Ideals of the Algebra
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Abstract We construct an algebra A such that A has a nonempty finite set A of associative
and commutative binary operations. Then we may define an ideal with respect to a
nonempty subset of A. If some hypotheses are satisfied, then we have that a union of the
ideals is an ideal. An ideal M is maximal with respect to a subset of A if there is not an ideal
J # A such that J contains M. And an algebra is local with respect to a subset of A if it has a
unique maximal ideal. Suppose that the algebra A is local with respect to ® and ¥, M and N
are the maximal ideals, respectively,and Jis an ideal with respect to @UWY. Then we have that
J € M N N if some conditions hold. Let A be a local algebra with respect to ®, M the maximal
ideal. Forall¥ with® C ¥ c A, if Misan ideal with respect to ¥, then A is local with respect to
Y. A preimage of an ideal with respect to ® under a homomorphism is an ideal with respect
to &.
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1. INTRODUCTION

Let A = {Bi1,...,Bn} be a set of binary operation symbols. Suppose that the
ordered pair A = (A, o) is an algebraic language such that 2 contains binary
operations which are commutative and associative, and suppose that A is an
algebra of the language %, see notation 3.1 and convention 3.1 for the details.

We may define an ideal with respect to a nonempty subset of A in an algebra A,
see definition 3.1 and examples 3.1 and 3.2 for more details.

If subalgebras/and Jareideals withrespectto® c Aand ¥ C Ain A, respectively,
then the subset /UJ is a subalgebra, see propositions 3.1 and 3.3 and corollary 3.1.1
for more details. The subalgebra /UJis an ideal if the hypotheses of propositions 3.2
and 3.4 and corollary 3.2.1 are satisfied.

In definition 3.2, we define a maximal ideal with respect to a subset of Ain A. Let
M be a maximal ideal with respect to ®. We have that if M is an ideal with respect
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to ¥ then M is maximal with respect to ¥ for all ¥ with @ C V¥, see proposition 3.5
for more details.

And if an algebra A contains a unigue maximal ideal with respect to a subset of
A, then the algebra A is called local, see definition 3.3 for the details.

Suppose that an algebra A is local with respect to @ C A, and M is the maximal
ideal. If J # A is an ideal with respectto¥ ¢ Aand ® C ¥, thenJ C M, see
proposition 3.6 and corollary 3.6.1 for more details. Thus if J = M, then the algebra
A is local with respect to V. This is discussed in corollary 3.6.2.

Suppose that an algebra A is local with respect to ® and ¥, M and N are the
maximal ideals, respectively, and M NN # @.If J # A is an ideal with respect to
dPUVY,thenJ € MNN.And we have thatJ = MN N implies that the algebra A is local
with respect to d U ¥, see corollaries 3.6.3 to 3.6.5 for more details.

Letf: A — B be a homomorphism of algebras of the language 2. We have that ®
makes the subalgebra f*(J) to be an ideal if J is an ideal with respect to ® in B, see
proposition 3.7 for more details.

2. PRELIMINARIES

Recall some definitions in universal algebra.

Definition 2.1 ([4,5]). An ordered pair {L,o) is said to be a (first-order) language
provided that

e [ isa nonempty set,
e 0.l — Zisamapping.

Alanguage (L, o) isdenoted by . If f € £ and o(f) > O then f is called an operation
symbol, and o(f) iscalled the arity of f. If r € L and o(r) < O, then ris called a relation
symbol, and —o(r) is called the arity of r. A language is said to be algebraic if it has
no relation symbols.

Definition 2.2 ([4]). Let X be a nonempty class and n a nonnegative integer. Then
an n-ary partial operation on X is a mapping from a subclass of X" to X. If the
domain of the mapping is X", then it is called an n-ary operation. And an n-ary
relation is a subclass of X” where n > 0. An operation(relation) is said to be unary,
binary or ternary if the arity of the operation(relation) is 1, 2 or 3, respectively. And
an operation is called nullary if the arity is O.

Definition 2.3 ([4]). An ordered pair A = (A, %) is said to be a structure of a
language & if A is a nonempty class and there exists a mapping which assigns to
every n-ary operation symbol f € £ an n-ary operation 4 on A and assigns to every
n-ary relation symbol r € £ an n-ary relation r* on A. If all operation on A are partial
operations, then A is called a partial structure. A (partial)structure A is said to be a
(partial)algebra if the language £ is algebraic.
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Definition 2.4 ([4,5]). Let A, B be (partial)structures of a language £. A mapping
@: A — Bis said to be a homomorphism provided that

<p(fA(c11, ...,an)) =fB(e(ai),...,e(an)) for every n-ary operation f;
Aay,...,an) = rB(e(ai),...,e(an)) for every n-ary relation r.

Definition 2.5 (cf. [4, 5]). Let X be a nonempty set. Suppose that B8 is a binary
operation on X. Then the 2-ary operation f is associative provided that

B(a,B(b,c)) = B(B(a, b),c) forevery a,b,c € X.

Definition 2.6 (cf. [4,5]). With the notations of definition 2.5, the 2-ary operation 8
is commutative provided that

B(a,b) = B(b,a) for every a,b € X.

3. IDEALS OF THE ALGEBRAS

Convention 3.1. We assume that all binary operations are associative[definition 2.5]
and commutative[definition 2.6] in this paper.

Notation 3.1. Let A = {81,8>,...,8n} be a set of operation symbols for n > 0, and
o: A — Z amap which assigns to §; 2 for all 8; € A. Then the ordered pair U := (A, o)
isan algebraiclanguage[definition 2.1]. Itis clear that all operations of the language
A are binary operations. Suppose that Aisan algebra[definition 2.3] of the language
A.

Definition 3.1. Let the notations be as in notation 3.1, and ® C A a nonempty
subset of 2-ary operations on A. A nonempty subalgebra J is said to be an ideal
with respect to ® provided that §; € ® implies Bj(a,x) € Jforalla € J,x € A. In
this case, we say that the nonempty subset ® C A makes the subalgebra J to be an
ideal.

Remark 3.1. We have animmediate consequence of definition 3.1. Forall nonempty
subset ¥ c o, if Jis an ideal with respect to @, then J is an ideal with respect to V.
And the converse need not hold.

Example 3.1 (cf. [1-3]). LetR = {{+,,0, 1}, 0) where the map o is given by assigning
2 to +and-. Then acommutative ring Ris an algebra of the language R’ = ({+, '}, 0).
Hence an ideal in the ring R is an ideal with respect to {:} in R(as an algebra of the
language R’).

Example 3.2 (cf. [4,5]). Let B = (B,V,A,’,0,1) be a boolean algebra. Hence the
boolean algebra B can be regarded as an algebra of the language B = ({Vv, A}, o).
Then an ideal in B is an ideal with respect to {A} in B(as an algebra of the language
B), and a filter in B is an ideal with respect to {V}.

Proposition 3.1. Let the notations be as in notation 3.1, B; # B; € A. Suppose that

subalgebras | and J are ideals with respect to A\ {8} and A\ {B;} in A, respectively.
Then the subset | UJ is a subalgebra of A.
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Proof. It suffices to prove that B(x,y) e IlUJfor B € A,x € I,y € J, since | and J are
subalgebras. For every x € I,y € J, we have that

/ if B = Bj,
Br(x,y) € 47 if Bk = Bi,
INJ otherwise.
Observe that I N Jis not empty. Therefore, the subset / U J is a subalgebra. O

Remark 3.2. Let the notations be as in notation 3.1, I and J ideals with respect to
& and ¥, respectively. Then we have that d N # @ implies I NJ # @, since we have
that B(x,y) e InJ,forallxel,yeJ,andallBednVY.

Corollary 3.1.1. Let the notations be as in notation 3.1,and ®,¥ c Awith¥nd = @.
If subalgebras | and J are ideals with respect to A\ ® and A\ Y in A, respectively,
then the subset | U J is a subalgebra.

Proof. Obviously. O

Proposition 3.2. With the same hypotheses as in proposition 3.1, if {8;, Bj} # A then
the subalgebra | U J is an ideal with respect to A\ {Bi, Bi}.

Proof. By remark 3.1, we have that / and J are ideals with respect to A\ {;, B}, since

B N (B} = ({BIu {ﬂj]’)c. Hence we have that Bk € A\ {8, B} implies Bk(x,y) € 1UJ,
forevery x € IUJ,y € A. It follows that the subalgebra / U J is an ideal with respect

to A\ {B;, Bj}. o

Corollary 3.2.1. With the hypotheses of corollary 3.1.1, if ® U ¥ # A then the
subalgebra | U J is an ideal with respect to A\ (® U W¥).

Proof. Obviously. O

The two following propositions are just restatements of corollaries 3.1.1 and 3.2.1,
respectively.

Proposition 3.3. Let the notations be as in notation 3.1, | and J ideals with respect
tod c AandV¥ C Ain A, respectively. We have that the subset IUJ is a subalgebra
of Aifd UV = A

Proof. Let B € A, x,y € IUJ. Since | and J are subalgebras, and ® U ¥ = A. It suffices
to show that B(x,y) e lUJforall x € I,y € J,8 € A. By definition 3.1, we have that
B e dorBeV¥implies B(x,y) € I or B(x,y) € J, respectively, forall x € I,y € J. It follows
that /U J is a subalgebra. |

Proposition 3.4. Let the notations be as in proposition 3.3. If ® UY¥Y = A and
Y Nod # @, then the subalgebra | UJ is an ideal with respect to ¥ N &.

Proof. It is clear that B(x,a) e TUJforeveryx € Ajg € IUJ, andevery € ¥ N .
Hence the proposition is an immediate consequence of definition 3.1. O
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Remark 3.3. Let the notations be as in proposition 3.3. It is clear that the subset
Y Nd makes the subalgebra/NnJto be anideal if dNY # @. And the subalgebra/nJ
need not be an ideal with respectto PUVY if d # ¥, sincetheremaybex € A,y € INJ
such that B(x,y) € I but B(x,y) ¢ I nJ for some B € d\ VY.

Definition 3.2 (cf. [1,4,5]). Let the notations be as in notation 3.1, and ® C A. An
ideal M with respect to @ in A is said to be maximal if M # A and for every ideal N
with respect to d suchthat M c N C A, either M =Nor N = A.

Remark 3.4. Let the notations be asin notation 3.1, M a maximal ideal with respect
to ®@. The ideal M need not be maximal with respect to ¥ for ¥ C o.

Proposition 3.5. Let the notations be as in notation 3.1. Suppose that M is a
maximal ideal with respect to ® of the algebra A. For all ¥ with & C ¥, we have
that if M is an ideal with respect to ¥ then M is maximal with respect to Y. And
there is no an ideal N # A with respect to V¥ such that M Cc N, i.e, if ¥ makes N # A
to be an ideal, then we have M ¢ N, for all ¥ with ® C VY.

Proof. We assume that N # A is a maximal ideal with respect to ¥, and M ¢ N.
By remark 3.1, we have that N is an ideal with respect to ®. This is a contradiction.
Hence we have M = N or M ¢ N. Therefore, the proposition holds. O

Definition 3.3 (cf. [1-3]). Let the notations be as in notation 3.1, and ® C A. The
algebra A is local with respect to ® provided that A has a unigue maximal ideal
with respect to &.

Proposition 3.6. Let the notations be as in notation 3.1, and B; € A. Suppose that
A is local with respect to {Bj}, and M is the maximal ideal. For all B; € A, ifJ # Aisan
ideal with respect to {B;, Bj} then J € M.

Proof. Observe remark 3.1, we have that the subset {8} C {8, B} makes J to be an
ideal. Therefore, we have J C M. m]

Corollary 3.6.1. [et the notations be as in notation 3.1, and ® C A. Suppose that
A is local with respect to @, and M is the maximal ideal. For all subset ¥ c A with
o cV,ifd+ Aisanideal with respect toV¥,thenJ C M.

Proof. Obviously. O

Corollary 3.6.2. Let the notations be as in notation 3.1. Suppose that A is local
with respect to ®, and M is the maximal ideal. For all ¥ with @ C ¥ c A, we have
that if M is an ideal with respect to ¥ then the algebra A is local with respect to ¥
and M is the unique maximal ideal.

Proof. Thisisan immediate consequence of proposition 3.5 and corollary 3.6.1. O

Remark 3.5. For ¥ ¢ &, the algebra A defined in corollary 3.6.2 need not be local
with respect to ¥, since the ideal M need not be unique maximal with respect to V¥,
cf.remarks 3.1 and 3.4.
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Corollary 3.6.3. Let the notations be as in notation 3.1, ® # ¥ C A. Suppose that
A is local with respect to ® and ¥, M and N are the maximal ideals, respectively,
and MN N # @.IfJ # Ais an ideal with respect to © thenJ € M N N, for all © with
PUY COCA

Proof. By corollary 3.6.1, we have J € Mand J C N. It follows thatJ C M N N. O

Remark 3.6. The subalgebra MNN need not be an ideal, cf.remark 3.3. But we have
the two following corollaries which are consequences of corollaries 3.6.2 and 3.6.3.

Corollary 3.6.4. With the hypotheses of corollary 3.6.3, for all @ with PUY C © C A,
if©® makes M N N to be an ideal, then the algebra A is local with respect to ©.

Proof. For all ideal J with respect to ©, we have that J € M N N by corollary 3.6.3.
This suffices to prove that if ©® makes M N N to be an ideal, then M N N is a unique
maximal ideal with respect to © by corollary 3.6.2. Thus the algebra A is local with
respect to ©. O

Corollary 3.6.5. With the hypotheses of corollary 3.6.3, for all @ with dUY C © C A,
ifthe subset MNN = @, then there is no an ideal J with respect to © such that J # A.

Proof. Obviously. O

Proposition 3.7. Let the notations be as in notation 3.1, B an algebra of the
language A, and J an ideal with respect to ® C A in B. Suppose that f: A — B
is a homomorphism[definition 2.4]. We have that the inverse image f*(J) is an
ideal with respect to o.

Proof. Let | := f*(J). It is clear that / is a subalgebra of A. It suffices to prove that
B*(a,x) € .Foralla € I,x e Aand all B € &, we have that B8(f(a), f(x)) € Jimplies that
B*(a,x) € I, since we have B8(f(a), f(x)) = f(B*(a, x)). This completes the proof. o
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