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Abstract
In this paper was proved (i) the equivalence of Dirac equation for mass m with two entangled

Proca fields of mass 2m and (ii) is proposed an equation and (iii) an 12-dimensional Lie algebra
for the entagled spin fields.

1 Introduction
In addition to the well known Dirac, Weyl and Majorana representations of gamma matrices, we define
a new one as

γ0 =


0 i 0 0
−i 0 0 0
0 0 0 1
0 0 1 0

 , γ3 =


0 i 0 0
i 0 0 0
0 0 0 1
0 0 −1 0

 , (1)

γ1 =


0 0 1 0
0 0 0 i
−1 0 0 0
0 i 0 0

 , γ2 =


0 0 i 0
0 0 0 −1
i 0 0 0
0 1 0 0

 . (2)

Next we solve Dirac equation to get two plane wave solutions Φ1(p) and Φ2(p) of positive energy,

HΦ1(p) = +εΦ1(p) , HΦ2(p) = +εΦ2(p) , (3)

and two plane wave solutions Ψ1(p) and Ψ2(p) of negative energy,

HΨ1(p) = −εΨ1(p) , HΨ2(p) = −εΨ2(p) , (4)

where H = γ0(−iγi∂i + m) denotes the Hamiltonian, and ε = +(p2 + m2)1/2. Explicitly, the plane
wave solutions in this representation are

Φ1(p) =
1

[2ε(ε+ p3)]
1/2


m

−i(ε+ p3)
p1 − ip2

0

 e−ipx , Φ2(p) =
1

[2ε(ε− p3)]
1/2


0

p2 − ip1
ε− p3
m

 e−ipx ,

(5)

and

Ψ1(p) =
1

[2ε(ε+ p3)]
1/2


p1 + ip2

0
m

−ε− p3

 e+ipx , Ψ2(p) =
1

[2ε(ε− p3)]
1/2


−i(ε− p3)

m
0

p2 + ip1

 e+ipx .

(6)
∗amitrut@gmail.com
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2 Parity, Chirality and Charge Conjugation Operators
Alongside the chirality operator γ5, we define P = −iγ1γ2 the parity operator and C charge (parity
and chirality) conjugation operator as

P =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ5 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , C =


0 0 1 0
0 0 0 i
1 0 0 0
0 i 0 0

C (7)

where γ5 = iγ0γ1γ2γ3 and C is the complex conjugation operator. Chirality and parity conjugation
operator C is antilinear and anticommutes with the Hamiltonian,

C2 = 1 , HC = −CH . (8)

therefore if Ψ is a positive(negative) energy solution then Φ = CΨ is a negative (positive) solution.
While charge conjugation operators transform a spinor into another of opposite energy leaving its
four-momentum unchanged, P transform a spinor with four-momentum pα = (ε, p1, p2, p3) into the
same spinor but with four-momentum γ5 p = (ε,−p1,−p2, p3). The commutation relation [ γ5 , P ] = 0
imply that eigenvalues of chirality γ5 and parity P can be used to classify their common eigenstates.
The −1 and +1 eigenvalues of γ5 will be denoted L and R i.e. −1 correspond to left chiral L and +1
to right chiral R, while the eigenvalues −1 and +1 of P will be denoted as − and + i.e. − for negative
parity eigenvalue −1 and + for positive parity +1. We define the eight common eigenstates of chirality
γ5 and parity P using the solutions Φ and Ψ of opposite energy

Ψ±L =
1± P

2

1− γ5
2

Φ ,

Φ±L =
1± P

2

1− γ5
2

Ψ ,

Ψ±R =
1± P

2

1 + γ5
2

Φ ,

Φ±R =
1± P

2

1 + γ5
2

Ψ ,

(9)

Charge (chirality and parity) conjugation operator C transform Φ eigenstates of chirality and parity
into Ψ eigenstates with inverse eigenvalues of chirality and parity, and vice-versa

Ψ+L = CΦ−R ,

Ψ−L = CΦ+R ,

Ψ+R = CΦ−L ,

Ψ−R = CΦ+L ,

Φ−R = CΨ+L ,

Φ+R = CΨ−L ,

Φ−L = CΨ+R ,

Φ+L = CΨ−R .

(10)

Next, we define left XL and right XR eigenstates of chiral operator by superposition of all left chiral
and respectively right eigenstates

XL = Φ−L +Φ+L +Ψ−L +Ψ+L , XR = Φ−R +Φ+R +Ψ−R +Ψ+R , (11)

which form an orthogonal set

XLXL = 0 ,

XLXR = 0 ,

XRXR = 0 ,

XRXL = 0 ,
(12)

mix positive (negative) energy solutions with negative (positive) energy solutions of Dirac equation

XL =
1− γ5

2
(Ψ + Φ) ,

XL = (Ψ + Φ)
1 + γ5

2
,

XR =
1 + γ5

2
(Ψ + Φ) ,

XR = (Ψ + Φ)
1− γ5

2
,

(13)

which satisfy Proca equation

(□+m2)XL = 0 , (□+m2)XR = 0 , (14)

and the following partial differential coupled equations

i ∂αγ
αXL −mXR = 0 , i ∂αγ

αXR −mXL = 0 . (15)
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3 Conserved four-currents
We introduce left and right conserved four-currents (probability densities) for eigenstates of the same
chirality defined by 11

jα(XL, XL) = XLγ
αXL , jα(XR, XR) = XRγ

αXR , (16)

which are equal and real defined

C jα(XL, XL) = jα(XL, XL) , C jα(XR, XR) = jα(XR, XR) . (17)

We interpret the conservation of the left and right four-currrent

∂α jα(XL, XL) = 0 , ∂α jα(XR, XR) = 0 , (18)

and the zero current between eigenstates of left an right chirality

jα(XL, XR) = jα(XR, XL) = 0 , (19)

as the existence of chiral particles L and R. The two chiral particles are transformed one into another
by charge ( chirality and parity) operator C

XL = CXR , XR = CXL , (20)

The particle described by Ψ + Φ = XL + XR, which has no definite chirality nor parity and is an
eigenstate of chirality and conjugation operator, i.e. is transformed into itself by chirality and parity
operator,

C(Ψ + Φ) = Ψ+ Φ , (21)

therefore it is a Majorana particle. All three particles mix positive (negative) energy solutions of Dirac
equation with negative (positive) energy solutions, and their currents are explicitly given by

jα(XL, XL) = (Ψ + Φ)γα 1− γ5
2

(Ψ + Φ) , jα(XR, XR) = (Ψ + Φ)γα 1 + γ5
2

(Ψ + Φ) , (22)

and

jα(Ψ + Φ,Ψ+Φ) = (Ψ + Φ)γα(Ψ + Φ) . (23)

Out of 64 currents between all 8 common eigenstates of chirality and parity defined by 9, 32 of them,
between L and R or R and L are zero. The 32 non-zero currents are between eigenstates of the same
chirality, but are not conserved.

4 Parity Violation
Next, we calculate in the ultrarelativistic regime ε ≫ m the helicity of L and R particles moving along
the z axis. The helicity operator is given by

h =
1

p
(p1S

1 + p2S
2 + p3S

3) , (24)

where p = (p21 + p22 + p23)
1/2 is momentum and S1 = Σ23, S2 = Σ31, S3 = Σ12 are spatial components

of spin, related to the generators of Lorentz transformations of gamma matrices by Σµν = i
4 [γ

µ, γν ].
Helicity commutes with parity and chirality operator and for a particle moving along z axis we get
h = − 1

2P. For each of the four solution of Dirac equations we calculate the action of helicity operator
on ultrarelativistic left and right particles moving along z axis and get correct predictions

hXL = −1

2
XL , hXR = +

1

2
XR , (25)

when ε ≫ m. We can now identify the neutrino as the left chiral particle XL having helicity − 1
2

and the antineutrino as the right chiral particle XR having helicity + 1
2 . Conserved currents are
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formed only by left XL and right XR eigenstates of chirality, not by the parity eigenstates. The
superposition of all negative Ψ−L + Ψ−R + Φ−L + Φ−R parity eigenstates and of all positive parity
eigenstates Ψ+L +Ψ+R +Φ+L +Φ+R gives currents which are are not conserved, i.e. we can not built
conserved currents using linear combinations of parity eigenstates. Therefore, it is the chirality which is
the fundamental symmetry of nature, because the left chiral and right chiral currents are conserved and
identified with L and right R particle, i.e. neutrino and respectively antineutrino and the question is if
chirality, not parity, is violated, i.e. if there is a field (particle) which couple with different strengths
to L and R currents. The property of parity operator, in Weyl basis, to transform the left-handed
Weyl spinor into the right-handed Weyl spinor and vice-versa requires that right-handed neutrino
and left-handed antineutrino should also exist. The absence of right-handed neutrino and left-handed
antineutrino had led to the conclusion that parity is not conserved. The mistake was to associate left-
handed Weyl spinor, which gives a four current that is not conserved, to neutrino, and similarly, a right-
handed Weyl spinor, which gives a four current that is not conserved, to antineutrino. Our definition
of currents associated to left and right eigenstates of chirality are conserved 18 and transformed one
into another by the chirality and parity conjugation operator 10, not by the parity operator as in Weyl
representation. Therefore, the puzzling absence of positive helicity neutrino and respectively negative
helicity antineutrino, dubbed as "parity violation" is a consequence wrong association of spinors to
particles. The −1/2 helicity of the neutrino and +1/2 helicity of antineutrino are a result of their
ultrarelatistic regime in which eigenstates XL and XR of chirality operator γ5 are also eigenstates of
parity operator P.

5 Entangled spin fields equation
We construct conserved currents with first order derivatives of left eigenstates ∂µXL and symmetrical
conserved currents with first order derivatives of right eigenstates ∂µXR,

jα(1)(XL, XL) = ∂µXLγ
α ∂µXL ,

∂α jα(1)(XL, XL) = 0 ,

jα(1)(XR, XR) = ∂µXRγ
α ∂µXR ,

∂α jα(1)(XR, XR) = 0 ,
(26)

as well as conserved currents with second order derivatives of left and respectively right eigenstates

jα(2)(XL, XL) = ∂µ∂νXLγ
α ∂µ∂νXL ,

∂α jα(2)(XL, XL) = 0 ,

jα(2)(XR, XR) = ∂µ∂νXRγ
α ∂µ∂νXR ,

∂α jα(2)(XR, XR) = 0 ,
(27)

and also conserved currents with derivatives of higher order than 2. For both left and right particles,
only jα and jα(1) are independent, all other currents built with derivatives of higher order than one can
be expressed in term of jα or jα(1) as follows

jα(2)(XL, XL) = m4jα(XL, XL) ,

jα(3)(XL, XL) = m4jα(1)(XL, XL) ,

jα(2)(XR, XR) = m4jα(XR, XR) ,

jα(3)(XR, XR) = m4jα(1)(XR, XR) ,
(28)

and so on. The currents jα(XL, XL) and jα(1)(XL, XL) satisfy coupled second order differential equations

□ jα(XL, XL) = −2m2jα(XL, XL) + 2jα(1)(XL, XL) ,

□ jα(1)(XL, XL) = −2m2jα(1)(XL, XL) + 2m4jα(XL, XL) ,
(29)

and similar equations holds for jα(XR, XR) and jα(1)(XR, XR). We define four vector potentials Aα
L ,

Aα
R, Bα

L , and Bα
R

Aα
L =

1

2

[
jα(XL, XL)−m−2 jα(1)(XL, XL)

]
,

Bα
L =

1

2

[
jα(XL, XL) +m−2 jα(1)(XL, XL)

]
,

Aα
R =

1

2

[
jα(XR, XR)−m−2 jα(1)(XR, XR)

]
,

Bα
R =

1

2

[
jα(XR, XR) +m−2 jα(1)(XR, XR)

]
.

(30)

Using 29 find that Aα
L and Aα

R fields satisfy Proca equation for a particle with mass 2m and the Lorenz
gauge is automatically held

(□+ 4m2)Aα
L = 0 ,

∂αA
α
L = 0 ,

(□+ 4m2)Aα
R = 0 ,

∂αA
α
R = 0 ,

(31)
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while Bα
L and Bα

R satisfy Maxwell equations

□Bα
L = 0 ,

∂αB
α
L = 0 ,

□Bα
R = 0 ,

∂αB
α
R = 0 .

(32)

Using 22 the A and B fields are expressed as

Aα
L =

1

2

[
(Ψ + Φ)γα 1− γ5

2
(Ψ + Φ)− 1

m2
∂λ(Ψ + Φ)γα 1− γ5

2
∂λ(Ψ + Φ)

]
,

Aα
R =

1

2

[
(Ψ + Φ)γα 1 + γ5

2
(Ψ + Φ)− 1

m2
∂λ(Ψ + Φ)γα 1 + γ5

2
∂λ(Ψ + Φ)

]
.

(33)

Bα
L =

1

2

[
(Ψ + Φ)γα 1− γ5

2
(Ψ + Φ) +

1

m2
∂λ(Ψ + Φ)γα 1− γ5

2
∂λ(Ψ + Φ)

]
,

Bα
R =

1

2

[
(Ψ + Φ)γα 1 + γ5

2
(Ψ + Φ) +

1

m2
∂λ(Ψ + Φ)γα 1 + γ5

2
∂λ(Ψ + Φ)

]
.

(34)

For each solution of Dirac equation we compute the Maxwell fields Bα
L,R fields and find that all are

constant in spacetime and equal with pα/ε.

Bα
L,R(Ψ1) = Bα

L,R(Φ2) = Bα
L,R(Ψ2) = Bα

L,R(Φ2) =
pα

ε
. (35)

This result should be compared with Higgs Kibble cumbersome mechanism that postulates a scalar
field ϕ which couples to a massless boson to obtain a factor in the wave equation for W− boson which
play the same role as a mass term, and it is assumed that the scalar field is constant in space, while in
our study we have proved, not postulated, the existence of a vector field, derived from Dirac equation,
that is constant in spacetime. The Proca A fields for Ψ1 and Φ1 are equal

A0
L,R(Ψ1) = A0

L,R(Φ1) = +
m

ε(ε+ p3)
[p1 cos(2px)− p2 sin(2px)],

A1
L,R(Ψ1) = A1

L,R(Φ1) = +
m

ε
cos (2px),

A2
L,R(Ψ1) = A2

L,R(Φ1) = −m

ε
sin (2px),

A3
L,R(Ψ1) = A3

L,R(Φ1) = − m

ε(ε+ p3)
[p1 cos(2px)− p2 sin(2px)],

(36)

while Proca A fields for Ψ2 and Φ2 are equal up to sign

A0
L,R(Ψ2) = −A0

L,R(Φ2) = +
m

ε(ε− p3)
[p1 cos(2px) + p2 sin(2px)],

A1
L,R(Ψ2) = −A1

L,R(Φ2) = +
m

ε
cos (2px),

A2
L,R(Ψ2) = −A2

L,R(Φ2) = +
m

ε
sin (2px),

A3
L,R(Ψ2) = −A3

L,R(Φ2) = +
m

ε(ε− p3)
[p1 cos(2px) + p2 sin(2px)].

(37)

The four spinors Ψ1,2 and Φ1,2 for a particle with mass m generate two Proca potentials of mass 2m
given by 36 and 37 further denoted by Sα

1 and Sα
2 , defined by

Sα
1 = εAα

L (Ψ1) = εAα
L (Φ1), Sα

2 = εAα
L (Ψ2) = −εAα

L (Φ2), (38)

which will be called spin fields due to the following relations of orthogonality to the four-momentum
pα = (ε, p1, p2, p3)

pαS
α
1 = 0, pαS

α
2 = 0. (39)
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The spin fields are solutions of the following 8 nonlinear, entangled partial differential equations which
unifies Dirac and Proca equations

Sα
2 ∂αS

β
1 = 0 , Sα

1 ∂αS
β
2 = 0 . (40)

The spin fields S1 and S2 are entangled, the source of S1 field is S2 and vice versa, and the mass is
not explicitly contained into the equations. The squared norm of the spin field is related to the mass,
therefore the solutions S1 and S2 of coupled equations gives the mass spectrum

Sα
1 S

1
α = −m2 , Sα

2 S
2
α = −m2 . (41)

6 Algebra of Fundamental Discrete Symmetries
The parity operator P transform the spin fields S1 and S2 one into another

PS1(p, x) = S2(Pp,Px) , PS2(p, x) = S1(Pp,Px) , (42)

in the same way that charge operator C change left and right particle spinors

XL(p, x) = CXR(p, x) , XR(p, x) = CXL(p, x) . (43)

Two commuting, antilinear and antiunitary operators PC = T and γ5C =
∼
T can be defined within the

symmetry, which satisfy T2 =
∼
T2 = −1, as required for time reversal operator and their action on

spinors is

TΦ1(p, x) = γ5Ψ1(p, x) ,
∼
TΦ1(p, x) = PΨ1(p, x) ,

TΦ2(p, x) = iPΨ2(p, x) ,
∼
TΦ2(p, x) = iγ5PΨ2(p, x) ,

(44)

and on parity and chirality common eigenstates

TΨ+L = −Φ−R ,

TΨ−L = +Φ+R ,

TΨ+R = −Φ−L ,

TΨ−R = +Φ+L ,

∼
TΨ+L = +Φ−R ,
∼
TΨ−L = +Φ+R ,
∼
TΨ+R = −Φ−L ,
∼
TΨ−R = −Φ+L ,

(45)

shows no linear combination with real coefficients of parity and chirality eigenstates is left invariant by
action of T and

∼
T, therefore no conserved currents exists and no particles associated. The simultaneous

application of charge conjugation, parity and T or
∼
T is of fundamental importance

CPT = −1 , CP
∼
T = +γ5P , (46)

because the together with the expected diag(−1,−1,−1,−1) we had the unexpected result γ5P =
diag(1,−1, 1,−1) is a consequence of charge conjugation, which change both chirality and parity. The
set of 8 operators {1, γ5, P, C, γ5P, γ5C, PC and γ5PC} has 4 significant subsets listed below which span
the algebra of split-quaternions, namely, linear combinations with real coefficients of four basis elements
{1, e1, e2, e3} that satisfy the following product rules: e21 = −1, e22 = e23 = 1, e1e2 = e3 = −e2e1

{1, γ5C,C, γ5},
{1, γ5C,−P, γ5PC},

{1,PC,C,P},
{1,PC, γ5PC, γ5}.

(47)

Changing the base to K+ = 1
2 (e1 + e2), K− = 1

2 (e1 − e2) and K3 = 1
2e3 we get the algebra of so(2, 1)

[K3,K+] = +K+, [K3,K−] = −K−, [K+,K−] = −2K3. (48)

Using γ5, P and C we define a set of 6 six as follows

u+ =
1

4
(PC+ C+ γ5C+ γ5PC) ,

u− =
1

4
(PC− C+ γ5C− γ5PC) ,

u3 =
1

4
(P+ γ5) ,

v+ =
1

4
(PC+ C− γ5C− γ5PC) ,

v− =
1

4
(PC− C− γ5C+ γ5PC) ,

v3 =
1

4
(P− γ5) .

(49)
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Both sets u+, u−, u3 and v+, v−, v3 satisfy so(2, 1) algebra

[u 3 , u+ ] = u+ ,

[u 3 , u− ] = −u− ,

[u+ , u− ] = −2u3 ,

[ v 3 , v+ ] = v+ ,

[ v 3 , v− ] = −v− ,

[ v+ , v− ] = −2 v3 .

(50)

and all commutators brackets between sets {u+, u−, u3} and {v+, v−, v3} are zero, therefore the Lie
algebra is decomposed in two so(2, 1) algebra, the adjoint representation is six dimensional. The
algebra posses four anticomuting nilpotent operators P ± γ5C and γ5 ± PC, therefore fermionic to
extend naturally the algebra for the Yang-Mills theory

a1 =
1

2
(γ5 − PC) ,

a2 =
1

2
(P+ γ5C) ,

b3 =
1

2
C ,

a1 =
1

2
(P− γ5C) ,

a2 =
1

2
(γ5 + PC) ,

b3 =
1

2
γ5PC ,

(51)

a1 a1 = a1 a1 = 0 ,

a1 a1 = a1 a1 = 0 ,

a2 a2 = a2 a2 = 0 ,

a2 a2 = a2 a2 = 0 ,
(52)

together with where two commuting b3 and b3 bosonic operators which are obtained from the fermionic
operators

b3 =
1

2
[ a1 , a2 ] =

1

2
[ a1 , a2 ] , b3 =

1

2
[ a1 , a2 ] =

1

2
[ a1 , a2 ] , (53)

and their Lie brackets with fermionic operators are given by

[ b3 , a1 ] = a1 ,

[ b3 , a2 ] = −a2 ,

[ b3 , a1 ] = a1 ,

[ b3 , a2 ] = −a2 ,

[ a1 , a2 ] = 2 b3 ,

[ a1 , a2 ] = 2 b3 ,

[
b3 , a1

]
= a1 ,[

b3 , a2
]
= −a2 ,[

b3 , a1
]
= a1 ,[

b3 , a2
]
= −a2 ,

[ a1 , a2 ] = 2 b3 ,

[ a1 , a2 ] = 2 b3 .

(54)

Now it is obvious that {a1, a2, b3, a1, a2, b3} is a set from a larger algebra, with three a’s and three b’s.
Adding a new pair of of nilpotent fermionic operators a3 and a3 we can define another two bosonic
pairs b1, b1 and b2, b2 to get a 12-dimensional Lie algebra

b1 =
1

2
[ a2 , a3 ] =

1

2
[ a2 , a3 ] ,

b2 =
1

2
[ a3 , a1 ] =

1

2
[ a3 , a1 ] ,

a3 a3 = a3 a3 = 0 ,

b1 =
1

2
[ a2 , a3 ] =

1

2
[ a2 , a3 ] ,

b2 =
1

2
[ a3 , a1 ] =

1

2
[ a3 , a1 ] ,

a3 a3 = a3 a3 = 0 .

(55)

We have two new sets of operators, namely {a2, a3, b1, a2, a3, b1} and {a3, a1, b2, a3, a1, b2} which form a
sub-algebra in the same way that {a1, a2, b3, a1, a2, b3} does, their commutation relations are obtained
by cyclic permutations of indices {1, 2, 3},

[ b1 , a2 ] = a2 ,

[ b1 , a3 ] = −a3 ,

[ b1 , a2 ] = a2 ,

[ b1 , a3 ] = −a3 ,

[ a2 , a3 ] = 2 b1 ,

[ a2 , a3 ] = 2 b1 ,

[
b1 , a2

]
= a2 ,[

b1 , a3
]
= −a3 ,[

b1 , a2
]
= a2 ,[

b1 , a3
]
= −a3 ,

[ a2 , a3 ] = 2 b1 ,

[ a2 , a3 ] = 2 b1 .

(56)
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and

[ b2 , a3 ] = a3 ,

[ b2 , a1 ] = −a1 ,

[ b2 , a3 ] = a3 ,

[ b2 , a1 ] = −a1 ,

[ a3 , a1 ] = 2 b2 ,

[ a3 , a1 ] = 2 b2 ,

[
b2 , a3

]
= a3 ,[

b2 , a1
]
= −a1 ,[

b2 , a3
]
= a3 ,[

b2 , a1
]
= −a1 ,

[ a3 , a1 ] = 2 b2 ,

[ a3 , a1 ] = 2 b2 .

(57)

The nilpotent fermionic operators satisfy the following relations

a1 a1 = a1 a1 = 0 ,

a2 a2 = a2 a2 = 0 ,

a1 a2 = a1 a2 ,

a2 a1 = a2 a1 ,

a1 a2 a1 = a1 ,

a2 a1 a2 = a2 ,

a1 a2 a1 = a1 ,

a2 a1 a2 = a2 ,

a1 a2 a1 = a1 ,

a2 a1 a2 = a2 ,

a1 a2 a1 = a1 ,

a2 a1 a2 = a2 ,

(58)

and similar relations must hold for { a2 , a3 } and { a3 , a1 }

ak ak = ak ak = 0 ,

ak aj = ak aj ,

ak aj ak = ak ,

ak aj ak = ak ,

ak aj ak = ak ,

ak aj ak = ak
(59)

for j, k = {1, 2, 3} and j ̸= k. Using this relations we get by direct calculus

[ b1 , b2 ] =
[
b1 , b2

]
= −1

2
b1 −

1

2
b2 −

1

2
a3 b3 a3 ,[

b1 , b2
]
=

[
b1 , b2

]
= −1

2
b1 −

1

2
b2 −

1

2
a3 b3 a3 ,

(60)

In order to cancel products like a3 b3 a3 and a3 b3 a3 we should require that either a3 commutes with
b3 and b3 or any product of three a’s, like

ai aj ak , ai aj ak , ai aj ak , ai aj ak (61)

for i ̸= j ̸= k are invariat under cyclic permutations of {i, j, k} . Taking this into account we write
down the rest of Lie algebra commutators

[ ak , bk ] = 0 ,[
ak , bk

]
= 0 ,

[ ak , bk ] = 0 ,[
ak , bk

]
= 0 ,

(62)

for k = {1, 2, 3} and

[ b1 , b2 ] =
[
b1 , b2

]
= −1

2
b1 −

1

2
b2 ,

[ b2 , b3 ] =
[
b2 , b3

]
= −1

2
b2 −

1

2
b3 ,

[ b3 , b1 ] =
[
b3 , b1

]
= −1

2
b3 −

1

2
b1 ,

[
b1 , b2

]
=

[
b1 , b2

]
= −1

2
b1 −

1

2
b2 ,[

b2 , b3
]
=

[
b2 , b3

]
= −1

2
b2 −

1

2
b3 ,[

b3 , b1
]
=

[
b3 , b1

]
= −1

2
b3 −

1

2
b1 .

(63)

In order to find the decomposition of the algebra of six operators b1, b2, b3, b1, b2, b3,’s we define six
new linear combinations

u+ = b3 + b3 + b1 + b1 ,

u− = b3 + b3 + b1 + b1 ,

u3 = b3 + b3 ,

v+ = b3 − b3 + b1 − b1 ,

v− = b3 − b3 + b1 − b1 ,

v3 = b3 − b3 ,

(64)

Both sets u+, u−, u3 and v+, v−, v3 satisfy so(2, 1) algebra

[u 3 , u+ ] = u+ ,

[u 3 , u− ] = −u− ,

[u+ , u− ] = −2u3 ,

[ v 3 , v+ ] = v+ ,

[ v 3 , v− ] = −v− ,

[ v+ , v− ] = −2 v3 .

(65)

and all commutators brackets between sets {u+, u−, u3} and {v+, v−, v3} are zero, therefore the Lie
algebra of b’s operators is decomposed in two so(2, 1) algebra.
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7 Conclusions
This result, that Dirac equation is equivalent with two entangled Proca fields with mass 2m and two
constant massless fields, suggest that this representation unifies fermionic and bosonic fields, its algebra
of 12 operators could be used for study of weak and strong interactions. While the gauge symmetry
U(1) × SU(2) × SU(3) of the Standard Model is exact only when the particles are massless, the 12-
dimensional Lie algebra proposed have the mass built in, i.e. it require neither cumbersome mechanism
with arbitrary chosen fields and parameters nor spontaneous breaking symmetry to generate mass. In
our model, the solutions of the equations Sα

1 ∂αS
β
2 = 0 and Sα

2 ∂αS
β
1 = 0 gives the mass of the field

Sα
1 S

1
α = −m2 and Sα

2 S
2
α = −m2. The 12-dimensional Lie algebra of entangled spin can be applied to

Yang-Mills theory together with a set of 12 massless spin fields, six of them described by S1 and six
by S2, their interaction to generate mass will be the subject of a future study.
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