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                                                                 Abstract 

In this paper, we have studied the weak Galerkin finite element method for the incompressible        

viscous Magneto-hydrodynamic(MHD) equations. 

A weak Galerkin finite element methods are based on new concept called discrete weak gradient,   

discrete weak divergence and discrete weak rotation, which are expected to play an important role in  

numerical methods for magneto-hydrodynamic equation. 

This article intends to provide a general framework for managing differential, divergence, rotation    

operators on generalized functions. With the proposed method, solving the magneto-hydrodynamic 

(MHD) equation is that the classical gradient, divergence, rotation operators are replaced by the          

discrete weak gradient, divergence, rotation and apply the Galerkin finite element method. It can be    

seen that the solution of the weak Galerkin finite element method is not only continuous function but  

also totally discontinuous function. For the proposed method, optimal order error estimates are            

established in various norms. 

Keywords: Weak Galerkin finite element method, Incompressible viscous magneto-hydrodynamic 

equations, Discrete weak gradient, Discrete weak divergence, Discrete weak rotation. 

 

1. Introduction 

Magneto-hydrodynamic(MHD) equations which have been widely used in industry and engineering, 

such as liquid metal cooling of nuclear reactors, process metallurgy, simulated aluminum electrolysis 

cells and so on are composed of Navier-Stokes equations of fluid dynamics and Maxwell’s equations 

of electromagnetism. 

These equations are concerned with the viscous, incompressible, electrically conducting fluid and 

an external magnetic field. 

In this paper, we consider the magneto-hydrodynamic equations 
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with the following initial condition and homogeneous Dirichlet boundary conditions 

                   xxx tt     BB   uu )(),( 0000                        (1.4) 

),0(),(0,0,0,0 Ttxc  nJ   nE    nB   u       (1.5) 

where )3,2(  nRn  is a bounded-closed, convex domain with Lipschitz-continuous boundary 

 , jEBu ,,,  are velocity, magnetic field, intensity of  electric field, electric current density, cJ   
1The corresponding author. Email: MH.Sin@star-co.net.kp  



 2 

is minor control possible electromotive force, p is hydrodynamic pressure, 
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  , ,  and the three parameter MRRe ,,   represent hydrodynamic Reynolds 

number, magnetic Reynolds number and Hartmann number. 

Because MHD equations have practical significance in many fields of science, technology and 

production, many researchers gave some research results for magneto-hydrodynamic. (see [1], [2], [7], [9])  

Some research results are given as follows:  

In [3–5], the mixed and stabilized FE methods were used to solve MHD equations.  

Additionally, Y. He ([8]) studied an unconditional convergence of the Euler semi-implicit scheme 

and G. Yuksel and R. Ingram ([6]) investigated a full discretization of Crank–Nicolson scheme for the 

non-stationary MHD equations with small magnetic Reynolds numbers.  

In [10], it was studied the design and analysis of some structure preserving finite element schemes 

for the magneto-hydrodynamics(MHD) system. 

X. Feng et al ([11]) have applied some Uzawa-type iterative algorithms to the steady 

incompressible magneto-hydrodynamic(MHD) equations discretized by mixed finite element method. 

In [12], it has focused on a fractional-step finite element method for the magneto-hydrodynamics 

problems in three-dimensional bounded domains.  

In [13], the convergence analyses of standard Galerkin finite element method and a new highly 

efficient two-step algorithm for the stationary incompressible magneto–hydrodynamic equations was 

studied. 

In [14], it was devoted to extension of boundary element method (BEM) for solving coupled 

equations in velocity and induced magnetic field for time dependent magneto-hydrodynamic (MHD) 

flows through a rectangular pipe.  

In [15], Y. Rong and Y. Hou have studied a partitioned scheme based on Gauge-Uzawa finite 

element method for the 2D time-dependent incompressible magneto-hydrodynamics(MHD) equations. 

In this paper, we are going to propose a formulation for the weak Galerkin finite element method 

for the magneto-hydrodynamic(MHD) equations (1.1) – (1.5).  

The weak Galerkin(WG) method was recently introduced in [16] for second-order elliptic problems 

based on local RT elements.  

It is an extension of the standard Galerkin finite element method where classical operators (e.g., 

gradient, divergence, and curl) are substituted by weakly defined operators.  

Then, in [17], the weak Galerkin method was extended to allow arbitrary shapes of finite elements 

in a partition by adding parameter free stabilizer, which enforces a certain weak continuity and 

provides a convenient flexibility in mesh generation.  

Through rigorous analysis, the optimal order of priori error estimates has been established for 

various weak Galerkin discretization schemes for second order elliptic equation in [16–18].  

And the possibility of an optimal combination of polynomial spaces that minimizes the number of 

unknowns has been explored in several numerical experiments in [19].  

On the base of the weak Galerkin mixed finite element methods, the weak Galerkin method for the 

Stokes equations was stated in [20]. 

In [28], it was considered the lowest-order weak Galerkin method for linear elasticity based on the 

displacement formulation. 

Moreover, because the weak Galerkin method inherits the advantages and abandons the weaknesses 

of a discontinuous Galerkin or discontinuous Petrov–Galerkin method, it has been developed to solve 

many equations. 

Thus, we refer to several papers for applications of the WG method to some other partial 

differential equations, such as, elliptic interface equations ([31]), Oseen equations ([21]), Helmholtz 

equations ([22, 23]), Darcy–Stokes equations ([24, 29, 30]), convection–diffusion–reaction equations 

([32]), Sobolev equation ([33]) and parabolic equations ([25–27]) etc. 

It is well known that the magneto-hydrodynamic equations involve a trilinear term, which changes 

the essence of all the problems considered so far (linear or nonlinear problems).  
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The goal of this article is to construct and analyze a stable weak Galerkin finite element method for 

the magneto-hydrodynamic equations (1.1) – (1.5) by using the definition of a weak trilinear term.  

This method allows the use of finite element partitions with arbitrary shapes of polygons or 

polyhedra with shape regularity and parameter free. 

An outline of this paper is as follows. In the next section, we introduce some notations for the 

magneto-hydrodynamic equations (1.1) – (1.5) and Sobolev spaces.  

In Section 3, the fundamental definitions and weak Galerkin finite element scheme for the magneto-

hydrodynamic equations are developed. 

   Then, in Section 4, we estimate the error of weak Galerkin finite element approximation solution for 

the incompressible viscous Magneto-hydrodynamic equations. 

In Section 5, we give numerical experiment to verify the studied theoretical analysis. Finally, 

conclusions are drawn in Section 6. 

 

2. Preliminary results and notations 

From the systems of equations (1.1), (1.2) 
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Therefore, we consider the following non-stationary incompressible magneto-hydrodynamic             

equations 
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),,0(),(0,0 Ttxdivdiv  B   u    (2.3) 

with the initial-boundary conditions 

  xxx tt     BB   uu )(),( 0000                       (2.4) 

),0(),(0,0,0,0 Ttxc  nJ   nE    nB   u      (2.5) 

We introduce the following notations of some norms and spaces:  

 dL )()( 22 L ,   dW )(1
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 )(),(),( 22  LvLvvH rot  
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  ,0,01

21 


uuWuV div  

  0,01

22 
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                0,, 22
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 1,,, Hvu      u)(u,u       xvuv)(u,   d  or 2H  

    1,][,),( Vvu,    uu,u  xvuv  uv][u,  


drotrotrotrot  or 2V  

VHHVVVVHHH  ,, 2121  

where 1,),(),( Vvuv  uv  u rotrot  and V H ,  are dual spaces of VH, . 
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We define the operators 
111 VV: A , 

222 VV: A , VV: A , VVV: G , 

VL: )(2F  following as:  
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     wBuvBBuuzyy rotrotrotG ,,),,( 12122121   

  ),(),( wJzJ rotF cc  , 

where  Buy , ,  111 , Buy  ,  222 , Buy  ,   Vwvz  , , )(2 LJ c  

For the operator VV: A , 
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For the operator VVV: G , representing ][),( yyy GG  , 

  0),( zzy,G ,        wBuvB,Bvu,uzy rotrotrotG ,],[  . 

By the Hölder’s inequality, we can know that norm satisfies 4

3

4

1

)(4 uuu
L




K . 

For operator VVV: G , the trilinear form  321 ),,( yyyG  satisfies 
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where 01 C  is a constant independent of  , eR , R .([34]) 

The weak formulation of problem (2.1)-(2.5) can be written a variation forms as follows  

                                      ),,0(),()],[(),(),( TtFGA c  V,zzJzyzyzy          (2.8) 

                                    V,zy  y  0)0(                              (2.9) 

where  Buy ,  is called a weak solution if ),0(2
V;y TL  and ),0(2

V;y  TL  are the          

solutions of equations (2.8)-(2.9). 
Next, we will introduce the weak gradient operator, weak divergence operator and newly weak        

rotation operator defined on a space of generalized functions.  

To explain weak gradient, weak divergence and weak rotation, let K  be any polygonal domain      

with interior 
0K  and boundary K . 

A weak function on the region K  refers to a function  bvvv ,0  such that )(2
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Hv ,where the first component 0v  can be understood as the value of v  in     t

he interior of  K   and the second component bv  is the value of v  on the boundary of K . 

Denote by )(KW  the space of weak functions associated with K  ; i.e., 
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The dual of )(2 KL  can be identified with itself by using the standard 
2L  inner product as the  

action of linear functional.  
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Definition 1.([16]) For any )(KWv ,  the weak gradient of v  is defined as a linear function vw

 in the dual space of ),( KdivH  whose action on each ),( KdivHq  is given by  

KbKKw  nqvqvqv ,),(),( 0 ,                                       

where n  is the outward normal direction to K . 

The discrete weak gradient operator denoted by Krw ,,  is defined as the unique polynomial 

dd

rKrw KP  )]([,, v  satisfying the following equation: 

dd

rKbKKKrw KPdiv 

  )]([,),(),( 0,, w,nwvwvwv               (2.11) 

Definition 2.([16]). For any )(KWv , the weak divergence of v  is defined as a linear function 

vwdiv  in the dual space of )(1

2 KW  whose action on each )(1

2 KWq  is given by    

KbKKw qqqdiv  n,vvv, ),()( 0  , 

where n  is the outward normal direction to K . 

The discrete weak divergence operator denoted by Krwdiv ,,  is defined as the unique polynomial  

)(,, KPdiv rKrw v   satisfying the following equation: 

)(,,),()( 0 KPqqqqdiv rKbKKw,r,K  nvvv,                          (2.12) 

Then we introduce the definition of a weak rotation operator. 

  Definition 3.  For any )(KWv , the weak rotation of v  is defined as a linear function vwrot  in 

the dual space of ),( KrotH  whose action on each ),( KrotHq  is given by    

KbKKw rotrot  qn,vqvqv, ),()( 0  , 

where n  is the outward normal direction to K . 

The discrete weak rotation operator denoted by Krwrot ,,  is defined as the unique polynomial  

d

rKrw KProt )]([,,    satisfying the following equation: 

d

rKbKKw,r,K KProtrot )]([,,),()( 0   qqnvqvq,                               (2.13) 

 

3. Weak Galerkin finite element method (WGFEM) 

In this section, we design a continuous time and discontinuous time WGFEM for the problem 

(2.8)-(2.9).  

Let hK  be a regular, quasi-uniform partition of the domain Ω  and hKK   be any polygonal           

domain with interior 
0K  and boundary K ,where the mesh size Khh max , Kh is the diameter of    

element K .  

Then, we can introduce the discrete weak Galerkin finite element spaces on a given mesh: for the     

velocity variable, 
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In the further, we shall drop the subscript r  and K  to simplify the notations for the discrete weak  

gradient, divergence and rotation operators. 
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To investigate the approximation properties of the discrete weak Galerkin finite element spaces h1V  

and h2V , we use three projection operators: },{ 0 vvv bh QQQ   is 2L  projection operator from 1

2W  

onto h1V  or h2V , vRh  is 2L  projection operator onto    dd

i KP


, vhR  is 2L  projection operator onto 

 KPi  and vh  is 2L  projection operator from ),( divH  onto ),( divH , 
d

ih KP )]([ v       

satisfies   

                  )(),(),( 000 KPvvdivvdiv iKhK  vv                                       (3.1) 

For 
21},{ VVVBuy  , we set },{ Buy hhh QQQ  , },{ BRuRyR hhh  , },{ Buy hhh RRR   and 

},{ Buy hhh  . 

The 2L  projection operators hQ , hR  and hR  satisfy the following properties. 

Lemma 3.1. For any 
21},{ VVVBuy  , The 2L  projection operators hQ , hR  and hR  satisfy  

                                       )( yRy  hhwQ ,  )( yy divRQdiv hhw  , )( yRy rotQrot hhw                  (3.2) 

                                        ,,0
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h KKisChQ  yyy                                                 (3.3) 
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  Proof. From Definition 1, 
2L  projection operator yhQ  and Green’s formula, we have  

                         dd
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b
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Since 0Q  and bQ  are 
2L -projection operator, then the right-hand side of (3.5) is given by 

      
 K

h

KKKK

b

K
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      This shows that )( yRy  hhwQ  holds.  

Similarly, from Definition 2, we can derive )( yy divRQdiv hhw  and )( yy rotRQrot hhw  . 

Also, it implies approximation property (3.3) and estimate (3.4). 

Lemma 3.2.  For any      H H ,, divdivq , 

    0
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           (3.6) 

Proof.  From 
2L  projection h  and Definition 1, 
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The weak Galerkin finite element method is to replace the classical gradient and rotation operators by 

the weak gradient operator w  and weak rotation operator wrot  and  to use the discrete weak finite   

element space 
0

2

0

1 hh VV  . 

First, we introduce the semi-discrete WG finite element method.  

The semi-discrete WG finite element method of (2.8) – (2.9) is to find 
0

2

0

1),( hhh tx VVy  ,              

satisfying 0u h

b  and 0nB h

b  on ],0[, Tt  for },{ h

b

h

b

h

bbQ Buyy  , 0)0,( yy hh Qx   in      

and the following equation 
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2

0
100 TtFGA hhchhh  ,VVzzJzyzyzy                            (3.7) 

where  zy,A  and )],[( zyG  are respectively the weak bilinear and trilinear form defined by 
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     wBuvBBuuzy wwww rotrotrotG ,,],[   

and  0),( zJcF  is defined by   ),(),( 00 wJzJ wcc rotF  . 

For the equation (3.7), we can get the following splitting equation, respectively: 
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
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rotrot
t





     (3.8) 

where 

   



hKK

Kwwww vuvu ,, ,    



hKK

Kwwww rotrotrotrot wBwB ,, ,    



hKK

Kww rotrot vuvu ,, . 

Next, we turn our attention to the full discrete WG finite element method. 

Let   be the time step size and ntn  , where n  is a nonnegative integer. 

We denote by 
n

hnh t yy )(  the approximation of )( nty . 

Writing the full discrete WG finite element scheme for equation (2.8) – (2.9),  

 

0

0

0

2

0

100 ,),()],[(),(),(

yy          

,VVzzJzyzyzy

hh

hhc

n

hw

n

h

n

ht

Q

FGA




                    (3.9) 

where 


k

h

k

hk

ht

yy
y




1

 or 


1


k

h

k

hk

ht

yy
y . 

For the equation (3.9), we can get the following splitting equation, respectively: 

     

     

0

0

0

0

00

1

0

1

,

,,,,

,,,

BBuu

wJwBuwBw
BB

0vBBvuuvuv,
uu

hhhh

wcw

n

h

n

hw

n

hw

n

h

n

h

n

h

n

hw

n

h

n

hww

n

hw

n

h

n

h

QQ

rotrotrotrot

rotrot



























 













 











      (3.10) 

or 

     

     

0

0

0

0

00

1

0

1

,

,,,,

,,,

BBuu

wJwBuwBw
BB

0vBBvuuvuv,
uu

hhhh

wcw

n

h

n

hw

n

hw

n

h

n

h

n

h

n

hw

n

h

n

hww

n

hw

n

h

n

h

QQ

rotrotrotrot

rotrot



























 













 











     (3.11) 

This approximate solutions 
k

hu  and 
k

hB  are called the approximate solutions of the full discrete WG  

finite element method for the equations (2.8) – (2.9). 
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Remark 1. In this article, we haven`t indicated for the hydrodynamic pressure ),( txpp  , because 

we can find easily the hydrodynamic pressure ),( txpp   from the equation (2.1) if we have found    

out the approximate solutions k

hu  and k

hB  in the equation (3.8) or (3.10). 

 

4. Error analysis of approximate solution 

In this section, we derive some error estimates for semi-discrete and full discrete WG finite element 

methods. 

   By means of projections hQ  and hR , we can derive the following approximation property. 

  Lemma 4.1. For   s1
HB u,  with 0s , we have respectively 

   
s

s

hwh chQ



1

uuu ,    
s

s

hwh chQrotrot



1

BBB                  (4.1) 

 
s

s

hw chQ



1

uuu ,  
s

s

hw chQrotrot



1

BBB                           (4.2) 

Proof.  Since from (3.2) we have )( uRu  hhwQ  and )( BRB  hhwQ , then 

     uRuuu  hhhwh Q )(  

Using the triangle inequality and the definition of h , we have    

s

s

s

s

s

s

hhhh

chhchc






 



11

1

21

1

1

)()()()(

uuu

uRuuuuRu
 

Similarly, we can derive    
s

s

hwh chQrotrot



1

BBB . 

The estimate (4.2) can be derived in a similar way. This completes a proof of the lemma. 

Next, we shall prove the following estimate for the error of the semi-discrete solution. 

Next, we introduce following lemma. ([26]) 

Lemma 4.2. Assume that 
0

2

0

10 },{}{ hhb VVyyBu,y  }),{},,{( 000 bbb BuyBuy  , then 

there exist a constant C  such that  

yy wrotC                                                                     (4.3) 

where hhw 21 VVy  . 

Theorem 4.3. Let   s1Hy  and hy  be the solutions of equations (2.8)-(2.9) and (3.7), 

respectively. Then, there exists a constant c~  such that 

     


t

s

s

hh dthctQt
0

1

22 ~ yyy                             (4.4) 

where },{)()},(),({)( BuyBuy hhhhhh QQtQttt  . 

Proof. Let    0

2

0

10 , hhb VVz zz   be the testing function. 

For   sH 1
y , we know that    yRy rotQrot hhw  , ),(),( 00 z yz y  hQ  and ),(),( 00 z yz y hQ . 

For   sH 1
y , we obtain  

    


z yyz yz yz J ),,(),(),(),( 00 w

KK

Kc GAF
h

  
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    z yyz yz y ),,(),(),( 0 wwh Grotrot            

     .),,(),()(),(),( 0 z y yz yRyz yz y hhwwhhwhwh QQGrotrotrotQrotQ    

Also, as the solution hy  of equation (3.7), we have 

        z yyz  yz yz J ),,(,,, 00 hhwwhwhc GrotrotF    

Combining the above two equations, we get 

   

     z y yz y yz  yRy           

z yyz  yy

),,(),,(),()(

),(, 0

hhwhhwwhh

whhwhh

GQQGrotrot

rotQrotQ



 
   (4.5) 

Now, Denote by yye hhh Q:  the difference between the weak Galekin approximation and the 
2L  projection of the exact solution y .  

Substituting he  for z  in (4.4) and using the Cauchy-Schwarz inequality, we obtain 

      hhhwhwhhhwhwhh QQGrotrotrotrotrot e ,y ye yRye ee e ),(),()(,),( 0
  

      hhhwhhhwhhhw GQGQG e ,y ye ,y ye ,y y ),(),(),(  

    hhhwhwhh QGrotrotrot e ,y ee yRy ),(),()(  

 4

1

4

3

4

1

4

3

)()( hhhhhhwhh Qcrotrotrot eeyeeeyRy

                                                         yeeeyRy hhhhwhh Qcrotrotrot 2

1

2

3

)()(  

                                       yeeeyRy 2

1

2

3

)()( hhwhwhh rotcrotrotrot  

                                               
2

1

222

4

1

4

3

4

1
)()( eeeyRy crotrotrotrot hwhwhh  

                    
2

2

22
)()( hhwhh crotrotrot eeyRy   

Therefore, we have 

2

2

2222
)()(

2

1
hhwhhhwh crotrotrotrot

dt

d
eeyRyee  . 

We obtain by Lemma 4.1 

2

1

22

2

2

2

1



s

s

hh hcc
dt

d
yee .                                         (4.6)   

Thus, integrating with respect to t  and from   00, e , we arrive at 

 


t

h

t

s

s

h dtcdthc
0

2

2

0

2

1

22
22 eye                                   (4.7)  

By Gronwall’s inequality 

   


t

s

sct

h dthcc
0

2

1

22
2 yee                                                       (4.8) 

That is, 

 


t

s

s

h dthc
0

2

1

22 ~ ye  

The proof is completed. 

Now, we shall derive an error estimate for the full discrete WG approximation. 
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Theorem 4.4. Let   s1Hy  and n

hy  be the solutions of equations (2.8)-(2.9) and (3.10), 

respectively. Denote by )(: nh

n

h

n tQ yye   the difference between the full discrete WG 

approximation and the 2L  projection of the exact solution y . 

Then, there exists a constant C  such that 

 
)0(

0

2

2

2
22

1

2
2

0

1

22



















  



nds
t

s
hCrot

nt

r

r
n

i

i

w

n          
y

yeee            (4.9) 

where },{)()},(),({)( BuyBuyy hhnhnhnhnh

n

h QQtQttt  . 

Proof.  From the equations (2.8) and (3.9), 

  00 ),(),,(),(),( zFGA cJzyyzyzy                      (4.10) 

   00

1

),(,,),(, zFGA c

n

h

n

hw

n

h

n

h

n

h Jzyyzyz
yy













  


          (4.11) 

Subtracting the equation (4.10) from the equation (4.11) 

   zyyzyyzyzyzy
yy

,,),(),()),((),(),( 0

1
n

h

n

hwnnn

n

hn

n

h

n

h GttGtAAt 














 




  (4.12) 

Writing the equation (4.12) similarly with the equation (4.5), 

     zyyzyyz yRy                                    

zyzyzy
yy

z
yyyy

,,),(),()),(())((

)),((),(),(
)()(

,
)()(

0

1

0

1

1

n

h

n

hwnnwnhnh

n

n

hn

nhnhnhnh

n

h

n

h

GttGrottrottrot

tAAt
tQtQtQtQ



























 


 




   

Rewriting the above equation, 

     zyyzyz yRyzy

zyzy
yy

z
yyyy

,,),y(),()),(())(()),((

),(),(
)()(

,
)()(

0

1

0

1

1

n

h

n

hwnnwnhnhnh

n

hnh

nhnhnhnh

n

h

n

h

GttGrottrottrottQA

At
tQtQtQtQ



























 


 




  

Taking account of )( nh

n

h

n tQ yye  , we obtain  

 

   zyyzyy                                   

z yRyz
yy

yzez
ee

,,),(),(

)),(())((,
)()(

)(),(, 0

1

0

1

n

h

n

hwnn

wnhnh

nn

nh

n
nn

GttG

rottrottrot
tt

tA










 








  





 

Also, let 


)()(
)( 1

1


 nn
n

n tt
t

yy
yw  ,    )()(2 nhnh

n trottrot yRyw   and choosing the 
nez  , 

          nn

h

n

hw

n

nn

n

w

nnnnnn
nn

GttGrotA eyyeyye weweee
ee

,,),(),(),(),(),(, 21

1








  


 

Therefore, we have  

        nn

h

n

hw

n

nhnh

n

w

nnnn

w

nnn GtQtQGrot eyye yyeweweeee ,,),(),(),( 21

2
1

2

  

            n

nh

nn

w

nnn tQG e yeewew ),(,21   

                     4

1

4

3

4

1

4

3

21 )( nn

nh

nnn

w

nnn tQc eeyeeewew   . 
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Then, 

    )(),( 2

1

2

3

21

1
22

n

nnn

w

nnnnnn

w

n tcrot yeeeweweeee     

By the boundedness of y  and the Poincare` inequality, it follows 

      n

w

nnnnn

w

n rotcrot ewweeee  

121

22
1

22

2

1

2

1
 . 

Consequently, 

  22

121

2
1

22

222

1

2

1 n

w

nnnn

w

n rotcrot ewweee


   . 

That is, 






   2

1

2

2

2

1
2

2
1

22

22

1

22

1
c

c
rot nnnn

w

n
wweee


 

By repeated application, 









 



2

1

1

2

2

1

2

12

2
0

22

2
ccrot

n

i

i
n

i

in

w

n
wweee 


        (4.13) 

By Lemma 4.1 and    yyR hwh Qrotrot  , 

132 )(



si

si thc yw . 

From   dt
t

t
tttt

t

t i

i

t

t

iii
ii












 

1

2

2

111

)(
)()()(

)( y
yy

y
w  , 

dt
t

t
tt

i

i

t

t

i

i







 

1

2

2

11

)(
)(

1 y
w


                       (4.14)   

Thus, 















































   











ddt
t

t
dtttdds

t

t
tt

i

i

i

i

i

i

t

t

t

t

i

t

t

i

i

111

2

2

2
2

12

2

2

2

1

2

1

)(
)(

1)(
)(

1 yy
w


 









i

i

t

t

dt
t

t
c

1

2

2

2

4

)(y
                        (4.15) 

Then by substituting (4.15) into (4.13), we have 

 0
)(

0

2

2

2
22

1

2
2

0

1

22



















  



nds
t

t
hCrot

nt

r

r
n

i

i

w

n               
y

yeee   

The proof is completed. 

    

5. Numerical experiment 

In this section, we present the results of numerical experiment. We carry out benchmark test in 2D.  

We consider a simple problem for the incompressible viscous MHD equations with known 

analytical solution in 2D.  

We choose ]1,0[]1,0[   and time interval ]1,0[I  with computational domain.  
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Also we assume that problem (2.1)-(2.5) has an analytic solution, which is given by 

Ttt yxeyxe )2sin2cos,2cos2sin(   u , Ttt xeye )2sin,2sin(  B  , 

By simple computation, we use the parameters 1,
4

1
,

8

1
22

 a





   in the tests.   

We choose uniform triangular mesh and let )128,64,32,16,8(1  NNh  be mesh sizes for 

triangular meshes. 

Let u  and hu  be the exact velocity and the WG finite element approximation, B  and hB  be the 

exact magnetic field and the WG finite element approximation. 

In the test, h  and 
2h  are used to check the order of convergence with respect to time step 

size   and mesh size h . 

The results are shown in Tables I and II. 

 
Table I 

                        Result of WG finite element method with 1,41,81 22  a 
 and h . 

h1         )( n

huu            
n

huu          )n

hB(B             
n

hBB   

   8           1.054e-2           1.32e-3           3.78e-1              4.16e-3 

  16           3.42e-3            2.64e-4           6.15e-1              3.58e-4 

  32           2.609e-3          5.41e-4           2.79e-2              5.17e-4 

  64           4.27e-4            3.92e-5            4.38e-3             3.26e-5 

 128           8.11e-4            4.59e-6           7.43e-4             2.91e-5 

 
Table II 

                        Result of WG finite element method  with 1,41,81 22  a 
 and 2h . 

h1         )( n

huu            
n

huu          )n

hB(B             
n

hBB   

  8            2.37e-3               1.74e-5          4.05e-2              2.95e-4 

  16          6.27e-4               3.89e-6          2.71e-2               5.38e-5 

  32          3.19e-4               7.15e-6          3.83e-3               4.79e-5 

  64          4.08e-5               2.57e-6          1.82e-4               7.48e-6 

 128         3.93e-5                5.29e-7          2.36e-5              6.83e-6 

                       

From these results, we can know that WG finite element method is advisable and efficient. 
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Remark 2. For the above exact solutions u  and B , we know that hydrodynamic pressure p  and 

minor control possible electromotive force cJ  are )2cos2cos2cos2(cos 222 yxyxep t    , 

)2sin2cos2cos2(sin 222 yxyxe t

c   
J , respectively. 

 

6. Conclusion 

In this paper, we have formulated the weak Galerkin finite element scheme for the incompressible 

viscous magneto-hydrodynamic equations on arbitrary polygons or polyhedra with certain shape 

regularity. 

Also, we have estimated the error of the semi-discrete and full-discrete approximate solutions by 

the weak Galerkin finite element method for the incompressible viscous Magneto-hydrodynamic 

equations. 

In future work, we will develop for more general problems. 
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