ockham‘s razor). Only then, one must have the courage to use an 
alternative model. The standard-big-bang-model has flopped for a long time, even in respect of 
other points. Unfortunately, the common view latterly seems to tend more and more into the 
direction „dark matter― and „quintessence―, which can be regarded as criterion, that the 
proponents of the standard-model are at their wit‘s end.  

 
But if the HUBBLE-parameter continues to decrease and the observed objects are being 

located in the correct distance, the only possible explanation is, that the photons are subject to 
an additional attenuation during their propagation, not known until now. And exactly this is an 
essential quality of the model on hand

1
.   

 
In section 5.3.2. we had worked out the propagation-function for a loss-affected medium 

with expansion and overlaid wave. Different from the propagation-function for a loss-free 
medium the attenuation rate  is different from zero there. It has the value 1/R. Therefore we 
want to forecast the observed brightnesses of SNae Ia with the help of this function. For the 
graphic representation, we need the function mb(z). Starting from (260) we obtain for the 
apparent magnitude mb:  

Ia
b 2 2

0

Ia

8 2

0

L LF 1
m 2.5 lg 2.5 lg 2.5lg

F 4 Fr 4 2.51 10 Wmr
  (271) 

 
In doing so we notice, that the value LIa, the luminosity (power) of the standard-candle 
supernova Ia is missing. And indeed, neither in [42], [43], [44] nor in [45] such a one is 
specified. Fortunately, the colleague Wolfgang Hillebrandt from the Max-Planck-Institute for 
Astrophysics (MPA) Garching could help me with this problem. According to his information, 
the maximum luminosity of a SN-Ia has a value of 10

36
W approximately. That‘s the upper 

limit. If we put it into (271) still the distance r is missing. Since we look at the matter starting 
from the source toward the observer, we obtain it with the help of (240) without correction-
term. It applies: 
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This is the function mb(z) without consideration of the additional attenuation. Since also the z-
axis needs to have a logarithmic scale, we apply the value 10

w
 with –2 ≤ w ≤ 0 instead of z. Now 

indeed, PERLMUTTER has published all measurements in [45], but since I do not dispose of any 
procedure, to present it so nice, including the tolerance-limits, I decided, to take up the 
comparison with (273) by overlay of both charts. 
 

Figure 34 presents the relative brightnesses, calculated with the help of (273), in com-
parison with the observations of the supernova-cosmology-project. Also to be seen are the 
curves of the standard-big-bang-model for various adjustments calculated by PERLMUTTER. 
The overlay-markers (+) are located at all corners except for top left. 

  
In the presentation meets the eye that the three brightness-functions (according to this model 

without consideration of the parametric attenuation) are below the observed values, just they 
have been computed too bright. This is even no miracle, since we used the maximum-value  
as standard-candle. Figure 34 also shows, that solution (256) with 71.996 kms

–1
Mpc

–1
 for the 

                                                 
1
 Of course, already previously models existed (e.g. tired light) which work with an additional attenuation. All they have failed however,  

 since they wanted to attribute the attenuation to the particle properties of the photons only. But the wave properties are the cause in  
 reality. Nevertheless, the tired-light-hypothesis appears essentially more plausible, than the assumption of the existence of dark matter  
 and quintessence. 
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Figure 34 

Calculated apparent bolometric brightness for the three values of the HUBBLE-parameter in  
comparison with the observations of the supernova-cosmology-project (standard-candle = maximum) 

 
HUBBLE-parameter (red) comes quite very close to reality, because it is located at the outer 
margin of the error tolerance corridor. Using the updated value (255) in the amount of 
68.6241kms

–1
Mpc

–1
 we are already within. The same applies to the value derived from the 

COBE-measurements, which would follow the same curve (blue) in the graphics. Now, in 
contrast to the previous editions we‘ll use value (477) for the following contemplations. We 
determine the updated value of the standard-candle, which is the statistical average of all 
observed SNae Ia, numerically with the help of (255) for a value at the lower end of the z-axis 
to LIa = 6.40949·10

35
W. Applied to (271) using the example of H

~
0 (255) we obtain :  
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We need the function mb(z) with parametric attenuation as well. On this occasion we have to 
consider the factor e

–r/R
=10

–r/R·lge
 from the propagation-function (236). It applies: 
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4/3 4/3

bm 23.3734 5lg((z 1) 1) 0.5429((z 1) 1)       With param. attenuation (278) 

 
Figure 35 shows the graphs of expression (275) and (278) in comparison with the 
measurements of the supernova-cosmology-project for solution (477) of the HUBBLE-
parameter. The thin black lines show the expectation-values of the standard-model for  = 0 
with a mass-energy-density M =  0, 1 and 2. For one time, it is an empty universe (0), for the 
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Figure 35 
Calculated apparent bolometric brightness for solution (257) of the HUBBLE-parameters in  
comparison with the observations of the supernova-cosmology-project (standard-candle = average) 

 
the other time a universe with normal energy-density (1) and at last a universe with double 
energy-density (2). In this connection, the standard-BB-solution for the „normal― universe 
covers the propagation-function for a loss-free medium (275). That is also no miracle, because 
both have the same exponent 4/3 in (240). This case however is not confirmed by the obser-
vations, neither an empty universe. For  = 0 even an universe with negative mass-energy-
density (filled with antimatter) would be necessary. Then, according to [45] the best match is 
with M = 0.28 and  = 0.72. Thereat, all along, the sum of both values must always be equal 
to one. The value  is the so-called „dark energy-density― which indeed could be identical to 
our metric wave-field (0K = absolutely dark). 
 

 
XIV. The observed values of the supernova-cosmology-project are exactly  
 described by the propagation-function (236) under consideration of the geo- 
 metric and parametric attenuation (215). The assumption of the existence of  
 any new exotic kind of matter or unknown physical effects is not necessary. 
 
 There is neither dark matter, quintessence nor increasing expansion!! 
 

 
As I said, the whole thing sounds rather improbable, especially as this optimal course is 
"coincidentally" described exactly by the function (278) (blue curve in Figure 35), and all this 
with the help of known physical objects and relationships. However, Figure 35 only shows the 
curve up to z = 1, whereby the two measured values with the highest z are even below 0.9. The 
whole thing looks good in the graphic, but in my opinion it is not meaningful enough. Also, the 
number of properties analysed in the first stage of the project leaves a lot to be desired. The 
more values, the more exact statistics. 
 
Therefore, it would be nice, to be in the position to analyse and display SNæ-Ia with z > 0.9. 
Blessedly the High-z-Supernova-Search-Team added further observational data [73] since 1994, 

(ΩM, ΩΛ) 
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so that the limit has been moved upwards to z = 1.414 now. There are in total 580 values in the 
range 0.015 ≤ z ≤ 1.414 on hand, 48 thereof with z>0.9. They are shown in Figure 36 to 38. 
 
The data was taken from [45]. They are available there as the file SCPUnion2.1_mu_vs_z.txt. 
It can be imported as a .csv file into Excel, where further processing is possible. This is 
necessary because, in contrast to the first project section, the distance module μ = mb–Mb 
(column 3) instead of the apparent bolometric magnitude mb has been specified beside the z-
values (column 2). To ensure comparability with the previous data, we need the exact value of 
Mb. In [77] the definition of μ is given, but without the extinction Av. It are the losses caused 
by atmospheric and interstellar influences, as well as by the instruments used, e.g. bolometers. 
We obtain the complete definition with the help of [78]: 
 

b b vM A 5 5lgm r r[pc]    Distance module      (279) 

 
The distance from the source r must be given in parsecs [pc] here due to the definition of 
absolute magnitudes at a distance of 10 pc. That makes it easier to understand. If Av is 
neglected, the right-hand side turns into zero and Mb = mb applies. Thus, the absolute 
bolometric brightness Mb represents a sort of target value. It depends on the (average) 
luminosity L(Ia) of the SNæ-Ia only. If you know it, you can even calculate it. With the 
previously determined value for LIa for r = 10 pc we get: 
 

Ia Ia
b b v v v2

0 0

F 1 L
M m A 2.5 lg A

r
2.5 lg A

F 4 F
   (280) 

 

M

32 8

35

b v vM 2.5 lg A 18.3231 A
4 9.52167 10 2.51 10

6.40949 10
  (281) 

 
This is the value that needs to be subtracted from μ in order to determine mb, assuming Av is 
negligibly small. Obviously, that‘s not the case. The header of the text file contains important 
information, including two values for Mb. With it, we are able to determine Av. 
  

 The first three values could not be assigned. 
They obviously have to do with systematics. 
In any case, the relevant value for Mb is the 
last one (–19.3081547178

M
). 

  
The value of Av is at 0.9850875

m
 with it. This is almost one class of magnitude and amounts to 

a ratio of 2.47762 or 60% loss. The factor 0.4 in many expressions is derived therefrom too. 
During measurement, the luminosity is reduced (divided) by exactly this factor (2.47762). In 
[78] it‘s stated: 
 

Thus, the atmospheric extinction increases with the zenith distance. At the zenith, it amounts to around 0.28 mag 

(23%) at sea level and is essentially caused in equal parts by Rayleigh scattering from air molecules and scattering 

from aerosol particles.   
 
If we subtract the 0.28

m
, the sum of interstellar and technical extinction is 0.705088m or 48% 

then. To determine the proportionality factor MaG[#] with an increase of the magnitude mb of #, 
I have defined the following function MaG=Function[10^(-0.4 #)]. The inverse function is 
GaM=Function[-2.5 Log10[#]]. Now we can also determine the mb values and summarize them with 
the z values in the list form SNList1={{z,mb},{0.015,15.0716180869},...}};. Then, the list can be 
imported into Mathematica via clipboard or text file and displayed with the following program: 
 

new1={};  (* High-z-SN-Data *) 

y=Length[SNList1]; 

For[i=0,i<y,i++,all=Part[SNList1,i+1];AppendTo[new1,{Log10[Part[all,1]],Part[all,2]}]] 

bb=ListPlot[new1,ImageSize->Full,LabelStyle->{FontFamily->"Chicago",12,Black}, 

PlotRange->{{-2,1},{14,43}},PlotStyle->{PointSize[Medium],Red},AxesOrigin->{1,14}]; 

Show[bb,Graphics[Line[{{0,0},{0,60}}]]] 

 
The result is an overlay file already superimposed the existing Figure 162 of [29]. The objects 
with z > 0.9 are to the right of the left vertical line: 

# alpha 0.121851859725 
# beta 2.46569277393 
# delta -0.0363405630486 
# M(h=0.7, statistical only) -19.3182761161 
# M(h=0.7, with systematics) -19.3081547178 

(282) 
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Figure 36  
Calculated effective bolometric luminosity for the project data 
with solution (257) of the HUBBLE-parameter for more distant SNæ-Ia 
 
As you can see, there are many more measured values and they fit the solution (278) exactly. 
Even the increasing attenuation in the range 0.1 ≤ z ≤ 1.414 can be seen very clearly now. This 
was not really to be expected, as the blue curve (278) is based on my SN-Ia brightness of 
LIa = 6.40949 ·10

35
 W, while PERLMUTTER et. al. probably used a different value. It is not speci-

fied anywhere, but we can calculate it. 
 
The blue curve is described by the function mb (z). There are no more parameters. First let's  
have a look which partial expression of (278) may change with constant z and where the 
brightness LIa is contained at all. Only the first expression, the 23.3734, remains, because the 5 
and the log10-logarithm in the second expression are stipulated by the definition of the magni-
tude class. The 0.5429 in the third expression is owed to the conversion of the e-function in the 
damping expression into the exponential function e

–r/R
 = 10

–r/R·lg
 

e
 and therefore also invariable. 

The factor ½ follows from (240) and is counted among the z-expression. 
 
But if the measured data validate my function, that means nothing other than, that the 23.3734 
does not change, even though it contains LIa. The reason is, PERLMUTTER simultaneously 
works with a different LIa, but also with a different H0 of 65 instead of 68,6241kms

–1
Mpc

–1
. 

Since the value 23.3734 doesn't change, we should analyse where it comes from. If we substi-
tute r for (240) in (271), we obtain: 
 

4/

Ia Ia Ia
b 3 2

1 2

0

2 2 2

0 0 0

1

((z 1) 1)

1 L L H L
m 2.5 lg 2.5 lg 2.5 lg

4 F R F c Fr

%
L%

 (283) 

 
The right-hand expression without the ... amounts to the wanted 23.3735. Analogous for LI′ a , 
and ̃̃ . Since π, c and F0 are constants, mb = mb′ and we are using the same measured values, 
we can equate both expressions obtaining for LI′ a = LIa ̃ ̃ ² a value of 7.14414·10

35
 W resp. 

–18.40998
m

. The negative sign indicates that the objects are very very bright. The average LIa 
value I determined is not quite as bright and is equal to 6.40949·10

35
 W resp. –18.2922

m
. Then, 

we obtain the absolute brightnesses (at a distance of 10 pc): 
  

 LIa  =  6.40949 ∙10
35

W = –18.2922
m
  LI′ a  =     7.14414 ∙10

35
W           =    –18.410

m
 

 

2

2

pWm

pWm

m

2

m

2

Ia

Ia Ia
Ia Ia2 2

0

Ia Ia

2 2

0

Ia

18.323L L
F 0.535674Wm F 2.5lg

400 400 F [117.289dB ]

18.441L L
F 0.597073Wm F 2.5lg

4

1

pc pc

1

00 400 F [117.760dB ]pc pc
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There is a slight difference in flux between the two values in the order of magnitude of 
ΔFIa = FIa – F I′ a  = 0.117817

m
. This corresponds to a 10.2833% lower level for my model, i.e. 

since my mean bolometric SN-Ia-brightness is slightly lower, the absolute bolometric bright-
ness at 10 pc distance is slightly lower too. As the 10 pc always remain the same, regardless of 
how large H0, a different value of H0 does not affect the measured values, only the model. 
Therefore, the data does not need to be corrected for the MLE model. Thus, we obtain for 
H0 = 68.6241kms

–1
Mpc

–1
 the same presentation: 

 

 
Figure 37 
Calculated effective bolometric luminosity for the MLE-model 
with solution (257) of the HUBBLE-parameter for more distant SNæ-Ia 
 
The following user-friendly functions are defined for calculations even with a different H0: 
 

P0=  H0;      (* or 65*1000/Mpc *); 

P1=SetPrecision[-2.5Log10[P0^2/c^2L1a/Pi/F0] - 0.4515449878350246, 30]; 

P2=SetPrecision[1.25Log10[E],30];      (* -2.5(-1/2*Log10[E]) *) 

Mby=Function[P1+5Log10[((#+1)^(4/3)-1)]]; 

Mbz=Function[P1+5Log10[((#+1)^(4/3)-1)]+P2((#+1)^(4/3)-1)]; 

Mbq=Function[P1+5Log10[2# P0/c]]; 

MbQ=Function[P1+5Log10[2#]]; 

Mbr=Function[P1+5Log10[2# P0/c]+P2*2# P0/c]; 

MbR=Function[P1+5Log10[2#]+P2*2# ]; 

 

 
Figure 38 
Effective bolometric luminosity of the High-z-SN-Ia 
measured data as a function of distance linear (286) 

→ See thereto (294)  

 
(285) 
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The function m b(r) is interesting too. From (240) follows the substitution 4/3 2r
((z 1) 1)

R%
 

y=Length[SNList1]; SNList2={}; new2={}; 

For[i=0,i<y,i++,all=Part[SNList1,i+1];AppendTo[SNList2, 

{N[.5(1-(1+Part[all,1])^(-4/3))],Part[all,2]}]] 

aa=ListPlot[SNList2,ImageSize->Full,PlotRange->{{-.005,.359},{13.7,26.3}},AxesOrigin->{0,14}, 

LabelStyle->{FontFamily->"Chicago",12,Black},PlotStyle->{PointSize[Medium],Brown}] 

 
Figure 38 clearly shows the area covered by the observation data. It should be noted that 
because of the definition of the radiation cosmos, R = 2cT applies. The x-axis then naturally 
runs up to 0.7cT. The logarithmic view in Figure 39 provides further information about the 
course. It was displayed with the following program: 
 

new2={};  

For[i=0,i<y,i++,all=Part[SNList2,i+1];AppendTo[new2,{Log10[((Part[all,1]+1)^(4/3)-1)],Part[all,2]}]] 

 
bb = Plot[{MbQ[10^y],MbX[10^y],MbR[10^y]}, {y, Log10[10 pc/R] - .1, 0}, ImageSize -> Full, 

PlotRange -> {{-8.8, 0.1}, {-21, 31}}, LabelStyle -> {FontFamily -> "Chicago", 12, Black},  

PlotStyle -> {{Thickness[0.0035],Brown},{Thickness[0.0035],Blue},{Thickness[0.0035],Red}}]; 

 
cc=ListPlot[new2,ImageSize->Full,LabelStyle->{FontFamily->"Chicago",12,Black}, 

AxesOrigin->{0,0},PlotRange->{{-8.8,0.1},{-21,31}}, 

PlotStyle->{PointSize[Medium],CMYKColor[.4,.2,1,0]}]; 

 
Show[cc,bb,Graphics[Line[{{{-10,26.102},{1,26.102}},{{-10,Mbr[10 pc]}, 

{1,Mbr[10 pc]}},{{Log10[10pc/R],-21},{Log10[10pc/R](*-8.3*),31}},{{-0.295,-21}, 

{-0.295,31}},{{-1.885,-21},{-1.885,31}},{{-10,14.516},{1,14.516}}}]]] 
 
I have taken the boundaries for the display from the High-z file. Interestingly enough, the 
measured values from a distance of approx. 0.1 R on are distributed in a totally different 
manner than generally assumed. They are darker (higher magnitude) than calculated by the 
previous relations. Neither the function (275) substituted by (240) [brown], nor the substituted 
function (278) [red] are tracing the distribution accurately enough: 
 

bm 23.3734
2

R
5lg

r

%  
Average, geometric only                (288) 

 

b

2r
m

2r

R
23.3734 5lg 0.54295

R% %  Average, geometric and parametric (289) 

 
It looks as if an additional damping occurs from 0.1 R on. At this point, however, another effect 
comes into play. In section 4.5.2.3. of [29] I stated that the value of H already increases from . 
r ≥ 0.01 R on, so that it reaches a value of H1 = 3/2 H0 at the world radius, at r = R/2 = cT. The 
distance r (to the SN) is here the constant wave count vector rk and not the zero vector of the 
radiation of the observed SN. 
 

 
Figure 39 
Effective bolometric luminosity of the High-z-SN-Ia 
as a function of distance logarithmc coarse            Functions (288),(289),(290) 

(287) 

(286) 
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That means, the expansion velocity v = H r over the entire length increases above r > 0.1 R. This 
can  clearly be seen in Figure 43 of [29]. However, if the expansion rate increases at greater 
distances, it was greater in the past, not later in the future. It's said Fainter [further, further 
back in time]. However, this also means, the expansion rate does not increase, but decreases 
over time! Indeed, the objects are really further away than calculated. But that's only because 
H0 used to be much greater in the old days. At large distances, expansion speed and H along 
the total distance r aren't uniform everywhere. This can be neglected for r ≤ 0.1R, but not for 
r > 0.1R. Then you have to calculate the integral over the entire distance, as I did in section 
4.5.2.3. of [29]. The blue curve in Figure 39 shows the probable function (291). But it‘s 
displaced (lighter in colour) compared to the brown and red function. 
 
For a better overview and to determine the 
complete function, a section of the data 
area is shown in Figure 40. On the right 
you will find a smaller version of Figure 
43 of [29]. 

 

The relevant function (green) is described 
by v = H r = r m/T with H = m/T (345). The 
parameter m is the Taylor series for the 
solution of the implicit function (339). We 
choose the third, most accurate variant of 
(344 [29]) with r = r/R 

 
m ≈ 0.5001002 +   0.598206 r – 

    3.45991 r 

2
 + 18.3227 r 

3
– 

     42.69950 r 

4
 + 38.0733 r 

5
 

 

 
 

Figure 43 [29] 
Expansion-velocity as a function of the distance  
for t=0, the values r>0.5R are extrapolated 

 
The exact derivation can be found in [29]. The value of m for r = 0 is denoted as m0. But how 
the ―strange behaviour of the real measured values‖ can be mapped correctly in our formula? 
The fact is that it's about an additional damping but not a parametric, but a geometric one. This 
is caused by the fact that the objects are further away than the calculation with a constant 
H = H0 would have us believe. All expressions containing R or H are relevant. If it contains R

↑
, 

R
~↑

,  H0 oder H
~

0 , we must compensate for the dependency on the total length/distance using a 
correction factor. Because of m0 = ½, H = m/T applies H ~ m and H/H0 = m/m0 = 2 m. In (283) R0 
resp. H0 occurs exactly once and that in the square. Substitued in (289) gives the following: 
 

b

0.54
m 23.3734 5lg 23.3734 5lg 5lg

2
2 1.

r 2r 2r 2r

R R R R
08

½% % % %

2

2

0

m
m

m
 

 (290) 

 
Now the added parametric part also contains R

~↑
. The question is, do we have to correct this 

too? No, as the universe expands, r and R
~↑

 are changing in the same way. But the damping 
factor α is always –1/R, regardless of the size of R. Since the parametric damping does not 
depend on 2r/R

~↑
, but on r/R

~↑
, a different correction is necessary here.  We have to divide by a 

factor 2, which has turned into 1/2 due to the sign change of the product –2,5 lg 10^(–1/2 lg e) 
in 1/2 mutiert ist. The –1/2 actually belongs to the z-bracket expression, but it ―disappeared‖ in 
the coefficient 0.54... This way, the initially higher expansion rate also had had an influence on 
the parametric share. I would like to call the whole concept non-linear expansion. Then, after 
rounding, we get the final expression, re-sorted: 
 

b

2r 2r 2
m 23.3734 5lg 1.

R
g

R
l

r

R
5% % %m

 

(291) 

  

The factors of the second [1.08574] and fourth [1.50515] expression are rounded. The course of 
function (291) is already shown as a dashed line in Figure 39. As you can see, the measurement 
data was hit correctly. At smaller distances, however, the curve runs permanently below the 
geometric and parametric function. The gap down to the 10 pc limit (FIa) is –0.451545

m
 

(brighter). Actually, we should have to correct LIa as well. Since the mb(z) functions are 
correct, but (288) and (289) too dark, it is more appropriate to correct them. Why? If you 
examine the overall course, both describe exactly the course of the statistical mean value of the 

Exactly, geometric and parametric, 
Nonlinear expansion 
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measured data without taking the shape into account. But the given systematic target value  
Mb = –19.3081547178

m
 is also a statistical mean. Therefore, it‘s no wonder that the curve 

deviates from the form-fit function (291). Therefore, for use as an exact function in the range 
r ≤ 0.1 R

~↑
, we correct as follows: 

 

b

2r
m 22.922 5 lg r 0.1R

R
%

%  
Exactly, geometric only               (292) 

 

bm 22.922 5lg 0.54295
2r 2r

r 0.1R
R R

%
% %  Exactly, geometric and parametric (293) 

 
Adding the green addition to P1 in (285) changes the functions (288) and (289) into (292) and 
(293). Figure 40 shows the exact functions (291), (292), (293). Here still the functions for the 
calculation of m (Hm0) and the blue line (MbX). 
 

Hm0 = (0.5+0.598206 # - 3.45991 #^2 + 18.3227 #^3 - 42.6995 #^4 + 38.0733 #^5) &;  

MbX=Function[P1+2#+5Log10[2#]+1.5Log10[Hm0[2#]]]; 

 

  
Figure 40 
Effective bolometric luminosity of the High-z-SN-Ia 
as a function of distance logarithmic fine                  Functions (291),(292),(293) 

 
 
 
 

7. Conclusion 
 

When comparing the observed (maximum) brightness mb of the SN-Ia with the respective 
value mb(z) calculated from LIa using z in the SN-Ia cosmology project, it was found at that 
time that the measured brightness was slightly lower, i.e. the SN were dimmer than calculated. 
The difference is visible from approx. z = 0.1 on continuing to increase beyond this point. It 
was therefore assumed that the objects are further away than expected, which should lead to a 
stronger geometric attenuation. It was also assumed that this was caused by an increasing 
expansion (H0 ~ T

n>1
) instead of the previously supposed decreasing one (H0 ~ T

–1
).  

 
At the beginning of this paper it was found that this increasing expansion is a fallacy 

resulting from contradictory, i.e. inconsistent, premises. These are mainly the geometric 
damping with and the wave propagation without expansion. It has been shown that the 
predominant propagation function for electromagnetic waves (E = 0) is suitable for local 
applications, but not for processes on a cosmic scale. The reason for this is that MAXWELL's 
equations and their solution do not take into account, imply or condition the expansion of the 
universe. 
 

(294) 
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As a result, a complete, alternative propagation function with expansion (237) was developed, 
based on the MLE model developed by me which behaves like the classical MAXWELL solution 
in the first approximation for z ≤ 0.1. Using this function, the successful comparison with the 
observational data of the SN-Ia cosmology project, first conducted in [29], has been repeated 
and extended in order to include the High-z-SN-Ia data. In this context, the 580 SCPUnion2.1 
records have been graphically displayed and overlaid the previously published prediction graph 
(Figure 162 [29]) for SN-Ia with z ≥1, confirming the MLE model for this range as well. The 
originally postulated discrepancy in brightness has been resolved. If we apply consistent 
premises we also get a consistent result. 
 
 

 
Figure 41 
Successful data analysis of the 
Supernova-Ia-Cosmology Project 
 
 

Using the MLE model consistently, I carried out a further evaluation mb(r) in addition to the 
project's own data evaluation mb(z). This revealed a new deviation in the converted project 
data of r ≥ 0,1R, even not expected by me. Surprisingly, these are darker than calculated 
(magnitude↑). This deviation could be attributed to the fact that the HUBBLE-parameter is time- 
and distance-dependent due to H=1/(2T) [29]. Sections that are further away expand faster than 
those that are closer. The greater the distance, the greater the value of H and the expansion 
speed v=Hr. This made it possible to create a function mb(r) which correctly traces the deviant 
distribution. At the same time, it's the proof that the expansion rate decreases with time and 
does not increase, as falsely claimed. Thus all contradictions have been resolved. 
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8. The Concerted International System of Units 

 
A variety of formulas for the calculation of various variables and graphics are specified in 

the course of this work. These in turn access certain values and natural constants whose mea-
ning or values are not shown in the text, but which are required to carry out the calculations 
correctly.  

 
Using the MLE model of [29] it has been possible to calculate a series of natural constants 
associated with the electron, the proton and the 

1
H atom via their relation to the reference 

frame Q0 and that exactly. The model is based on the basic variables of the subspace, which are 
fixed values, independent of the reference system. It is sufficient to define only five genuine 
constants (μ0, c, κ0, ħ1 and k) as base variables plus a so-called Magic value, in this case me to 
specify the reference system Q0. All values are related via Q0; if one value changes, they all 
change. If an influence is added, it is yet another reference system. With it, all values except 
for the fixed ones form a so-called canonical ensemble, the Concerted System of Units. 

 
The program that makes these basic constants and functions available can be found in the 
appendix. It can also be used in other of my publications. The numerical values calculated with 
it, in comparison with the corresponding CODATA2018-values are shown in Table 3. When 
preparing the table, I added further values to the system that are simply dependent on those 
already defined, including σe, ae, ge, γe, µe, µN, Φ0, G0, KJ and RK. Except for re, whose 
definition is misstated in all editions, I used the expressions and symbols from the 
CODATA2018-document [63] for the other values. Please find the definition of the formula 
symbols from there. 
 
 

9. Notes to the appendix 
 

The basic formulas and definitions used in this work, are shown in the appendix. It‘s about 
the source code for Mathematica. The data from the .pdf may be converted into a text file 
(UTF8), which can be opened directly. Data is presented as a single cell then. However, it is 
not advantageous to evaluate the entire source code in one single cell. To split, use the 
Cell/Divide Cell function (Ctrl/Shift/d). However, with this procedure there may be problems 
with special characters, not correctly transferred (e.g. ε, ϵ) or even lead to the conversion being 
aborted. It is more advantageous to copy and paste data page by page into the text file via 
clipboard. However, then each line is present as a separate cell. With the command Cell/Merge 
(Ctrl/Shift/m) the cells belonging together can be merged, ideally in blocks between the 
headings. Then, the values shown in the ―Variable‖ column are available for own calculations.  

  
 
 
 

Symbol Variable Calculated (CA) 

S
ou

rc
e 

 

CODATA2018 (CD) 
© COBE Data       

± Accuracy Δy (CA/CD–1) Unit 

c c 2.99792458              ·108 S 2.99792458              ·108 defined defined m s–1 

ε0 ep0 8.854187817620390·10–12 S 8.854187817620390·10–12 defined defined As V–1m–1 

κ0 ka0 1.369777663190222·1093 S n.a. n.a. defined A V–1m–1 

μ0 my0 1.256637061435917·10–6 S 1.256637061435917·10–6 exactly exactly Vs A–1m–1 

k k 1.3806485279          ·10–23 S 1.380649                  ·10–23 statistic +3.41941·10–7   J K–1 

ħ1 hb1 8.795625796565460·1026 S n.a. n.a. defined J s 

ħ hb0 1.054571817000010·10–34 C 1.054571817·10–34 defined +8.88178·10–15 J s 

Q0 Q0 8.340471132242850·1060 C 8.3415·1060                    © 3.3742·10–2 –1.23343·10–4   1 

Z0 Z0  376.7303134617700 F 376.73031366857 1.5·10–10 –5.48932·10–10 Ω 

G G0  6.674301499999827·10–11 C 6.674301499999999·10–11 2.2·10–5   –5.48932·10–10 m3kg–1s–2 

G1 G1  9.594550966819210·10–133 C n.a. n.a. unusual m3kg–1s–2 

G2 G2  1.150360790738584·10–193 F n.a. n.a. unusual m3kg–1s–2 

me/mp mep 5.446170214846793·10–4 F 5.4461702148733     ·10–4 6.0·10–11 –4.867·10–12 1 
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Symbol Variable Calculated (CA) 

S
ou

rc
e 

 

CODATA2018 (CD) 

© COBE Data       
± Accuracy Δy (CA/CD–1) Unit 

M2 M2 1.514002834704114·10114 F n.a. n.a. unusual kg 

M1 M1 1.815248576128075·1053 C n.a. n.a. unusual kg 

mp mp 1.6726219236951    ·10–27 C 1.6726219236951    ·10–27 1.1·10–5   –2.22045·10–16 kg 

me me 9.109383701528      ·10–31 M 9.109383701528      ·10–31 3.0·10–10 magic ±0 kg 

m0 m0 2.176434097482374·10–8 C 2.176434097482336·10–8 calculated +1.70974·10–14 kg 

MH MH 2.609485798792167·10–69 C n.a. n.a. unusual kg 

Tp2 Tp2 9.855642915740690·10153 C n.a. n.a. unusual K 

Tp1 Tp1 1.181665011421291·1093 C n.a. n.a. unusual K 

Tp0 Tp0 1.416784486973613·1032 C 1.416784486973588 ·1032 1.1·10–5   +1.75415·10–14 K 

Tk1 Tk1 5.475357175411492·10152 C n.a. n.a. unusual K 

Tk0 Tk0 2.725436049425770 C 2.72548                          © 4.3951∙10−5   –1.61258·10–5   K 

r1 r1 1.937846411698606·10–96 F n.a. n.a. unusual m 

r0 r0 1.616255205549261·10–35 C 1.616255205549274·10–35 calculated –8.21565·10–15 m 

re re 2.817940324662071·10–15 C 2.817940326213      ·10–15 4.5·10–10 –5.50377·10–10 m 

DC ΛbarC 3.861592677230890·10–13 C 3.861592679612      ·10–13 3.0·10–10 –6.16614·10–10 m 

C ΛC 2.426310237188940·10–12 C 2.4263102386773    ·10–12 3.0·10–10 –6.13425·10–10 m 

a0 a0 5.291772105440689·10–11 C 5.291772109038      ·10–11 1.5·10–10 –6.79793·10–10 m 

R R 1.348032988422084·1026 C n.a. at issue at issue m 

R RR 4.368617335409830 C n.a. at issue at issue Gpc 

t1 2 t1 6.463959849512312·10–105 F n.a. n.a. unusual s 

t0 2 t0 5.391247052483426·10–44 C 5.391247052483470·10–44 calculated –8.43769·10–15 s 

T 2 T 4.496554040802734·1017 C 4.497663485280829·1017 1.1385·10–3   –2.46671·10–4   s 

T 2 T 1.424902426903056·1010 C 1.425253996152531·1010 1.1385·10–3   –2.46671·10–4   a 

R∞ R∞  1.097373157632934·107 C 1.097373156816021·107 1.9·10–12 +7.44426·10–10 m–1 

ω1 Om1 1.547039312249824·10104 F n.a. n.a. unusual s–1 

ω0 Om0 1.854858421929227·1043 C 1.854858421929212·1043 calculated +8.65974·10–15 s–1 

ωR∞ OmR∞  2.067068668297942·1016 C 2.067068666759112·1016 1.9·10–12 +7.44451·10–10 s–1 

cR∞ cR∞  3.289841962699988·1015 C 3.289841960250864·1015 1.9·10–12 +7.44450·10–10 Hz 

H0 H0 2.223925234581364·10–18 C 2.223376656062923·10–18 1.1385·10–3   +2.46732·10–4   s–1 

H0 HPC[Q0] 68.62410574852400 C 68.60717815146482←↑© 1.1385·10–3   +2.46732·10–4   km s–1Mpc–1 

q1 q1 1.527981474087040·1012 F n.a. n.a. unusual As 

q0 q0 5.290817689717126·10–19 C 5.2908176897171    ·10–19 calculated +4.44089·10–15 As 

e qe 1.602176634000007·10–19 C 1.602176634            ·10–19 exactly +4.44089·10–15 As 

U1 U1 8.698608435529670·1087 F n.a. n.a. unusual V 

U0 U0 1.042939697003725·1027 C 1.042939697286845·1027 calculated –2.71463·10–10 V 

W1 W1 1.360717888312544·10131 F n.a. n.a. unusual W 

W0 W0 1.956081416291675·109 C 1.956081416291641·109 calculated +1.73195·10–14 W 

S1 S1 5.605711433987692·10426 F n.a. n.a. unusual W m–2 

S0 S0 1.388921881877266·10122 C n.a. n.a. unusual W m–2 

ζe ζe 6.652458724888907·10–29 C 6.6524587321600    ·10–29 9.1·10–10 –1.09299·10–9   m2 

ae ae 1.159652181281556·10–3 C 1.1596521812818    ·10–3 1.5·10–10 –2.10054·10–13 1 

ge ge –2.00231930436256 C –2.00231930436256 1.7·10–13 –2.22045·10–16 1 

γe γe 1.760859630228709·1011 C 1.7608596302353    ·1011 3.0·10–10 –3.74278·10–12 s–1T–1 

µe µe –9.28476469866128·10–24 C –9.284764704328    ·10–24 3.0·10–10 –6.10325·10–10 J T–1 

µB µB –9.27401007265130·10–24 C –9.274010078328    ·10–24 3.0·10–10 –6.12109·10–10 J T–1 

µN µN 5.050783742986264·10–27 C 5.0507837461150    ·10–27 3.1·10–10 –6.19456·10–10 J T–1 

Φ0 Φ0 2.067833847194937·10–15 C 2.067833848 ……..  ·10–15 exactly –3.89327·10–10 Wb 

G0 GQ0 7.748091734611053·10–5 C 7.748091729000002·10–5 exactly +7.24185·10–10 S 

KJ KJ 4.835978487132911·1014 C 4.835978484 ……..   ·1014 exactly +6.47834·10–10 Hz V–1 

RK RK 2.581280744348851·104 C 2.581280745 ……..   ·104 exactly –2.52258·10–10 Ω  

α  alpha 7.297352569776440·10–3 F 7.297352569311       ·10–3 1.5·10–10 +6.37821·10–11 1 

δ  delta 9.378551014802563·10–1 F 9.378551009654370·10–1 1.5·10–10 +5.48932·10–10 1 

x~ xtilde 2.821439372122070` F 2.821439372 ……..  exactly exactly 1 

ζ  ζ  5.670366673885495·10–8 C 5.670366673885496·10–8 exactly exactly W m–2
 K –4 

 
S   Subspace value (const)     M   Magic value                      MachinePrecision  →  ±2.22045·10–16 
F   Fixed value (invariable)     C   Calculated (calculated)                
 
Table 3: 
Concerted International  
System of Units 
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 „The Concerted International System of Units " 
" 

< Declarations" 
 
Off[General::spell] 
Off[General::spell1] 
Off[InterpolatingFunction::dmval] 
Off[FindMaximum::lstol] 
Off[FindRoot::nlnum] 
 

" Units " 
 
km = 1000; 

pc = 3.08572*10^16; 

Mpc = 3.08572*10^19 km; 

minute = 60; 

hour = 60 minute; 

day = 24*hour; 

year = 365.24219879*day; 

Mo = 1.98840*10^30  (*Sun mass kg*); 

Ro = 6.96342*10^8  (*Sun radius m*); 

ME = 5.9722*10^24  (*Earth mass kg*); 

RE = 6.371000785*10^6  (*Earth radius m*); 

F0 = 2.51*10^-8  (*Zero flux brightness Wm^-2*); 

L0 = 3.09*10^28  (*Zero luminosity W*); 

L1a= 6.40949*10^35  (*Standard candle SNIa W*); 

 

" Basic Values " 
 
c=2.99792458*10^8;  (*Speed of light*); 

my0=4 Pi 10^-7;    (*Permeability of vacuum*);  

ka0=1.3697776631902217*10^93;    (*Conductivity of vacuum*);  

hb1=8.795625796565464*10^26;    (*Planck constant slashed init*);  

k=1.3806485279*10^-23;    (*Boltzmann constant*);  

me=9.109383701528*10^-31;    (*Electron rest mass with Q0 Magic value 1*);  

mp=1.6726219236951*10^-27;    (*Proton rest mass Magic value 2*); 

 

" Auxilliary Values " 
 
mep=SetPrecision[me/mp,20];  (*Mass ratio e/p*); 

ma=1822.8884862171988 me;  (*Atomic mass unit*); 

ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;  (*RnB angle ϵ null(fix)*); 

γ=Pi/4-ϵ; (*RnB angle γ nullvector*); 

ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep; (*re-correction factor*); 

xtilde=xtilde=3+N[ProductLog[-3E^-3]]; (*Wien displacement law constant (ν)*); 

alpha=Sin[Pi/4-\[Epsilon]]^2/(4Pi); (*Correction factor QED \[Alpha](Q0)*); 

delta=4Pi/alpha*mep; (*Correction factor QED \[Delta](Q0)*); 

(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4) (*Phase Q0=2ω0t during calibration*);*) 

Q0=(9 Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7); (*Phase Q0=2ω0t after calibration*); 

 

" Composed Expressions " 
 
Z0=my0 c;  (*Field wave impedance of vacuum*); 

ep0=1/(my0 c^2)  (* Permittivity of vacuum*); 

R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);  (*Rydberg constant*); 

Om1=ka0/ep0;  (*Cutoff frequency of subspace*); 

Om0=Om1/Q0;  (*Planck’s frequency*); 

OmR∞=2 Pi c R∞;  (*Rydberg angular frequency*); 

cR∞=c R∞;  (*Rydberg frequency*); 

H0=Om1/Q0^2;  (*Hubble parameter local*); 

H1=3/2*H0;  (*Hubble parameter whole universe*); 

r1=1/(ka0 Z0);  (*Planck’s length subspace*); 

a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);  (*Bohr radius*); 

ΛbarC=a0 alpha;  (*Reduced Compton wavelength*); 

ΛC=2 Pi ΛbarC;  (*Compton wavelength electron*); 

re= r1 (2/3)^(1/3)/ζ Q0^(4/3);  (*Classic electron radius*); 

r0= r1 Q0;  (*Planck’s length vac*); 

R= r1 Q0^2;  (*World radius*); 

RR=R/Mpc/1000;  (*World radius Gpc*); 

t1=1/(2 Om1);  (*Planck time subspace*); 

t0=1/(2 Om0);  (*Planck time vacuum*); 
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T=1/(2 H0);  (*World time constant*); 

TT=2T/year;  (*The Age*); 

hb0=hb1/Q0;  (*Planck constant slashed*); 

h0=2Pi*hb0;  (*Planck constant unslashed*); 

q1=Sqrt[hb1/Z0];  (*Universe charge*); 

q0=Sqrt[hb1/Q0/Z0];  (*or qe/Sin[π/4-ε] Planck charge*); 

qe=q0 Sin[Pi/4-ε];  (*Elementary charge e*); 

M2=my0 ka0 hb1;  (*Total mass with Q=1*); 

M1=M2/Q0;  (*Mach mass*); 

m0=M2/Q0^2;  (*Planck mass downwardly*); 

(*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25;  (*Planck mass upwardly*);*) 

mp=4Pi me/alpha/delta;  (*Proton rest mass with Q0*); 

(*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε];  (*if using Q0 as Magic value*);*) 

MH=M2/Q0^3;  (*Hubble mass*); 

G0=c^2*r0/m0; (*hb0*c/m0^2*)  (*Gravity constant local*); 

G1=G0/Q0^2;  (*Gravity constant Mach*); 

G2=G0/Q0^3;  (*Gravity constant Init*); 

U0=Sqrt[c^4/4/Pi/ep0/G0];  (*Planck voltage generic*); 

U1=U0*Q0;  (*Planck voltage Mach*); 

W1=Sqrt[hb1 c^5/G2];  (*Energy with Q=1*); 

W0=W1/Q0^2;  (*Planck energy*); 

S1=hb1 Om1^2/r1^2;  (*Poynting vector metric with Q=1*); 

S0=S1/Q0^5;  (*Poynting vector metric actual*); 

Sk1=4Pi^2*E^2/18^4/60*hb1*Om1^2/r1^2;                   (*Poyntingvec CMBR initial*); 

Sk0=Sk1/Q0^4/Q0^3/E^2;                                   (*Poyntingvec CMBR actual*); 

wk1=Sk1/c ;                                          (*Energy density CMBR initial*); 

wk0=Sk0/c ;                                           (*Energy density CMBR actual*); 

Wk1=wk1*r1^3;                                                (*Energy CMBR initial*);  

µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[γ]/my0/ka0 Q0^(5/6);  (*Bohr magneton*); 

µN=-µB*mep;  (*Nuclear magneton*); 

µe=1.0011596521812818 µB  (*Electron magnetic moment*); 

Tk1=hb1 Om1/18/k;  (*CMBR-temperature Q=1*); 

Tk0=Tk1/Q0^(5/2);  (*CMBR-temperature*); 

Tp0=Sqrt[hb0 c^5/G0]/k; Tp1=Tp0*Q0; Tp2=Tp0*Q0^2; (*Planck-temperature*); 

Φ0=Pi Sqrt[hb1 Z0/Q0 ]/Sin[Pi/4-ε];  (*Magnetic flux quantum Pi ħ/e)*); 

GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2;  (*Conductance quantum e^2/Pi ħ*); 

KJ=2q0 Sin[Pi/4-ε]/h0;  (*Josephson constant 2e/h*); 

RK=.5 my0 c/alpha;  (*von Klitzing constant µ0c/2α*); 

σe=8Pi/3 re^2;  (*Thomson cross section (8Pi/3)re^2*); 

ae=SetPrecision[µe/µB,20]-1;  (*Electron magnetic moment anomaly*); 

ge=-2(1+ae);  (*electron g-factor*); 

γe=2 Q0 Abs[µe]/hb1;  (*electron gyromagnetic ratio*); 

σ1= SetPrecision[Pi^2/60 k^4/c^2/hb1^3, 16];  (*Stefan-Boltzmann constant initial*); 
σ=σ1*Q0^3;   (*Stefan-Boltzmann constant*); 
 

" Basic Functions " 
 
cMc=Function[-2 I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]; 

Qr=Function[#1/Q0/2/#2]; 

PhiQ=Function[If[#>10^4,-Pi/4-3/4/#,                                                       

Arg[1/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]-Pi/2]];  (*Angle of c arg θ(Q)*); 

PhiR=Function[PhiQ[Qr[#1,#2]]]; 

RhoQ=Function[If[#<10^4,N[2/#/Abs[Sqrt[1-

(HankelH1[2,#]/HankelH1[0,#])^2]]],1/Sqrt[#]]];  

RhoR=Function[RhoQ[Qr[#1,#2]]]; 

AlphaQ=Function[Pi/4-PhiQ[#]];  (*Angle α*); 

AlphaR=Function[N[Pi/4-PhiR[#1,#2]]]; 

BetaQ=Function[Sqrt[#1]*((#2)^2+#1^2*(1-(#2)^2)^2)^(-.25)]; 

GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]]; 

HPC=Function[Om1/#^2/km*Mpc]; (*H0=ƒ(Q0)[km*s-1*Mpc-1]*); 
rq={{0,0}}; 

For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[10^x*RhoQ[10^x]]}]]; 

RhoQ1=Interpolation[rq]; 

RhoQQ1=Function[If[#<10^3,RhoQ1[#],Sqrt[#]]];  (*Interpolation RhoQ*); 

Rk=Function[If[#<10^5,3/2*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],6#]]; 

Rn=Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; 

RnB=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]];  
alphaF=Function[Sin[Pi/2+ϵ-(*RNBP*)RnB[#]]^2 /(4Pi)];  (*RNBP def further below*); 
deltaF=Function[4Pi/alphaF[#]*mep];     (*Correction factor QED ΔQ)*); 
 

" End of Metric System Definition " 
_____________________________________________________________________________________________________ 
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rn={}; 
For[d=-6.01; i=0,d<6.01,(++i),d+=.05; AppendTo[rn,{d,RnB[10^d]/Pi}]] 
RNB1=Interpolation[rnb];        (*RnB angle ϵ nullvector from Q*); 
RNB=Function[If[#<10^-8,Null,If[#<10^6,RNB1[Log10[#]],-.25]]]; 
RNBP=Function[If[#<10^-8,Null,If[#<10^6,Pi RNB1[Log10[#]],-Pi/4]]]; 
alphaF=Function[Sin[Pi/2+ϵ-RNBP[#]]^2/(4Pi)];  (*Redfinition for faster calculation*); 
 

" End of Optional Metric System Definition " 
_____________________________________________________________________________________________________ 
 

" Functions Used for Calculations in Articles " 
 
P0= H0;       (* or e.g. 65*1000/Mpc *); 

P1=SetPrecision[-2.5Log10[P0^2/c^2L1a/Pi/F0]-0.4515449878350246, 30]; 

P2=SetPrecision[1.25Log10[E],30];       (* -2.5(-1/2*Log10[E]) *) 

Hm0 = (0.5+0.598206 # - 3.45991 #^2 + 18.3227 #^3 - 42.6995 #^4 + 38.0733 #^5) &;  

Mby=Function[P1+5Log10[((#+1)^(4/3)-1)]]; 

Mbz=Function[P1+5Log10[((#+1)^(4/3)-1)]+P2((#+1)^(4/3)-1)]; 

Mbq=Function[P1+5Log10[2# P0/c]]; 

MbQ=Function[P1+5Log10[2#]]; 

Mbr=Function[P1+5Log10[2# P0/c]+P2*2# P0/c]; 

MbR=Function[P1+5Log10[2#]+P2*2# ]; 

MbX=Function[P1+2#+5Log10[2#]+1.5Log10[Hm0[2#]]]; 

MaG=Function[10^(-0.4 #)]; 

GaM=Function[-2.5 Log10[#]]; 

TpSQ = M2*(c^2/k/#1^2) & ;  

TpST = hb1/2/k/#1 & ;  

TkSQ = hb1*(Om1/18/k/#1^2.5) & ;  

TkST = hb1*Om1*(t1^1.25/18/k/#1^1.25) & ; 

 

" Your own Calculations… " 


