Sur Deux Propriétés de la Représentation Plane UTM

Abdelmajid Ben Hadj Salem, Ingénieur Général Géographe

Abstract

In this note, we give the proof of one propriety of the UTM plane representation.

Résumé

Dans cette note, on donne une démonstration d'une propriété de la représentation plane UTM.

Mots clés

La représentation plane UTM, concavité des images par l'UTM des courbes coordonnées de l'ellipsoïde de révolution.

Sur Deux Propriétés de la Représentation Plane UTM

Abdelmajid Ben Hadj Salem, Ingénieur Général Géographe

1. La Représentation Plane UTM

La représentation plane UTM est une représentation:

- conforme,
- cylindrique,
- transverse,

d'un modèle ellipsoïdique (E, a, e) où a, e sont respectivement le demi-grand axe et la première excentricité de l'ellipsoïde de référence E.

Les équations de la représentation sont de la forme:

$$X = X(\varphi, \lambda) \tag{1}$$

$$Y = Y(\varphi, \lambda) \tag{2}$$

avec:

- φ : la latitude géodésique,

- λ : la longitude géodésique.

Posons:

$$\mathcal{L} = Logtg\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) - \frac{e}{2}Log\frac{1 + esin\varphi}{1 - esin\varphi} \tag{3}$$

la latitude isométrique, et:

$$z = \lambda + i\mathcal{L} \tag{4}$$

$$Z = X + iY \tag{5}$$

Dans ce cas:

$$Z = Z(z) \tag{6}$$

est une fonction analytique de z ou que Z est une fonction holomorphe de z soit:

$$\frac{\partial Z}{\partial \bar{z}} = 0 \tag{7}$$

Comme:

$$\frac{\partial}{\partial \bar{z}} = \frac{1}{2i} \left(\frac{\partial}{\partial \lambda} - i \frac{\partial}{\partial \mathcal{L}} \right) \tag{8}$$

Alors les fonctions X et Y vérifient:

$$\frac{\partial Z}{\partial \bar{z}} = \frac{1}{2i} \left(\frac{\partial (X + iY)}{\partial \lambda} - i \frac{\partial (X + iY)}{\partial \mathcal{L}} \right) = 0 \tag{9}$$

Soit:

$$\frac{\partial X}{\partial \lambda} + \frac{\partial Y}{\partial \mathcal{L}} = 0 \tag{10}$$

$$\frac{\partial Y}{\partial \lambda} - \frac{\partial X}{\partial f} = 0 \tag{11}$$

Les équations (10) et (11) représentent les équations de Cauchy - Riemann.

2. Sur Une Propriété de la représentation plane UTM

2.1. La Concavité des courbes images des courbes coordonnées φ = constante

Pour les courbes images des courbes coordonnées $\varphi = \varphi_0 = \text{constante}$, on a:

$$X = X(\lambda, \mathcal{L}_0) \tag{12}$$

$$Y = \mathcal{Y}(\lambda, \mathcal{L}_0) \tag{13}$$

La concavité de Y = Y(X) = f(X) est donnée par le signe de f''(X). Calculons alors f''(X):

$$f'(X) = \frac{dY}{dX} = \frac{\frac{\partial Y}{\partial \lambda}}{\frac{\partial X}{\partial \lambda}}$$
(14)

et:

$$f''(X) = \frac{d^2Y}{dX^2} = \frac{\partial \left(\frac{\partial Y}{\partial \lambda}\right)}{\partial \lambda} \cdot \frac{1}{\frac{\partial X}{\partial \lambda}}$$
(15)

Comme φ_0 est arbitraire, on peut faire abstraction de l'indice 0. On rappelle que:

$$X = N\cos\varphi\lambda + a_3(\varphi)\lambda^3 + \dots$$
 (16)

$$Y = \beta(\varphi) + \lambda^2 \frac{N\cos\varphi\sin\varphi}{2} + a_4(\varphi)\lambda^4 + \dots$$
 (17)

$$a_1(\varphi) = N\cos\varphi, \ a_2(\varphi) = \frac{N\cos\varphi\sin\varphi}{2}, \ a_1'(\varphi) = -\rho(\varphi)\sin\varphi$$
 (18)

avec:

$$N = N(\varphi) = \frac{a}{\sqrt{1 - e^2 \sin^2 \varphi}} \tag{19}$$

$$\beta(\varphi) = \int_0^{\varphi} \rho d\varphi \tag{20}$$

$$\rho = \rho(\varphi) = \frac{a(1 - e^2)}{(1 - e^2 \sin^2 \varphi)^{\frac{3}{2}}}$$
 (21)

et *e* la première excentricité de l'ellipsoïde de référence. On suppose que le méridien central de la représentation UTM est le méridien de longitude $\lambda_0 = 0^{\circ}$.

On a alors:

$$\frac{\partial Y}{\partial \lambda} = N\cos\varphi\sin\varphi\lambda + 4a_4(\varphi)\lambda^3 + \dots \tag{22}$$

$$\frac{\partial X}{\partial \lambda} = N\cos\varphi + 3a_3(\varphi)\lambda^2 + \dots \tag{23}$$

D'où:

$$U = \frac{\frac{\partial Y}{\partial \lambda}}{\frac{\partial X}{\partial \lambda}} = \frac{N\cos\varphi\sin\varphi\lambda + \dots}{N\cos\varphi + 3a_3(\varphi)\lambda^2 + \dots}$$
(24)

Calculons alors la dérivée partielle de U par rapport à λ :

$$\frac{\partial U}{\partial \lambda} = \frac{N cos\varphi sin\varphi + 12a_4(\varphi)\lambda^2 + \dots}{N cos\varphi + 3a_3(\varphi)\lambda^2 + \dots} - \frac{(6a_3(\varphi)\lambda + \dots)(N cos\varphi sin\varphi\lambda + \dots)}{(N cos\varphi + 3a_3(\varphi)\lambda^2 + \dots)^2}$$
(25)

L'équation (15) devient:

$$f''(X) = \frac{\partial U}{\partial \lambda} \cdot \frac{1}{\frac{\partial X}{\partial \lambda}}$$
 (26)

Pour $\varphi = constante$, la longitude λ varie, on calcule donc f''(X) au voisinage de $\lambda = 0$, ce qui donne:

$$(f''(X))_{\varphi,\lambda=0} = \left(\frac{Ncos\varphi sin\varphi}{Ncos\varphi} + 0\right) \cdot \frac{1}{Ncos\varphi} = \frac{sin\varphi}{Ncos\varphi}$$
 (27)

Si on se trouve à l'hémisphère nord ($\varphi > 0$), donc f''(X) > 0 et par suite:

Propriété 1. Les courbes images des courbes coordonnées $\varphi = constante > 0$ ont une concavité positive tournée vers le Nord (Fig. 1.).

On laisse à titre d'exercice le cas des courbes images $\lambda = constante$.

Abdelmajid Ben Hadj Salem, Ingénieur Général Géographe

Résidence Bousten 8, Mosquée Raoudha, Bloc B, 1181 La Soukra Raoudha, Tunisia, E-mail: abenhadjsalem@gmail.com

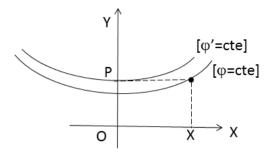


Figure 1 Les courbes images des courbes coordonnées $\varphi = constante > 0$.

5