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Abstract

In this work, the Friedmann equations, which represent the fundamental equations of cosmological
models, are derived using a Newtonian and a relativistic approach by solving Einstein's field
equations in a high level of detail. The space-time geometry in the form of the Friedmann-Robertson-
Walker metric is derived and the calculations of the Christoffel symbols, the Ricci tensor and Ricci
scalar, as well as the solution of the field equations are described in detail. The energy-momentum
tensor assumes that matter in the universe behaves like an ideal fluid.

The relationship between the different densities in the universe and the scale factor and the resulting
three phases in the evolutionary history of the universe are explained. The time-varying ratio of
matter density to vacuum density in the universe eventually led to the reversal of expansion, i.e., the
change from a decelerated to an accelerated expansion of space. With the help of the second
Friedmann equation and an equation for the expansion force, it is demonstrated at which density
ratio and at what time this occurred.

Assuming a flat universe and neglecting the radiation density, the Friedmann equation is solved and
equations for the scale factor and the Hubble parameter are derived.

Equations are derived to determine the cosmological horizons, the Hubble radius, and the worldlines
of photons (light cones) and of stationary objects moving only within the Hubble flow. Using example
calculations and their representations in space-time diagrams, the interrelations of these quantities
are particularly elaborated.

Keywords— Cosmology, Friedmann equations, Einstein’s field equations, FRW metric, scale factor,
Hubble radius, event horizon, particle horizon, light cones, worldlines
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1. Introduction

To describe the dynamics of the expanding universe on large scales, this work derives the two
Friedmann equations (FE) and in particular solves the first FE and numerically evaluates the scale
factor that describes the spatial expansion of the universe. Using the time-dependent scale factor,
distances (horizons), light cones, and world lines are calculated and depicted in space-time diagrams.

In principle, only the path via a suitable metric—typically, the Friedmann-Robertson-Walker metric
(FRW metric) is employed, as is the case in this study—and solving Einstein's field equations leads to
the complete Friedmann equations, i.e. taking into account relativistic considerations. But the basic
structure of the FE can already be derived by examining the energy of a test mass under the
influence of Newton's law of gravity. For this purpose, initially as an introduction, Newton's law of
gravitation, the gravitational potential, and the Poisson equation are examined in a bit more detail.

Both approaches are based on the cosmological principle, which is briefly described in the next
chapter.

As early as the 1920s, Hubble observed the expansion of the universe (red shift of the spectral lines
of observed objects) through his observations and summarized his results in 1929 in the Hubble
diagram named after him. These findings are also briefly summarized.

1.1 The cosmological principle

A fundamental concept in cosmology is the cosmological principle. It is assumed that the universe is
homogeneous and isotropic on large scales.

Homogeneity

The distribution of mass and energy is, on average, uniform across space, i.e., that from any position
in the universe we see a similar distribution of mass and energy.

Isotropy

The universe looks the same in all directions, i.e., all physical laws and properties do not depend on
the direction in which an observer looks.

It should be emphasized again that the cosmological principle is only valid when averaging over large
volumes. Of course, on “small” scales we see a lot of structures in the universe with stars, galaxies,

galaxy clusters, etc.

With the cosmological principle, changes in the universe are only permitted as long as these changes
do not change the spatial arrangement. This means that only changes are permitted that lead to
uniform changes in distance and thus also uniform changes in density through expansion or
contraction of the space.



1.2 Potential function of the gravitational force and the Poisson equation

We start with Newton's law of gravitation:

P,
v/ My F . G'm1'mz
ér g rz (1.1)
Py
my s .
G: Gravitational constant; m,, m,: mass points

r: distance between the mass points

or as a directed force

o > Gmym, o
Fy=—F & =—-""212. 5, (12)
with the unit vector
> 7 7
e, = —F=-. 1.3
N (1.3)

The force that the mass m; exerts on m, is a “pulling force” and therefore points in the opposite
direction of the unit vector. Hence the negative sign in Eq. (1.2).

If we want to move the mass m, from the position P, to a position P,/, a force F, is required that
corresponds in magnitude to F,, but is directed in the opposite direction:

=2 2 _ Gmym,; S
E,=—F="7-2¢ (1.4)

The work done here is calculated from

w=[,*F, df (1.5)



and corresponds to the difference in potential energy at points P, and P,

P, = >
W = fpzz E, dr = Epot(Pz’) - Epot(Pz)- (1.6)

If we only consider an infinitesimally small step d7, we can write Eq. (1.6) in the following form

Eﬂ,x dx
dWw = Fv dr = v,y dy = dEpOt
E,, dz

If we form the dot product ﬁv - d7 and write the differential dE,,,, as a change according to the
coordinates x, y and z we get

OF JE JE
F,xdx + E,,dy +F, ,dz = %dx + #"tdy + a—’;"tdz. (1.7)

With Eq. (1.4) we can also write

OE OE OE
_ _ _ pot pot pot
F,xdx — F;,dy — F, ,dz = " dx + % dy + 5, dz, (1.8)
and get for the force components
) OE OE
glx ax g:y ay g!Z aZ

-

This means that the gravitational force F; can be written in the following form:

= OE OE. OE
_ =g g > pot = pot = pot =
Fy = Igxex + Iy €y + Iy q€, = ( ax Sxt o, &t ez),



The gravitational force therefore corresponds to the negative gradient of potential energy.

In the following we want to derive the potential function of the gravitational force. To do this, we
) . G .
first take the gradient of m;mz and consider that r = \/x2 + y? + z2,

() = oo () = mum 2 ()2 + 50)6, + S ()

= Gmym, [_ - 3€x — - 3 gy - - 3 gz]
(x2+y?+z2)2 (x2+y2+2z2)2 (x2+y2+z2)2
X > Yy > Z > tmm - N >
= —Gmym, (ﬁex +56,+ Fez) =-—0 (xé, + yé, +zé,) .
With Eq. (1.2)
= (Gmym Gmim, 1 Gmim, > =3
V(—1 2)=— o= ————é. =F . (1.11)
r rz2 r r

According to Eq. (1.10), the gravitational force corresponds to the negative gradient of the potential
energy

ijg = -V Epot = V(m)orﬁ Epot = V(— @) (1.12)

which ultimately leads to the potential function of the gravitational force:

Gmlmz

Epor = — (1.13)

T

If we set my = M, the mass of a central body (e.g. a planet or a sun), and m, = m, Eq. (1.12) also be
written with the gravitational potential ®(7).

VEpot = m-V(—ﬂ) =m-Vd(F) = —ﬁg, (1.14)

with ®(7) = —G'TM. (1.15)

This means that the potential energy (see Eq. (1.13)) can also be expressed in the form

Epor =m - ®(7). (1.16)



Newton's equation of motion in a gravitational field, generated by the mass M, is therefore for a
particle of mass m

F=m F=m-g=—mr—zer, g=-——7¢6 (1.17)
With Eq. (1.14)

F=m-7=-m V)(— GTM) -m- V)CD(F). (1.18)
This allows us to write for the acceleration vector

F=13=-Vo({F) . (1.19)
Assuming that the mass M is a homogeneously distributed mass of a sphere with radius 7, i.e.

M=p-V=p-§-7r-r3, (1.20)

the gravitational force field on the spherical surface can, with the Egs. (1.17) and (1.3), be expressed
as:

4
o GM . GM Gpymr? 4 5
F = M =M T =-—m——— T = —m;nGpr.

The divergence of this vector is
e - 4 — N
V-F = —m;nGpV-r.
With 7# = (x,y, z) it becomes

V-F=-—-m2 ox L Oy 02\ _ _ %
V-F = mgnGp(ax+ay+az)— mgnGpS—,



V:F = —m4nGp,
Let us now replace F with Eqg. (1.18)

V- (—m V¢(F)) = —m4nGp,

—mV-VOF) = —m V2P (F) = —m4nGp,

we finally get the Poisson equation

V2O(7) =A @ (#) = 4nGp. (1.21)

2 Hubble and the expanding Universe

As early as 1929, Edwin Hubble determined a linear relationship between the distance and the
escape velocity (i.e. the red shift of spectral lines) through his observations of objects (such as
Cepheids) outside the Milky Way and presented it in a diagram, the so-called Hubble diagram. This
connection is independent of the viewing direction, i.e., no matter which direction we look or
measure, we always find the same linear connection. Since we can assume that our Earth or our
galaxy, the Milky Way, does not hold a special position in the universe, we must assume that this
relationship between redshift and distance of observed objects is the same from any point in the
universe, which corresponds to the basic idea of the cosmological principle. This redshift is primarily
caused by the expansion of the universe.

Even though the values measured by Hubble were still very imprecise, it is particularly thanks to him
that the idea of an expanding universe was established in science.

Eventually, he was also able to convince Einstein to abandon his static universe - something Einstein
had "forced" by adding the cosmological constants to his field equations - and to accept a dynamic
universe.

The linear relationship between distance R at the time of light emission and the recessional velocity
v is described by the Hubble law (see also Fig. 2.1):

UF’() = HO ‘R. (2.1)

Hy = 674105 %: Hubble constant (Planck measurements 2018 [1]).
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Escape velocity today (calculated with H, = 67.4 )
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2.1: Hubble diagram
The cosmological redshift is given by the equation (see e.g. [3]):
Ao
z=—-—1 2.2
- (2.2)

with the redshifted wavelength 1, (value measured today) and the original, non-redshifted
wavelength A.

When we speak of a red shift caused by the expansion of the universe or a recessional velocity of the
observed objects, such as galaxies, we mean an expansion of space itself and not a movement of the
objects in a static space. Throughout this work peculiar velocities of objects are neglected.

We describe the expansion of space with the help of the scale factor a(t) already mentioned in the
introduction. To do this, we look at the increasing distance between two galaxies over time:

timet, timet, timet,

s(t2)

s(t;1) is calculated using the scale factor

s(ty) = a(ty) - s(ty), (2.3)

10



and s(t,) accordingly

s(ty) = a(ty) - s(ty) . (2.4)

If one replaces in (2.4) s(t,) with the relation (2.3), the result is

s(t,) = Zgii s(ty), or the other way around (2.5a)
_a(ty)
s(ty) = a(tz)s(tz). (2.5b)

With t; = tand t, = t + At Eq. (2.5a) becomes

a(t+At)
a(t)

s(t+ At) = s(t). (2.6)

Subtracting s(t) from both sides, rearranging, and then dividing by At yields

s(t+At)—-s(t) _ a(t+At)—a(t) ] s(t)

At At a(t) ’ (2.7)
Now we can take the limit as At approaches zero
lim (w) = lim (a(t+At)—a(t)) .5 and received
At—0 At At—0 At a(t)
ds _ da_s®
dt  dt a(t)
. a(t)
s(t) =ve(t) = ES(t). (2.8)

A comparison with Eq. (2.1) yields the Hubble parameter dependent on the scale factor and thus on
time

H(t) = % (2.9)

11



Usingr =a-rpora = riand a= rlwe obtain the generalized Hubble law
0 0

7(t) = vp(t) = H(t) -r(t). (2.10)

And with t = ty(i.e., today) and thus 7(to) = vg o, H(ty) = Hy, and r(t,) = R, we recover
Hubble’s law (Eq. (2.1)), vpo = Hy - R.

If changes in distance due to the expansion of the universe can be calculated according to the
equation

s =a(t) - sy (2.11)
then the increase in the wavelength of a light wave must also follow this approach [3], i.e.
A=a(t)-A,. (2.12)

Substituting into Eq. (2.2) yields:
z=—0—-1==-=-1 o a=— (2.13)

The cosmological redshift is therefore also a measure of the expansion of the universe. By definition,
the scale factor today is equal to one (a(t,) = a, = 1), that is, for the local universe is z = 0. If we
measure for example z = 1 (a = 0.5), the photon-emitting object was in a universe only half its
current size, with z = 3 (a = 0.25) the universe had only a quarter of its current size.

3 Friedmann equations (FE)

As already mentioned in the introduction, two approaches are shown below that can be used to
derive the FE. Only with the second approach using the Friedmann-Robertson-Walker metric and the
solution of Einstein's field equations can the FE be derived in its full form, i.e., also taking relativistic
effects into account. But the basic structure of the FE can be shown with simple energetic
considerations in Newton's gravitational field.

3.1 Friedmann equations — Newtonian approach

We consider a spherical model universe (Fig. 3.1), where there is a homogeneous mass distribution
p. Furthermore, we use a test mass m whose behavior in our model universe is described via the
energy balance. The test mass is located at a distance |#| = r from the center of the model universe.
r is not constant over time and, as shown in Chap. 2, we want to describe this change using the scale
factor a(t) (Eq. (2.11)).

r=a(t) r,. (3.1)
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3.1: Model universe with homogeneous mass distribution

The kinetic energy of the test mass m is (taking into account Eq. (3.1))

1 1. 1 ..
Epin = Emv2 = Emrz = Em(a(t) ‘10)? . (3.2)

For the potential energy, we obtain using Eq. (1.16), the gravitational potential (Eq. (1.15)) and Eq.
(3.1)

N_ _GM_ _ _ GM
Epot =m-®(7) = —-m — = ma(t)ro. (3.3)

With homogeneous mass distribution, we can replace the attracting mass M with

M = pV = pgnr3 = pgn(a(t)rof and received

Epot = —mG pgna(t)zroz. (3.4)

We view our model universe as a closed system, so that the sum of kinetic and potential energy is
constant:

Eyin + Epor = Eg, E, = const . (3.5)

13



Substituting equations (3.2) and (3.4) into (3.5) gives us
1 . 4
Ema(t)zro2 —mGp gna(t)zro2 =E,, (3.6)

and by rearranging, we finally obtain the first Friedmann equation

(@)Z_Bncp 1 2B
a)) =~ 3 a®)z mr

(_T_J

= const

@)2 _ 2 _ 871G const  First Friedmann equation
(a(t) - H(t) - 3 p(t) + a(t)? " (Newtonian approach) (3.7)

In the next chapter, we will see that in relativistic consideration, the constant takes the form
const = —K c? , with K representing the curvature of space and ¢ representing the speed of light.
Furthermore, there is a term missing that includes the cosmological constant A.

To answer the question of whether the expansion of the universe proceeds at a constant speed
(F = 0), accelerates (F > 0) or decelerates (F < 0), we need an equation for the force within the
universe acting on our test mass m

F=m-v. (3.8)

If we substitute Eq. (2.9) into (2.10) and differentiate w.r.t. time, we obtain the acceleration
. d (a a. a a? aa a
r=—(—)r+—r=r(———)+——r=r— and (3.9)
a a a a

substituting into Eq. (3.8), we get for the force

F=m-r- (3.10)

14



To calculate the quantity g, we differentiate the first Friedmann equation (Eq. (3.7)) w.r.t. to time and

obtain after some rearrangement:

4_ang (%a+2p). (3.11)

a 3

ha
We want to reformulate the term %. To do this we use the first law of thermodynamics

(dE = —pdV) and Einstein's famous energy equation from the special theory of relativity (E = mc?
ordE = c?dm = c%d(pV)) and differentiate w.r.t. time:

av _ ,d Y av
=N = (pV+p3),

dt
==+ 2)%
withV = Zmrdandr = arn
pineond ==+ B3 @)
pa* = =(p +5)3a%a,

Putting Eq. (3.12) into Eq. (3.11) gives us the second Friedmann equation

4mG (,0 + 3_p) Second Friedmann equation (3.13)

c? (Newtonian approach)

Due to the non-relativistic approach, this equation is also incomplete, as we will see in the next
chapter. Therefore, we will postpone answering the question of whether the expansion of the
universe proceeds at a constant speed (F = 0), accelerates (F > 0) or decelerates (F < 0) until

Chapter 4.
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3.2 Friedmann equations — relativistic approach

The Friedmann-Robertson-Walker metric (FRW metric) is compatible with the cosmological principle
and, when inserted into the Einstein’s field equations of the general theory of relativity, leads to the
two Friedmann equations.

In order to gain a better understanding of the structure of the FRW metric, it is helpful to derive the
metric of surfaces with a constant curvature using the simple example of the sphere (Fig. 3.1). The
requirement for constant curvature follows from the cosmological principle of a homogeneous and
isotropic universe (see also Chapter 1.1).

3.1: Geometry for calculating the line element ds

The line element ds is calculated according to the geometric relationships shown in Fig. 3.1
ds? = R?d0? + R?sin? 0 d®? = R2(d0? + sin2 0dd?).  (3.14)

The metric in matrix form is

1 0
l9:;] = R [0 sin? @] : (3.15)

We now aim to describe the sphere as a curved surface in a two-dimensional space with the constant
curvature radius R, i.e., we want to express the line element ds in cylindrical coordinates r and ®. To
do this, we first differentiate the termr = R sin©® w.r.t. ©:

dr

o= R cos 0, and thus obtain for d©?

16



402 = dr? . dr?

" R2 cos2®  RZ(1-sin2@)"

Substituting into Eq. (3.14) considering the relationship r = R sin © yields

2 _ p2 dr? 2 162 _ 4r° 2 Jeb2
ds* = R* ————+4+1r°d®* = — + r°do-. (3.16)
RZ (1-sin2 @) 1-=
R2
For the metric we therefore get
1
5 0
-
l9:] = |1 = : (3.17)
0 r?

3.2.1 Measuring curvature

Measuring curvature can be easily explained using the example of a sphere. To do this, let's first
consider what happens to a triangle when we go from a plane to a curved surface:

=y

3.2:Sumofangles a+f+y=m 3.3:Sumofanglesa+f+y>m

The sum of angles for a triangle in the plane (Fig. 3.2) is 7, and for a positively curved surface, such as
a sphere, the sum of angles is > m (Fig. 3.3). This angle § = a + § + y — m is called the spherical
excess for the sphere.

3.4: Triangle on a spherical surface with two right angles, bounded by the equator line
and two meridians, with area A and the spherical excess§ =a+f+y—nm=y.

17



In the special case shown in Fig. 3.4, the spherical excess é (and thus also the angle y) behaves with
respect to the area A as 2m to half the surface area of the sphere, %471R2 = 2mR?, where R is the

radius of the sphere.

2T _ 1
= iRz F (3.18)

o)
A

. . . . 1
This ratio is a measure of the curvature K of two-dimensional surfaces and has the value =z for the

sphere.

)
=K. (3.19)

Thus in Eq. (3.16), the expression % can be replaced by the general expression of curvature for two-

dimensional surfaces, K , obtaining the line element for all two-dimensional geometries with
arbitrary curvature radii [4].

1
1-Kr?2

ds? = dr? + r2d 2. (3.20)

So, this line element describes all two-dimensional geometries with arbitrary curvature radii. For
example, one obtains for K = R_12 the line element of the sphere (Eq. (3.16)) and for K = 0 that of the

plane in cylindrical coordinates ds? = dr? + r?d®?2.

3.2.2 Friedmann-Robertson-Walker metric and the Friedmann equations

We want to extend the two-dimensional metric with the variables r and @ (Eq. (3.20)) to three-
dimensional geometries by introducing the third spatial coordinate ©. To do this, we replace d®? in
Eq. (3.20) with the corresponding solid angle d®? + sin? @ d®?2.

By introducing the angle ©, we rotate the radius r (see Fig. 3.1) out of the plane and thereby create a
volume element, as shown in Fig. 3.5. Multiplying the edge lengths by the scale factor a(t), which
describes the expansion of the space over time, leads to the line element of three-dimensional
geometries in a dynamic space.

18



ds = Ja(t)z 1_11“2 dr? + a(t)?r?d0? + a(t)?r2sin? © dd?

3.5: Components of the line element in three-dimensional space, as an extension of the line element of Eq. (3.20) by
the angle ® and scaled with the scale factor a(t).

1
1-Kr?

ds? = a(t)? [ dr? + r?(d®? + sin? 0 dd)z)] . (3.21)

If we expand Eq. (3.21) to include the time element —c2dt?, we finally obtain the FRW metric

ds? = —c2dt? + a(t)? [1_11“2 dr? + r?(de?* + sin” 0 dCDZ)]. (3.22)
[—cz 0 0 0 }
aZ
[guv] |0 T O 0 : (3.23)
[ 0 0 a¥? 0 |
0 0 0 a®’r?sin?0

The curvature K can take the values 0, 1 and -1 (with appropriate rescaling of ) and defines the
shape of the universe:

K = 0: flat universe
K = 1: closed universe
K = —1: open universe

(more on this later, see Chapter 4)

It should be noted that a flat universe is not equivalent to a flat spacetime, i.e., to Minkowski
spacetime. For this, the scale factor must be constant, so that it can be absorbed into the coordinate
r. Only then does the FRW metric Eq. (3.22) become the Minkowski metric:

ds? = —c?dt? + dr? + r?(d®? + sin? © dP?). (3.24)

19



To derive the FE, we put the FRW metric into Einstein's field equation

1 8mG
Ruy =5 GuwR + Agyy = =T, (3.25)

c4

For the energy-momentum tensor T*V we assume that the matter in the universe behaves like the
particles of an ideal fluid. This means, we have to consider the energy density p and pressure p.
There are no shear forces present, so the energy-momentum tensor is only occupied with values on
the main diagonal [3].

p 0 0 0
0 p 0 0
T 00 p of (3.26)
0 0 0 p
or in component notation
U, v
T = (p + p) “C;‘ +pgh,  with ut = (c,0). (3.27)
Starting from the Riemann curvature tensor
wpv = 0Ty — Oy Tup + Toplh — Ty I (3.28)
with the Christoffel symbols
1
FOZB = Egva(aﬂgaa + aaga[? - aagaﬁ) , (3.29)
we calculate the Ricci tensor
Ry = Rigy = Ry, (3.30)
and the Ricci scalar
R =g"R,, . (3.31)

First, we determine the non-zero Christoffel symbols and begin with a few preliminary
considerations:

a) The metric tensor is only occupied on the main diagonal, i.e., g*¥ or gy are only non-zero
when u = v.

b) goo is a constant and therefore d, gq, = 0 for any a.

c) The elements g1, g2 and gs5 are functions of t and r, with g55 also depending on ©. None
of the metric elements depend on the coordinate ®.

d) The Christoffel symbols are symmetrical w.r.t. the lower two indices, i.e., ;’ﬁ = Fﬁ}’a

With these findings, the non-zero Christoffel symbols can be determined:

20



v=2_0

Tpp = %goo(aﬁgOa + 00905 — 009ap)
a=0,=0123

[go =0, Tg; =0, T3, =0, Tg3=0
a=1,£=0123

r{;,#0, 1%, =0 r%=0
a=2,=0123

ry, #0, Iy, =

a=3,=0123

rd; +0

v=1

Tap = %gll(aﬁgm + 0,918 — 019ap)
a=0,=0123

Iy, =0Tl #0, Ty, =0, Ty =0
a=1,£=0123

rl,+o0,ri,=0 ri; =0
a=2,=0123

rl,+o0, ri,=o0

a=3,=0123

rl,+o

v=2

1
Tzp = ggzz(aﬁgz(x + 05928 — 029ap)

a=0,=0123

r3,=0,T% =0, T3, +0, T3, =0
a=1,£=0123

r3,=0, %0, %=

21



a=2,=0123
rs,=0,I3;,=0
a=3,=0123
2, #0

v=3

1 33
Faﬁ - Zg (aﬁg3a + aag3ﬁ - a3gaﬁ)
a=0,=0,1,23
r3,=0,T3,=0T3,=0 T3, #0
a=1,£=0,1,23
r3, =0, 13, =0, ri; #0
a=2,£=0,1,23
r3, =0, I3; #0
a=3,£=0,1,23
ng =

So there are 13 non-zero Christoffel symbols that we now want to determine:

1
F11 = 0(61901 + 01901 — 00911)

% =1 (=c2)(-1) (-

1 ad

)_11 2ad

1-Kr?2 2c¢c21-Kr?

0 _
1—‘11

T ¢2 1-Kr?

1
Iy, = 2900(62902 + 02902 — 90922)

ry, = 2Cz( 1)d,(a?r?) = ——Zaa
2 .
ng = rCZa
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1
3 = 5900(63903 + 03903 — 90933)

1 11r2sin? @

rd; = —ﬁ(—l)ao(azrz sin? @) = ~——2aad
2 5in2 Oaad
Fgg = I 5im mad Slrclz ad (3.34)
1 L
[o1 = 59 (01910 + 90911 — 01901)
1 _ 11-Kr? a’ \ _11-Kr? 2ad
oy = 2 a2 9o (1—Kr2) T2 a? 1-Kr2
oy = % (3.35)
1 =59"(01911 + 01911 — 01911)
2
1 _ 11-Kr? a®> \ _11-Kr*> | -2Kra®
I, = 2 a2 0y (1—Kr2) T2 a2 =D (1-K12)2
Kr
M= —= (3.36)
1 L
['2, = Eg (02912 + 02912 — 01922)
1 1-Kr? 1 1-Kr?
3, = -3 azr 01(a’r?) = -3 azr 2ra®
rl, = —r(1-Kr? (3.37)
1 L
[33 = 59 (03913 + 03913 — 01933)
g2 2
ri, = —% ! ;ir 9, (a*r?sin? @) = —% : a’ir 2ra®sin? 0
I, = —r(1-Kr?)sin?0 (3.38)

Iz, = 1 22(9 +0 -0 )
02 = 5 9 2920 0922 2902
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ré, = (3.39)

r? =1 22(9 +0 -0 )
12 2.9 2921 1922 2912

2 _ 1 2.2y _ 1
F12 2 a?r? (Cl r ) 2 a?r?
2 _ 1
F12 = ; (3.40)

, _ 1 o
['53 = Eg (03923 + 03923 — 02933)
. 11 .
rZ; = - a2r2 d,(a’r?sin? ©) = - erzaz sin © cos @
2, = —sin®cos O (3.41)
1

Fg3 = 5933(63930 + 00933 — 03903)
r3, =2 —6 (a%r?sin? @) =+ ———2r2aa sin? ©
03 0 =3

2 a?r?sin20 a?r?sin? 0

1"33 — % (3.42)

[, == 33(03931 + 01933 — 03913)
13 2.9 3931 1933 3913

1 1 1
l—‘g = —6 a27" Sin2 O)=-=- —27"612 Sil’l2 O
13 = 2 a?r?sin2 0 1( ) 2 a?r?sin?0
3 1
]"13 == (3.43)

3 1 33
['33 = Eg (03932 + 02933 — 03923)

1 1 1
r3,.=1_— 1  §.(a?r?sin20) =% — L 242r25in O cos O

23 T 2 a’?r?sin20 3( ) 2 a’r?sin?20
I3; = cot® (3.44)
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With the Christoffel symbols known, we can determine the elements of the Ricci tensor using Eq.
(3.28) and (3.30):

Ry = Riow = 0oy — 0T 5q + TG L0 — TG T, (3.45)

Due to the symmetry of the Ricci tensor (Eg. (3.30)), only 10 of the 16 elements need to be
calculated:

Roo; Ro1;Ro2 ;5 Ro3;R115Ri25 Ri3 5 Raz 5 Ry 5 Rag

If we perform the summation over a and ¢ in Eq. (3.45), we obtain an equation for calculating the
Ricci tensor elements in the form

Ry = 0,0, —0,I5 + (FOOFO + roorl + 92, +T3T3,)

— (18, T 0 o + T, T2, +T3,T3))
+0,T}, —0,T5; + (T5.TY +T1 11“ +T3.T%, + T3 03)
—(13,T Wiy + T3, T2, +T3,T3))
+0,T'2, —0,T'%, + (rgzr + I'? Zr +T%,I'%, +T3,T3)
—(r3,T 4T, +T4,T2, +T3,T3,)

+0,T3, — 0,55 + (1“03 O+ rlgr}w +T3,T2, +T3,T3)
— (T3, T + 3, T L + T3, T2 +T3,T3;). (3.46)

Since only 13 Christoffel symbols are non-zero (see (3.32) - (3.44)), many of these terms vanish.
Furthermore, we consider that a = a(t), i.e., 9,(a) = 0 for a # 0.

ROO = _60[‘%)1 - (l—%l)z - a01—‘(2)2 - (F(Z)Z)Z - 601—‘83 - (F(S;3)2
22 -2 22
Roo = —0p(aa™) — % — dp(@a™) — % — dp(aa™) - %
22
Roo = —3|(da™! - a2a™?) + ]

Ry = _3% (3.47)
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Roy = 01Ty — 0TG4y + T30y —T1algq — 0175, +T3,Tg; — T3,T5,
—0,T53 + T33T5, — 3305,
1a 1a a la 1a
Rov==0, () +15 -+ -0 Q) +70 -7

Roz = —0,Tg1 + 0,18, — 0,15, — 0,155 + T'33T8, — 33153
R02=—62 (Z) 62( )+COt@——COt@—

Ry, =0 (3.49)

Ros = —03Tg; — 05T%, + 05053 — 03555

Ros = 04 () = ()

R = 0oT% — T, +%ﬂ16J1+F&ﬂ1+GhV F%W - (1'1,)?
—61[‘%2 + l—‘%zl—‘ + F - (F 2)2 - 61[‘?3 + F83F + F (1—‘ 3)2

. . . . 2
1 aa 1 aa a 1 al aa 1 Kr 1

R11=60(_ )__ __61(_)+__ + - _(_)
c21-Kr? c21-Kr2a T ac21-Kr? r1-Kr? T

. . 2
1 al aa 1 Kr 1

—61 (—) +-—= + - — (—)
T ac?21-Kr? r1-Kr? T

a’+ad 2K 1
Ry = c2(1-Kr2) c2(1 Kr2) (-1 ) 2(1 Kr2) t 1-Kr2 (;) B (_1)r_2
dZ 1 2
T c2(1-Kr2) N (;)
a? ad a? 2K
Ry = c2(1-K12) T c2(1-Kr2) t c2(1-Kr?2) t 1-Kr?2
ad 2a? 2K
Ry = c2(1-Kr2) t c2(1-Kr?2) t 1-Kr2
é 2 (a
Ri1 = (% + c_Z(Z) + 2 )gll (3.51)
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_azl—‘%l + aZF%Z - a21—‘%2 - 621—‘%3 + 1—%31—‘%2 - 1—%31—‘?3

—0, (1 Kr) 62( )+cot®——cot®—

0

—03T'}; — 0573, + 0533 — 0335

~3s (=) =95 ()

0

a()l—‘gz _ngr(z)z +61F +F 1F +F%1F% F ZF +F ZF

+I2,ri, —Ir2,ry, —r2,ri, —o,rs, +ri.r9, +ri, (1“3)2

+

60 (r aa) _rcaag_l_ 61( T(l —KTZ)) +ar aa

Kr arlaa
1=K (—r(1—Kkr®) —— L (=r(1 = K1) = B,(cot ©) + e

+; (—r(1 —Kr?)) — cot?©

+

2
Z—Z(az +ad) — 1+ 3Kr?2 — Kr? + (1 + cot? ©) — cot?

2qd . 2r2a?

_|_

T

+ 2Kr?

c?
(£+f—z(%) +235) 02

631_‘%3 - 631—‘%3

00T %3 + 3355 + 0,35 + T, T35 + T3 T35 — 35T35 + 0,155
[3,T95 + T2,T3; — 33035 + Tgsl95 + T35T35 £ T35T3; — I3alY;

3 11 3 1r2
_F13F33 - l_‘231—‘33
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(3.53)
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R33—60(r5”1&)+61(( —r + Kr3) sin? ®)+

-I_l—Kr2

ar?sin?0 aa

1
(—r)(1 — Kr?)sin? 0 — (—r + Kr3) sin? @ —
r

1
+0,(—sin © cos ©) + - (=7 + K73) sin? ® — (—sin © cos ©) cot O

r?sin? @ , r?sin? 0 a?
R33—C—(a + ad) + (—1 + 3K7?) sin? ®+T
—(cos? ® — sin? ©) + sin ® cos O Osg
502 i 2,2
R33:aarcszm ® +2a Csm G)-I-ZKT' sm 0

a 2 f(a
R33=(z+c—z(z) e )g33

So, the Ricci tensor has only non-zero elements on the main diagonal:

Roo = _3%

c2a a

Rii = <_ + = (E) + 2 )glu with i=1,2,3

With Eq. (3.31) and Egs. (3.57) and (3.58) we are now able to determine the Ricci scalar:

R = g" Ry, = 9°°Roo + 9" Ry,

—Ll3d, g4 L 2(4 134
R=33%+g <C2a+cz() +2 )gu— -3 43

a

R—6< +L (a)2+§)

a 2
(m+c—2(

— Kr?sin? 0

(3.56)

(3.57)

(3.58)

) 25)

(3.59)

To solve the field equations (Eqg. (3.25)), we need the contravariant form of the energy-momentum

tensor (see Eq. (3.27)):

T

w = Taﬁguagvﬁ. For the main diagonal elements, it becomes

Too = Toogoogoo = C4Q'

Ty =T"9ugu =T} gu = [(P + D)= gii + pgiigii] i
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Taking into account that u’ = 0 for i = 1,2,3 and g*'g;; = g?2g,, = 933935 = 1, this becomes

Tii = Til- gii = P Yii, for i = 1,2,3 (3.61)

First, we use the time components in Eq. (3.25) to obtain the first FE:

1
Roo — EgooR + Agoo e Too,
.. .. .2
38 _1._ .2 Li(ﬂ) K\_ 24 =287G .4
3a 2( C)6<c2a cz\a +a2> ctd= s
N\ 2 2
K
3(5) +3%5 —c?4=8nGp
a a
: 2 2 2
@) _ 2 _8mG _ Kc Ac” . . .
(a(t) = H(t) =3 p(t) a(0)? + 3 First Friedmann equation (3.62)
The comparison with Eq. (3.7) (Newtonian approach) shows that the constant const = —Kc? and

the term with the cosmological constant is missing in the non-relativistic approach, i.e. in Eq. (3.7).

We will use this equation in the next chapter to derive a solution for the scale factor a(t).

With the spatial components, we get

1 8mG 8mG
Ri —>9uR + A9y =——Ti =~/ Jus

We see that regardless of which spatial component, i.e., i = 1,2 or 3, is used, we get the same
result.

\2
Replacing (g) with Eq. (3.62) leads, after a few rearrangements, to the second FE:

da 1 (871G Kc? Ac? K 8TG
_2___( 3 'D(t)_a(t)z-l_T)__-l_A

c2a c2 a? c4 b,
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i) , 4mG __Kkc? Ac? Kc?  Ac? _ 4mG

a(t) + 3 () 2a(t)? + 6 T 2a(t)? 2 c?

.. G 2

% = - 47TT (p(t) +3 C%) + ATC . Second Friedmann equation (3.63)

The comparison with the Newtonian approach shows that the term with the cosmological constant is
missing in Eq. (3.13). With Eq. (3.63) the acceleration of the scale factor can be calculated, what we
will use later to calculate the expansion force.

4 Densities in the universe and the resulting dynamics

4.1 Densities

First, let's look at the different components that contribute to the total density in the universe. The
density p(t) in the FE can be divided into two components:

p(6) = pm(t) + pr(2), (4.1)
Pm: Matter density, consisting of baryonic (normal) and cold dark matter.

pr: Radiation density, which was particularly dominant in the early phase of the universe.

Ac?
Furthermore, we can rewrite the term with the cosmological constant T in the so-called vacuum

density

A c?
py = g — = const (4.2)

and thus include it as a further density component in the first FE,

am\? _ ,_8mG  Kc?
(a(t)) =H({)* =——p TOL (4.3)

with a total density of

Pt = Pm t Pr T Py (4.4)

Since we assume a flat universe today, i.e., K = 0, the question arises as to what value the total
density must take in this case. This density is called critical density p.. To derive it, we rearrange
Eq. (4.3) as follows
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3 H(t)? . 3Kc?
swrc Pt 871G a(t)?’

The total density must therefore have the value

. __ 3H()?
Pt = Pc = 871G

(4.5)

(4.6)

For this density, the left side of Eq. (4.5) equals zero, resulting in curvature K = 0, i.e., a flat universe.

With K = 0 and today's values, i.e. t = t,, H(t = t,) = Hyand a(t = ty) = a¢ = 1, Eq. (4.5)

becomes

3 Hy?
8mG

—pt=0,

and thus for the critical density at the present time p.

3 Hy?
Pco = g7¢c"
. _ km _ -11
With Hy = 67.4 and G = 6.674-10
s Mpc kg s

— k
peo = 853107272,

(4.7)

(4.8)

3
= > we obtain the value for the critical density as:

Dividing the matter, radiation, and vacuum densities by the critical density yields the dimensionless

quantities:

Pm Pr Py
Q -, Q =, Q = —
m Pc r Pc A Pc

and with today's values p. o, P 0, Pr,0, and py, 0 = p, = const
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The dimensionless total density is

Q, = % =0y + Q.+ Qy, (4.12)
orfort =t
_ Pto __
Qo = P Qo+ Qro+ Qpp- (4.12)
[

The following values are used ([1],[2]): Q,, o = 0.315, Q4 ¢ = 0.685, Q. = 0.000055

The spatial geometry of the universe is determined by the sum of the matter, radiation, and vacuum
densities. We have already encountered the terms “flat”, “closed”, and “open” universe in Chapter 3
in connection with curvature K, and we want to explain these terms in a bit more detail here (see
also [5]):

Flat universe

A flat universe has a flat or Euclidean geometry. The total density equals the critical density. Although
the expansion of the universe is slowed down by gravity, it cannot reverse it. Thus, there won’t be a
so-called Big Crunch. The universe will expand endlessly.

K=0 Q=1, p = p, =>flatuniverse (4.13)

Closed universe

A closed universe has a positively curved geometry, like the surface of a three-dimensional sphere.
The total density is greater than the critical density. The expansion of the universe is slowed down by
gravity and reversed, meaning the universe collapses, the Big Crunch will occur.

K=1, Q;>1, p >p, =>closed universe (4.14)

Open universe

An open universe has a negatively curved geometry, similar to that of a saddle or hyperbola. The
total density is less than the critical density. There is no slowing down of the expansion, i.e., the
universe expands infinitely.

K=-1, Q, <1, p; <p: =>openuniverse (4.15)
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4.2 Relation between density and scale factor and the three phases in the
evolution of the universe

The vacuum density is according to Eq. (4.2) a constant over time and therefore independent of the
scale factor. However, this does not apply to the matter density p,,, and the radiation density p,.. We
want to derive this dependence on a(t) now.

To do this, we will first derive an equation from the combination of the first and second FE that
describes mass and energy conservation.

If we multiply the first FE by a(t)? and then differentiate this equation w.r.t. time, we obtain

g2 =28 (pm + pr)a? — Kc? +Aca2

206 = 225 [(pyn + pr)a2 + (p + pr)2adt] + 2252 (4.16)
We multiply the second FE by 2a:

2da = —% [(pm + py) + BC%] aa + @ (4.17)
If we subtract Eq. (4.17) from (4.16), we get

0 =222 (o + p)ad + = (b + pa + =L aa

Multiplying by % and rearranging yields

c?[3(pm + pr)a*a + (P, + pr)a’] = —3paia, which is identical to
c?=1a*(pm + p)] = —p=-(a®) (4.18)
dt m r dt ' '

Eqg. (4.18) is the sought energy balance, which states that the change in energy in a comoving volume
element (left side) corresponds to the negative product of pressure and volume change.
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This is the relativistic version of the 1st law of thermodynamics under constant entropy, which is a
good approximation (Tds = dE +pdV =0 => dE = —pdV).

With Eq. (4.18) it is now possible to represent the proportionality between the densities p,, and p,
and the scale factor. Additionally, we need the so-called equation of state parameter, which
describes the ratio of pressure to energy density.

w = %, (4.19)

. . . . 1
For matter this ratio is zero, i.e., p = 0. For a photon gas (homogeneous radiation) w = 3 and

therefore p = %prc2 [3].

For a matter-dominated universe, meaning p, < p,, andp = 0, Eq. (4.18) becomes

d
it (agpm) =0,
a3p,, = const,
1
pm(a@)~—. (4.20)

With the known value of the matter density today p,,, o, we obtain an equation for p,, as a function
of the scale factor:

pm(a) = 222, (4.21)

Dividing Eq. (4.21) by p. o and considering Eq. (4.10) this becomes

Pm,0
pm(@) _ pco _ Qmpo
Pea =T T g8 (4.22)

For a radiation-dominated universe, we have p,, < p,. For the pressure we use the relationship
shown above (Eq. (4.19) with w = é).

Substituting into Eq. (4.18) leads to
Pr

4.3 _ _prd 3
4 (@?p) =~ 2L (@),
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d d(a®) d(a®)
ﬁag + pr_ f— _&_'
dt dt 3 dt
d 4 1 da

L =—soe3d

dt 3a3 dt

1 1
Edpr = —4Eda,

In(p,) = —4In(a) = In(a™),

and thus finally to the sought relationship

pr(a)~ % (4.23)

Using the value of today's radiation density p,. o, we obtain an equation for p,:

pr(a) = %, (4.24)

Dividing Eq. (4.24) by p. o and considering Eq. (4.10) again yields

Pro
pr(a) __ pco __ o
oo =T T gt (4.25)

For the sake of completeness, it should be mentioned again that the vacuum density is constant and
does not depend on the scale factor (see also Equation (4.2)):

Py = Pyo = const . (4.26)

One can therefore distinguish three phases in the development of the universe:

1. Radiation dominated phase: Shortly after the Big Bang, the radiant energy in the dense and
hot universe was very large. Therefore, in this phase, p, is significantly larger than p,,, and

Py, but it decreases rapidly due to proportionality% (Eq. (4.23)) and asymptotically
approaches zero. After only about 10° years, the radiation density p,. is negligible compared

to the matter density p,,.
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2. Matter-dominated phase: Due to proportionality %, Pm also decreases over time and
approaches zero, but slower than p,.. After approximately 10 billion years, the matter density
P, falls below the constant vacuum density p,,, which can be easily calculated using Eq.
(4.22) and the known function a(t).

3. A-dominated phase: The constant vacuum density p,, has been dominant for around 4 billion
years, although the change to an accelerated expansion of the universe, began earlier,
around 6 billion years ago. We will calculate this point later.

If we put the proportionalities given by Egs. (4.20) and (4.23) as well as the constant vacuum density
into the first FE (Eq. (3.62)) one after the other, we can specify for the three phases described above
the basic development of the scale factor over time in these phases.

. . . . 1
In the radiation-dominated area the FE is also proportional to pre

a\? 1
a) " a*

da 1

— A —

dt a

a da~dt.

’

Integration yields

a(t)~t. Radiation-dominated area (4.27)

We integrate again

[Vada~ [dt,

2 3
-az~t,
3
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2
a(t)~ts. Matter-dominated area (4.28)

In the A-dominated area, where the constant vacuum density p,, dominates, we find

(a)z Ac?
a 3’

1da A c?

—_—_—~ —_—

adt 3

2
a 3

’

We integrate and obtain

ot
a(t)~eN 3 . A-dominated area (4.29)

4.3 Force of Expansion

Already in Chapter 3, we posed the question of whether the expansion of the universe proceeds at a
constant speed (F = 0), accelerated (F > 0), or decelerated (F < 0).

According to the Big Bang theory, after an initial inflation period, the expansion of the universe
initially slowed down during the first billion years. Approximately 6 billion years ago, a reversal of the
expansion occurred, leading to the change from decelerated to accelerated expansion. We can
already surmise that this change is associated with the decrease in the density of matter p,, —as per
Eg. (4.20) — and thus the increase in the dominance of dark energy, i.e., the constant vacuum energy
density p,,. We want to take a closer look at this with the help of the second FE.

With Eq. (3.10) we defined already the force that is responsible for the expansion in the universe:
a
F=m-r--
a

The term g represents precisely the second FE. As with the first FE in the form of Eq. (4.3), we want

to use the total density p; = p,,, + pr + Py and also interpret the pressure as a total pressure
Pt = Pm + Pr + Dy, Which represents the three different sources of pressure in the universe, such as
radiation, matter, and dark energy.
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With this we can write Eq. (3.63) in the form

6 e ;
% - 7; [pm +pr+py+ 5O+t pv)]. (4.30)

Since we have integrated the A-term, i.e., the vacuum energy, into p,, and p,,, the comparison of Eq.
(4.30) with Eq. (3.63) using also Eqg. (4.2) leads to

4T G 4T G _Ac?
3 v 2z Pv =73
3 A c? A c?
Pv czpv 4G 8mG Pv
_ Pv
p”__ﬁ' (4.31)

Substituting in Eq. (4.30) p,, with —p,,c? and taking into account that radiation pressure and radiation

density were only relevant in the early phase of the evolution of the universe, and also neglecting
Pm. Eq. (4.30) becomes

a) _4mnG .
E - 3 (pm va) . (4.32)

Using this in Eq. (3.10) gives us an equation to calculate the force acting in the universe:

F=—-m-r %(pm —2p,). (4.33)

This equation explains the aforementioned reversal of the expansion. The force F changes from an

attractive (negative) to a repulsive (positive) force, causing the accelerated expansion of the universe
once

Pm < |—2p,]. (4.34)
What is interesting is the point in time when this reversal occurred, i.e., when was
Pm = 2Py (4.35)
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. . . Qo
When we substitute the relationships p,,(a) = %'OC'O

(4.10), (4.22), and (4.26), into equation (4.35) we obtain

and p, = Qp 0. pc o, derived from equations

Omo _
0 = 2040,

3] Q
a= / mo_ (4.36)
2 -QA,O

With the values based on observations and analyzes of cosmological development (cosmological
parameters of the Planck measurements 2018 [1]) for the dimensionless matter density

Qo = 0.315 and the vacuum density Q, o = 0.685, we get a scale factor of a = 0.6126. In
Chapter 5 we will derive a function t(a) (Eq. (5.12)), allowing us to assign a time to this value.
Anticipating this result, let us mention here the age of the universe at which the change in expansion
occurred:

t(a = 0.6126) = 7.7 - 10° years. (4.37)

5 Special solution of the Friedmann equation

We start with the first FE in the form of Eq. (4.3) and take into account Eq. (4.4)

2

-~ (5.1)

1(t)\ 2 8T G
(B9)" = H(? =2 (o, + o+ 1) -

Kc
a(t) 3 a(t

If we want to use the densities in their dimensionless form, we can rewrite Eq. (5.1) using Eq. (4.9) as
follows:

a® 2 = 2 _8mG _ Kc?

(a(t)) = H()* = ——(Qr + Qp, + Qy) pc ek (5.2)
and with Eq. (4.6) this becomes

a0\ _ en? = g2  ke?

(52) = H®O? = HO* @y + 0 + 00 — 2 (53
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Kc?

To be able to drag the curvature term — into the parenthesis, we define a curvature component

a(t)?
of the form
_ Kc?
‘QK = —m (5.4)
dth O, H(t)? = — X< (5.5)
and thus K = T am .

or fort = t, (i.e. today) and thus H(t = ty) = Hpand a(t = t,) = ay =1

_ 2 _ 2 _ KCZ _ .QKHg
Kc* = Qg Hy or 22 a2 (5.6)

Substituting Eq. (5.5) into (5.3), cancelling H(t)? on both sides, and considering Eq. (4.11), we obtain
the interesting relationship

1=0,4+0Q,+0,+Q =Q, + Q. (5.7)

From this, we can immediately see that a flat universe, i.e., K = 0 (and hence Qx = 0) corresponds
to the dimensionless total density Q; = % = 1, meaning the total density equals the critical density,

[

Pt = Pc-

If we divide the densities in Eq. (5.1) by p. o (Eq. (4.8)) instead of p,, this leads to

1(t)\ 2 8w G [ py m v Kc?
(@) =H(t)2=n—<p—+p—+p—>,0ao— ¢

a(t) 3 Pco Pc,o Pco a(t)?’

4OV _ gz = g2 (Lo Pmoy po) _ K
(a(t)) = H®)” = Hy (pc,o + Peo + Pc,o) a(t)?’

and with the Egs. (4.10), (4.22), (4.25), and (5.6) to
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(@)2 = H(t)* = H§ (9”’ +2m0 00+ Q—K) . (5.8)

a(t) a* a3 a(t)?

If one assumes a flat universe, i.e., O = 0, and neglects the radiation density, which is small
compared to the other densities and was only relevant in a short phase after the Big Bang, Eq. (5.8)
simplifies to

(@)2 _ Hg (n,,;_o n -QA,O) . (5.9)

a(t) a

By further rearranging and integrating this equation, we obtain the function t(a):

1da N 0
-——=H, |—/—+0 5.10
adt 0 a3 + A0 - ( )

1 da
A= o
0 a- ané'o‘l'.QA‘O
1 ra Jada
=L __vade (5.11)
HO a=0 -Qm,0+-QA,0 a3
3
With the substitution x = a2 and consequently a® = x?, Z—Z = 3\/5, and da = %dx, Eqg. (5.11) can
be rewritten
2 X dx
t=——exes [ —,
3H01I.QA‘0 x=0 'Qm,O_I_ xz
N 240
with the solution
2 . X
t = —— arsinh| — |,
3H01I.QA,0 'Qm,O
\N 240
or
t(a) = —— arsinh( 240 a%) (5.12)
3Ho./22,0 mo . .
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We had already used this equation to obtain the result in Eqg. (4.37). If we take into account that the
scale factor today, i.e., at t = t;, has the value of one, Eq. (5.12) gives us an age of the universe of
t(ag) =ty = 13.796 billion years.

Solving for the scale factor gives

a(t) = <ﬂ>3 sinh3 <3H°T V240 t) . (5.13)

0p,0

| =

a(t)

The Hubble parameter can easily be obtained from the relationship Eq. (2.9), H(t) = P

(5.13):

and Eq.

3Hg 'QAO 3H0 'QA,O
t

i -QA,,O -cosh 5 5
H(t) =-—= ,
a dt 0 2(3Ho (240
(9/1,’0) sinh3 — —

H(t) == HOW"QA,O ) COth (31_102ﬂ ' t) . (514)

5.1 Scale factor, Hubble radius, horizons, light cones and worldlines

After obtaining a solution for the scale factor and thus also for the Hubble parameter in the previous
chapter, we will utilize these results in this chapter to gain a better understanding of the dynamic
processes in the expanding universe.

For numerical integrations, derivatives, etc. and all plots, the program GNU Octave was utilized.

Scale factor

Figure 5.1 shows the scale factor over time (Eq. (5.13)). From the shape of the curve, we can discern
that between 6 and 8 billion years after the Big Bang the expansion transitions from a decelerated to
an accelerated expansion.
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Scale Factor

a(t)

0 2 4 6 8 10 12 14

Time in billions of years
5.1: Scale factor a(t)

We already know that this moment occurred 7.7 - 10° years after the Big Bang (see Eq. (4.37)).
This event becomes more apparent when differentiate the function a(t) w.r.t. time, see Fig. 5.2.

Derivative of a(t)

% 10—17
0.28

026
0.24
da
dt o022 - 4

0.2 - A

0.18 -

0 2 4 6 7.78 10 12 14

. Ti in billi f
5.2: Derivative of the scale factor 'me n biflions ot vears

Hubble radius

With Eq. (2.10) we found already an equation for the universe’s recession velocity. If we want to
determine at what distances r(t) the recession velocity was, is and will be equal to the speed of
light, we substitute vy in Eqg. (2.10) by the speed of light ¢ and rearrange the equation to the radius.
This radius is referred to as the Hubble radius ry:
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(o}

ry(t) = 0O (5.15)
Using today's Hubble constant Hy = 67.4 S.I;/In;c (from [1]), this calculates a distance of
Tyo = 4464.52 Mpc = 14.51-10° Ly, (5.16)

To represent the time evolution of the Hubble radius, we substitute Eq. (5.14) into Eq. (5.15) and
obtain the evolution illustrated in Fig. 5.3

Hubble Radius

20 |
Tyo = 14.51

. A _ 1
5 :
2 40l |
=
:
S 57 1
£
~ :

0 I ‘ to = 2:13.79]6 ‘ ‘
0 5 10 15 20 25

Time in billions of years

5.3: Hubble radius. Also shown are the values of the Hubble radius at the present time, 1y, o,
and the limit 5 o, towards which the Hubble radius tends.

In Fig. 5.3, the limit 1y o, is also indicated, towards which the Hubble radius tends. It is obtained from

L Q
Eg. (5.9), taking into account that as t — oo, the term aigo tends to zero, and thus

Hy = Ho/Qpp - (5.17)

If we substitute Eq. (5.17) into Eq. (5.15), the limit value ry , can be calculated.

C
THo = ——=— (5.18)

Ho\[Qpp0

We get the value ry o, = 17.528 billion light — years.

Since “stationary” objects (i.e., without peculiar velocity) located on the surface of the sphere with
the radius 15 (t) move away from us at the speed of light due to the expansion of space, the velocity
of objects within the sphere is less than c and outside it is greater than c. However, under certain
conditions, we can still receive information from objects located outside the sphere with the radius
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1y. There is, however, a distance known as the event horizon 1, from which photons take an infinite
amount of time to reach us (i.e., never). We'll soon see how this is calculated.

First, some preliminary considerations about the distances traveled by photons in an expanding

universe. If we were dealing with a static universe, such a distance could be calculated using the
tz
t=t,

to continuously correct the distance c¢ - dt during the integration with the time-dependent scale
factor:

simple relationship r = cdt = c- (t, — ty). But since we live in an expanding universe, we have

= ftF cat (5.19)

Teo = t=tsa(t)’

This is the so-called comoving distance, a distance that a comoving observer would measure.
However, we can use the corresponding scale factor to convert the distance at the times t5 or tz to a
stationary observer (e.g. us). We call this distance the proper distance. The Eq. (5.19) would only
provide a proper distance without the need for correction if tp = ¢, (i.e., today) and we wanted to
know the distance to us at the current time (the scale factor would then be ay; = 1 and thus would
not change the value of the integral).

By scaling the comoving distance by the scale factor, we get the following two distances:

1. Distance of an object moving with the expansion of space at time tg, which emitted photons
at time tg that arrive at the stationary observer (us) at time tz. It can be helpful for
understanding to consider the photon-emitting object as stationary (the determination what
is at rest and what is in motion is arbitrary anyway). This stationary object emits photons in
our direction at time ts. They arrive at us at the time ty taking into account the intrinsic
velocity of the photons and the expansion of space. The total distance traveled is rp,pr(tp).

dt
7/'F,pr(tF) = a(tF) "Teo = a(tF)f =ts Z(t) (5.20)

2. Distance of an object at time tg that emitted photons at that time, which arrive at the
stationary observer at time tg.

cdt

7'S,pr(ts) = a(ts) 150 = a(ts) ft ts a(t)’ (5.21)

If we want to show a progression over time, we need to perform calculations step by step from ts to
tr using Egs. (5.19), (5.20), and (5.21) to obtain enough data points for the graphic representation of
a temporal progression of the radii:

. t(i) cdt t(i) cdt , t dt
Tco(l) = ftsl CCl(t) err(l) = a(t )f ' ccl(t) , rS,pr(l) a(t )f(IZ) ccl(t) (5.22)

withi = 1...ipg,, At =me=imin poy— ¢ . 4+ At(i — 1)

Imax—1

tmin and tq Must be determined according to the case under investigation.
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In Figure 5.4, 3 cases are distinguished (ts is fixed, ty varies):

Case 1: ty <ty : The scale factor a(t;) < 1.

Case 2: tp = t, : a(t;) reaches at tp = t, the value one, i.e., a(tp) = ay = 1, hence at time t, as
already mentioned above, 7., (tr) = Trpr(tF)-

Case 3: tp >ty : a(t;) > 1after tp = ty. Hence 17, (t) is greater than 1, (t) after t,.

Case 1l
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5.4: Distances from the perspective of a moving observer (comoving distance) and a stationary observer
(proper distance). There are 3 cases: 1) tp < ty, 2) tg =ty and 3) tp > t,.
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Combining Egs. (5.20) and (5.21), as already shown in Egs. (2.5a/b), the distances 7y - (tf) and
75 pr(ts) can be easily converted into each other using the scale factors:

(ts)

7/'S,pr(ts) a(ts) Fpr(tF) (5.23)
(tr)

7/'F,pr(tF) = Z(tF) Spr(ts) (5.24)

From Egs. (5.20) and (5.21), special cases, known as horizons and the past light cone can be derived
depending on the choice of integration limits.

Event horizon g, Eq. (5.21) with tp = o0

The event horizon is the distance of an object at time ts, that emitted photons at that time, which
will never reach us, even after an infinitely long time.

cdt

For the distance an object has to us today, we set tg = t, and thus a(ts) = ag = 1.

=[7 = at 5.26
TEypr = t=to a(t) (5.26)

This results in a value of 7'g - = 16.678 billion ly .

From objects located on the surface of this sphere (with us at the center) or further away from us
today, we will no longer receive any information.

As shown in Eq. (5.22), we can also calculate and illustrate the temporal evolution of the event
horizon. From the trend of the curve in Fig. 5.5, it can already be inferred that the event horizon also
converges to a limit value.
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Event Horizon
20 | T T T T

g pr(2ty) = 17.450 —
Tg,pr = 16.678 :

15|

10 |

r in billions of light years

0 | L ! w :
0 5 10 to = 13.796 20 25 2t, 30

Time in billions of years

5.5: Event horizon 7, (ts). The values for today and for 2¢, are indicated.

In Table 5.1, values for tg = t, up to tg = 5t with the respective increase in percentage are listed.
We see that the increases rapidly diminish, and r ,,,- tends toward the same limit as the Hubble
radius 7g pr.o = TH,e = 17.528: billions of light years.

ts rE,pr (10°ly) | Growth (%)
to 16,678

2t 17,450 4,627
3to 17,521 0.406
4to 17,528 0.038
5to 17,528 0.004

5.1: Values for the event horizon 7y ,,,.(ts) for tg = to up to tg = 5t,.
The increase is given in percent, which diminishes very quickly, i.e.,
Tg pr approaches the limit value 7g 5, oo = 17.528 billions of ly.

In Fig. 5.6 the Hubbel radius and the event horizon are shown together in a spacetime diagram,
where the time axis is now vertical and the space axis is horizontal.
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Hubble Radius and Event Horizon

I I !
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5.6: Spacetime diagram with the Hubbel radius and the event horizon.

We have already discussed in the context of Eq. (5.15) that under certain conditions, we can receive
information from objects located outside the sphere with the radius ry, i.e., those having a
recessional velocity > c. This condition can now be easily interpreted from Fig. 5.6: These objects
must lie within the gray shaded region shown in the figure. We will see an example of this further
below.

Particle horizon rp y,: Eq. (5.20) with tg = 0 (or tg = teyp = 380000 years)

Note: Often, instead of zero, the lower time limit is chosen as the time of recombination ., which
is the moment when the universe became transparent. It is the earliest time from which we receive
information in the form of photons. We refer to this photon radiation received today as the Cosmic
Microwave Background Radiation (CMB).

The particle horizon is the distance of an “object” at a time tg, that emitted photons, for example, at
the time tg = 0 (theoretically), which arrive at our location at the time tg.

tr cat
Tppr(tr) = a(tr) tj(,%- (5.27)
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For the distance that such an “object” has to us today, we set tz = t, and thus a(tz) = ag = 1.

_ fto cdt

Tpypr = =0 m. (5.28)

This results in a value of 47.01 billion ly. This distance also defines the limit of our observable
universe. However, the received information is not current, but as old as the universe itself, which is
to = 13.796 billion years old.

For tg = teyp = 380000 years

= ft" cat (5.29)

TPcumppr t=tcmp a(t)

We obtain a distance of 7p ., . »r = 45.56 billion Ly
If we include the particle horizon in the space-time diagram of Fig. 5.6, it looks as follows:

Hubble Radius, Event Horizon and Particle Horizon

25 r 7

15 to = 13.796 _—

Time in billions of years

30 40 50

r in billions of light years

5.7: Space-time diagram with the Hubbel radius, the event horizon and the particle horizon
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Past light cone r; ¢ 5,,: Eq. (5.21)

As the name suggests, the past light cone gives us the distance of an object at time tg, i.e., in the
past, that at that time emitted photons which reach the observer at rest at time tg.

cdt

T‘LC,pr(tS) = a(ts)f =tg a(t)

(5.30)

Generally, we are interested in the distances of objects in the past, whose photons arrive at our
location today, that is, at the current time ty = t;.

cdt

If we substitute the time of recombination, ts = t-yg = 380000 years , into the equation, we
obtain the distance that the photons of the CMB radiation had to “us” at that time (we didn’t exist at
that time, so it refers to the “stationary” location that we occupy today, from which we determine
proper distances in the universe).

cdt

—tems a(t) (5.32)

Ticopr (Eomp) = a(tCMB)f

This results in a distance of 7,¢ pr(Ecyp) = 3.6 10~ 2billion ly. Since we calculated already the
particle horizon for tg = tcyp =~ 380000 years, using Eq. (5.29), we can also calculate 1y¢, - (tcmp)
using Eq. (5.23):

_ a(tcms)
TLCO,pr(tCMB) ~ T 4 Tpeyppr - (5.33)

1
2 2 [
we calculate a(tcyg) with Eq. (5.13): a(teyp) = (Qm'°)3 sinhs (WOTQAO tCMB) =7.863737-107*

Qa0
and can therefore confirm the above value.

7.863737-107% L o
Tcopr(temp) = ————45.56 billion Ly = 3.6 10 billion ly.

Fig. 5.8 shows the temporal evolution of the past light cone.
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Past Light Cone
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5.8: Spacetime diagram with past light cone r;.¢ ,,r-(t). Starting point is P(TLco,pr(tCMB)» tems)-

In point P, (TLco,pr(tc): tc) the expansion velocity of space is equal to the speed of light.

The trajectory of the light cone shows that initially, the photons directed towards the stationary
observer, which were only 36 million light-years away from it at the starting point P, move away from
it due to the high expansion rate of space. Only at the time t. = 4.057 billion years does the
direction of motion reverse. At this point, the recession velocity v is equal to the speed of light c.
Subsequently, the velocity of the expansion of space continues to decrease, reaching zero at the
location of the stationary observer today (i.e., at the time ¢;).

Using Eqg. (2.10) in combination with Eq. (5.14), we can calculate the corresponding escape velocity
for the radii of the light cone obtained with Eq. (5.30). As already indicated in Fig. 5.8 (point P.), at
t. = 4.057 billion years, it is equal to the speed of light:

vp(t, = 4.057-10°y) = H(t.) - r(t,),

vp(tc) = HO ,‘QA,O . COth <3HO— ‘M) tC) . a(tc) to C_dt

2 t=tca(t)’
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m

. 5.85223343 GL] . 306.6013938343741Mpc

ve(t,) = 167.080201560149 - oL

km
vp(t,) = 29979257 =cC.
Let's do the same calculation for the point P(rLCO,pr(tCMB)r temp):

3Ho/ 24,0
Vp(temp) = Hoy/f240 * cOth (T tCMB) “Ticopr (Ecmp),

This results in a velocity of vg(tcpp) = 63 - ¢, i.e., more than 60 times the speed of light.

With the Hubble radius 14 (t), we defined a distance at which the escape velocity equals the speed of
light. If we plot the light cone in a spacetime diagram, these curves intersect at the point P,, see Fig.
5.9).

Past Light Cone and Hubbel Radius
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r in billions of light years

5.9: Spacetime diagram with past light cone 7;,¢, ,,-(t) and Hubbel radius 1 (£). The curves
intersect at the point PC(TLCO,pr(tc)v t.) where vy = c.
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In connection with Fig. 5.6, we have already discussed that we can also receive information about
events that occurred in the past and were beyond the Hubble radius but still within the gray shaded
area of Fig. 5.6, within a finite time. With the definition of the light cone, we can also numerically
capture this situation and represent it in a diagram.

Therefore, if we specify a time tg of an event in the past and a location 7, ,,-(ts) so that we end up
within the gray area of Fig. 5.6, the question now is when the photons emitted in our direction will
reach us. Mathematically, this means finding for which t; the following equation is satisfied:

ricpr(ts) ftp cdt

ats)  Jt=tsa@ (5:34)

The Eq. (5.34) can be easily solved numerically using, for example, the bisection method.
In Fig. 5.10 the past light cones are shown for the following points (events):
ts = 10 billion years, 71icp(ts) =13 /14 /15 / 15.855 billion ly

All points lie outside the Hubble radius, but still in the gray shaded region between the Hubble radius
and the event horizon.

The last point with 17 ,,,-(ts) = 15.855 billion Ly is very close to the event horizon,
7g pr(ts = 10 billion ly) = 15.85564 billion ly .

We see that the photons from all 4 events reach us in a finite time, although they are outside the
Hubble radius (even though these periods are hard to imagine).

We already know that the Hubble radius intersects the light cones at the points where the escape
velocity is equal to the speed of light.

As expected, the photons will reach “us” only very far in the future. Already at the first time point,
i.e., at ty = 39.5 billion years, we’ll have long since passed the collision with our neighboring
galaxy Andromeda, which will take place in around 4 billion years. The Sun will exist only as a black
dwarf. Life on Earth will no longer be possible. Whether humanity - wherever it may be - will survive
until then is more than questionable.

Especially for the point near the curve of the event horizon, i.e., at 17,¢ - (ts) = 15.855 billion Ly,
we see that the light cone hugs the event horizon and eventually merges into it with closer approach.
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Spacetime Diagram with Past Light Cone, Hubble Radius and

Event Horizon
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5.10: Past light cone for tg = 10 billion years and 1y¢ - (ts) = 13 / 14 / 15 / 15.855 billion ly

Future Light Cone

So far, we have only considered the past light cone, that is, the worldline of photons that have
embarked on their journey towards us in the past and arrive at out location today. Of course, the
“journey” of these photons does not end with us; rather, if they have arrived from a positive
direction in the spacetime diagram, they will continue their path in the negative direction.

We also already know how photons move in the Hubble flow, i.e., in expanding space: The distance
that a photon passing the stationary observer at the time tg = t, covers up to a future time tg, can
be calculated using Eq. (5.20).

tp cdt
TFLC,pr(tF) = (H)a(tp) t:tom- (5.35)

If we consider the photon worldline in the form of a future light cone as an extension of a
past light cone, then we need the positive sign for a “negative” past light cone and the
negative sign accordingly for a “positive” past light cone (see Fig. 5.11).
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The future light cone can also be understood as a particle horizon directed into the future, as
evidenced by the comparison of equations (5.35) and (5.27).

Figure 5.11 depicts the temporal evolution of past light cones with tg = 0 and t; = t,,, which
arrive at our location from both positive and negative directions and then continue along the
trajectories of the photon worldlines according to Eq. (5.35).
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5.11: Past and future light cones for photons that started at tg = 0 and reaching us
today. 7¢c r (t) describes the future worldline of these photons.

Light cones are also known from special relativity and are represented as bisectors in the so-
called Minkowski diagrams of spacetime. Since space expansion is not considered in special
relativity, the light cones shown there (dashed lines in Fig. 5.11) are to be understood as an
approximation of the future and past light cones depicted here.
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Worldlines

With the light cones, we have already learned about the world line of photons. It describes the path
of photons through an expanding universe, taking into account their proper velocity, which is the
speed of light. Now, let’s consider the path of objects at rest, which arises solely due to the
expansion of space. These resting objects move through space and time with the Hubble flow, as
observed by us, as observers at rest on the time axis. Using Eq. (5.20), we are able to calculate the
distance of these objects from us at the present time t,, provided we know when in the past (at time
ts) these objects emitted photons that arrive at our location today.

cdt dt t cdt
Topr(to) = a(to)f s ftitsﬁ' (5.36)

This is the value of a particle horizon at the present time. However, the temporal evolution of this
cdt

ts a(t)
worldline of the object under consideration. The two curves only intersect at t = ¢, (see Fig. 5.12).

particle horizon, starting from tg (i.e., 7p - (t) = a(t) ft ,ts <t < ty) does not represent the

If the distance to a stationary object at a specific point in the past is known to us, then we can use
the scale factor to calculate any distance that this object will have to us in the future due to the
expansion of space. The same applies, of course, in reverse: if the distance that the object has to us
today or at a point in time in the future is known, we can calculate any distance in the past using the
scale factor. We have already acquainted with the equations for this with Egs. (5.23) and (5.24).

Case 1: Distance to a stationary object (without peculiar velocity) at a certain time in the past is
known (Eqg. (5.24)):

()
Twl(t) = a(t ) Spr(ts) (5.37)

Case 2: The distance that a stationary object (without peculiar velocity) has to us today or will have
to us at some point in the future is known (Eq. (5.23)):

(t)
Twi(t) = a(t ) Fpr(tF) (5.38)

Since both approaches lead to the same worldline, we can equate these equations,

rS,pr(tS) a(t) — rF,p‘f'(tF) a(t) ’

a(ts) a(tr) or
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rS,pr(tS) — rF,pr(tF)
a(ts) a(tr)

= const,

and realize that for a worldline of an object moving with the Hubble flow, the ratio of the distance to
a stationary observer to the scale factor at any arbitrarily chosen time is constant, i.e.,

Twi(trev)

=T = const. (5.39)
a(trey) wico

Eq. (5.39) represents the worldline of a comoving object. Later, we will see in a spacetime diagram
with an x-axis representing the comoving distance, this world line parallels the time axis. The value of
the constant corresponds to the distance of the object to us at the present time and intersects at ¢,
with the specific particle horizon (starting at tg = t,..,,), according to Eq. (5.36).

To get from the comoving distance to the proper distance, we multiply again by the scale factor and
obtain for the world line at proper distance:

W(trev)
Twpr () = a(6) 202, (5.40)

Twi(trep): Location of the observed object at time t,..,,.

If we know the time tg at which an object emitted photons that reach us today, we have already
learned about two ways to calculate the required distance 1,,; (t,¢1,):

1. Pastlight cone: t,., = ts, Eq. (5.30)

cdt
TLCO,pT (ts) =Twi (ts) = a(ts)f (t) and thus (5.41)
cdt
ft tsa(t)

wlpr(t) - a(t) a(ts) a(ts) '

cat
prte =a(t)  Twico - (5.42)

Twpr() = a(®) - [,2,
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2. Particle horizon: t,., = ty and lower integration limit t = ¢, Eq. (5.28)

_ _ to cdt
Tpy,pr = Twi (to) = ft=t5% and thus (5.43)
fto cdt

Jt=tga(t)

Twi ,pT (t) - a(t) ao ’

dt
rwl,pr(t) = a(t)- f C(t) a(t) - Twi,co - (5.44)

As expected, both approaches lead to the same result.

As an example, let’s consider that the light from a supernova that occurred at t¢ = 5 billion years,
reaches us today. We calculate the worldline of the supernova remnants using Eq. (5.44).

In Fig. 5.12, the worldline, the past light cone, and the particle horizon for the described event are
plotted.

Worldline of the Supernova Remnants
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5.12: Worldline of the remnants of the supernova that occurred approximately
8.8 billion years ago. Also shown are the past light cone and the particle horizon.
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In Fig. 5.13, spacetime diagrams are presented for the time of recombination, tg = toyp =

380000 years. In the upper image, as usual, the x-axis represents proper distance. In the lower
image, the x-axis represents comoving distance. Plotted are the past light cone, the Hubbel radius,
the event horizon, the particle horizon and the worldline. The worldline and the particle horizon
intersect on the “today line” at a distance of 45.56 billion ly (cf. also Eq. (5.29)). As described earlier,
the worldline in the comoving distance diagram is a constant with the value 1, ., =

45.56 billion ly.
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5.13: Spacetime diagram for the event of recombination, featuring the past light cone, Hubbel radius,

event horizon, particle horizon and worldline. Upper representation at proper distance, lower
representation in comoving distance.
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Time in billions of years

At this point, an interesting relationship between a particle horizon and worldlines should be noted:

We already know that for an object that emitted photons at a time ts in the past, which arrive at our
location today, the worldline of this object and the particle horizon intersect at t;. This intersection
indicates where the object is located today due to the expansion of space. However, the temporal
evolution of this particle horizon for tg contains more information than just this one point at t;. If we
consider other objects with photon-emitting events that occurred at the same time tg5 but at
different distances from us in the past, the intersection of the respective world line of these objects
with the particle horizon gives us the time when the photons of these events reach us, and where the
object are at that time. In figure 5.14 four events are plotted to illustrate this concept. Thus, this one
particle horizon “represents” all events occurring at the time ¢s.

Relationship between Particle Horizon, Worldlines and Past Light Cone

25 I I I \ I I

to = 13.796 )
\A\'\]\'\“

\ \ \ \
30 40 50 60 70

4 events at
the time t;

Distance in billions of light years

5.14: Spacetime diagram for various events at a time t5. The intersections between the particle horizon
for this time and the different worldlines of the events indicate when the photons of the events
reach us and where the photon-emitting object is located at that time.
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