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Abstract

In this paper, we have studied the weak Galerkin finite element method for the incompressible
viscous Magneto-hydrodynamic(MHD) equations.

A weak Galerkin finite element methods are based on new concept called discrete weak gradient,
discrete weak divergence and discrete weak rotation, which are expected to play an important role in
numerical methods for magneto-hydrodynamic equation.

This article intends to provide a general framework for managing differential, divergence, rotation
operators on generalized functions. With the proposed method, solving the magneto-hydrodynamic
(MHD) equation is that the classical gradient, divergence, rotation operators are replaced by the
discrete weak gradient, divergence, rotation and apply the Galerkin finite element method. It can be
seen that the solution of the weak Galerkin finite element method is not only continuous function but
also totally discontinuous function. For the proposed method, optimal order error estimates are
established in various norms.

Keywords: Weak Galerkin finite element method, Incompressible viscous magneto-hydrodynamic
equations, Discrete weak gradient, Discrete weak divergence, Discrete weak rotation.

1. Introduction

Magneto-hydrodynamic(MHD) equations which have been widely used in industry and engineering,
such as liquid metal cooling of nuclear reactors, process metallurgy, simulated aluminum electrolysis
cells and so on are composed of Navier-Stokes equations of fluid dynamics and Maxwell’s equations
of electromagnetism.

These equations are concerned with the viscous, incompressible, electrically conducting fluid and
an external magnetic field.

In this paper, we consider the magneto-hydrodynamic equations

aat—u—;/Au+(uV)u+Vp:a-rotB><B, xeQ, te(0T) (1.1)
a—B+rotE:O, j:rotB:i(E+uxB+Jc) (1.2)
ot H
divu=0, divB=0 (1.3)
with the following initial condition and homogeneous Dirichlet boundary conditions
u|t:0 = U, (), B| o = Bo(X) XeQ (1.4)

u=0, B-n=0, Exn=0, J,xn=0 (x,t)eoQx(0,T) (1.5
where Q<= R" (n=2,3) is a bounded-closed, convex domain with Lipschitz-continuous boundary

oQ, u, B, E, j are velocity, magnetic field, intensity of electric field, electric current density, J,
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is minor control possible electromotive  force, p is hydrodynamic  pressure,

1 1 M ?
y=—,y,=—, a= and the three parameter R,, R,
R, a R, R.R, *
number, magnetic Reynolds number and Hartmann number.

Because MHD equations have practical significance in many fields of science, technology and
production, many researchers gave some research results for magneto-hydrodynamic. (see[1], [2], [7], [9])

Some research results are given as follows:

In [3-5], the mixed and stabilized FE methods were used to solve MHD equations.

Additionally, Y. He ([8]) studied an unconditional convergence of the Euler semi-implicit scheme
and G. Yuksel and R. Ingram ([6]) investigated a full discretization of Crank—Nicolson scheme for the
non-stationary MHD equations with small magnetic Reynolds numbers.

In [10], it was studied the design and analysis of some structure preserving finite element schemes
for the magneto-hydrodynamics(MHD) system.

X. Feng et al ([11]) have applied some Uzawa-type iterative algorithms to the steady
incompressible magneto-hydrodynamic(MHD) equations discretized by mixed finite element method.

In [12], it has focused on a fractional-step finite element method for the magneto-hydrodynamics
problems in three-dimensional bounded domains.

In [13], the convergence analyses of standard Galerkin finite element method and a new highly
efficient two-step algorithm for the stationary incompressible magneto—hydrodynamic equations was
studied.

In [14], it was devoted to extension of boundary element method (BEM) for solving coupled
equations in velocity and induced magnetic field for time dependent magneto-hydrodynamic (MHD)
flows through a rectangular pipe.

In [15], Y. Rong and Y. Hou have studied a partitioned scheme based on Gauge-Uzawa finite
element method for the 2D time-dependent incompressible magneto-hydrodynamics(MHD) equations.

In this paper, we are going to propose a formulation for the weak Galerkin finite element method
for the magneto-hydrodynamic(MHD) equations (1.1) — (1.5).

The weak Galerkin(WG) method was recently introduced in [16] for second-order elliptic problems
based on local RT elements.

It is an extension of the standard Galerkin finite element method where classical operators (e.g.,
gradient, divergence, and curl) are substituted by weakly defined operators.

Then, in [17], the weak Galerkin method was extended to allow arbitrary shapes of finite elements
in a partition by adding parameter free stabilizer, which enforces a certain weak continuity and
provides a convenient flexibility in mesh generation.

Through rigorous analysis, the optimal order of priori error estimates has been established for
various weak Galerkin discretization schemes for second order elliptic equation in [16-18].

And the possibility of an optimal combination of polynomial spaces that minimizes the number of
unknowns has been explored in several numerical experiments in [19].

On the base of the weak Galerkin mixed finite element methods, the weak Galerkin method for the
Stokes equations was stated in [20].

In [28], it was considered the lowest-order weak Galerkin method for linear elasticity based on the
displacement formulation.

Moreover, because the weak Galerkin method inherits the advantages and abandons the weaknesses
of a discontinuous Galerkin or discontinuous Petrov—Galerkin method, it has been developed to solve
many equations.

Thus, we refer to several papers for applications of the WG method to some other partial
differential equations, such as, elliptic interface equations ([31]), Oseen equations ([21]), Helmholtz
equations ([22, 23]), Darcy-Stokes equations ([24, 29, 30]), convection—diffusion—reaction equations
([32]), Sobolev equation ([33]) and parabolic equations ([25-27]) etc.

It is well known that the magneto-hydrodynamic equations involve a trilinear term, which changes
the essence of all the problems considered so far (linear or nonlinear problems).

M represent hydrodynamic Reynolds



The goal of this article is to construct and analyze a stable weak Galerkin finite element method for
the magneto-hydrodynamic equations (1.1) — (1.5) by using the definition of a weak trilinear term.

This method allows the use of finite element partitions with arbitrary shapes of polygons or
polyhedra with shape regularity and parameter free.

An outline of this paper is as follows. In the next section, we introduce some notations for the

magneto-hydrodynamic equations (1.1) — (1.5) and Sobolev spaces.
In Section 3, the fundamental definitions and weak Galerkin finite element scheme for the magneto-

hydrodynamic equations are developed.
Then, in Section 4, we estimate the error of weak Galerkin finite element approximation solution for

the incompressible viscous Magneto-hydrodynamic equations.
In Section 5, we give numerical experiment to verify the studied theoretical analysis. Finally,

conclusions are drawn in Section 6.

2. Preliminary results and notations

From the systems of equations (1.1), (1.2)
%u—y-Au+(u-V)u+Vp—a-rotB><B =0

Z—?ﬂ/ﬂ -rot - rotB —rot(uxB) = rotJ,
divu=0, divB=0
Therefore, we consider the following non-stationary incompressible magneto-hydrodynamic
equations

%u—y-Au+rotu><u—a-rotB><B+V(p+%|u|2):0 (x,t) e Qx(0,T), (21)
%3+ y Yot - rotB — rot(u x B) = rotJ, (xt)eQx(0,T), (2.2)

divu=0, divB=0 (x,1)eQx(0,T), (2.3
with the initial-boundary conditions
u|t:0 = U, (), B| 0 = Bo(X) XeQ (2.4)
u=0, B-n=0, Exn=0, J,xn=0 (x,t)edQx(0,T) (2.5
We introduce the following notations of some norms and spaces:
L2©) =[], wi=w@[. =23
H(div, Q) = M v e L*(Q), V- v e L2 (Q)
H(rot, @) = {v| v e L2(Q), VxV e L*(Q)}
H, =H, = {W = LZ(QX divw =0, w-n|_| :0}
V, = {u e WZl(Q)i divu=0, u| = 0},
V, = BeWHQ) divB=0, B-n|,, =0
V, = H,(rot, Q)= {u e () rotue (@), uxnl,, 0}

(u, v):IQu-vdx, lul=+u W, VuveH, orH,

[u, v] = (rotu, rotv) = j rotu-rotvdx, [u/=4[u, u], Vu, veV, orV,
Q

H=H,xH,, V=V, xV,, VcH=HcV'
where (rotu, rotv) =(Vu, Vv) Vu,veV, and H', V' are dual spaces of H, V.



We define the operators A :V,—>V,, A:V,->V,, A:V->V , G:VxV->V',
F: L*(Q) — V'’ following as:
(A, z)=7(Au, v)+7,(AB, w)=a,(u, v) +a,(B, w)
a,(u, v) = »(Vu, vv)
a,(B, w) =y, (rotB, rotw)
(G(y,, Y,), z)=(rotu, xu, —rotB, xB,, v)—(u, xB,, rotw)
(F@3,),z)=(@J,, rotw),
where y ={u,B},y, ={u,,B,},y, ={u,,B,}, z={v,w}leV,J e L*(Q)
For the operator A:V —V’,
(Ay,y)> a|y|2, a = min {7/, 7ﬂ}
(Ay,z)=(y, Az), Vy,zeV
For the operator G : VxV — V', representing G(y, y) = G[y],
(G(y, 2), 2)=0, (G[y], z)=(rotuxu, v)—(rotBx B, v)—(uxB, rotw).
1 3
L4 () < K”u”Z -|u|Z,

For operator G : VxV — V', the trilinear form (G(yl, Y,) y3) satisfies

By the Holder’s inequality, we can know that norm satisfies |u

3 1 3 1
Gy ¥2), Ya)SCuvale Iyl - Ival - Iyal* - Iysl* ¥i.Ya.ys €V, (2.6)

1 1
(G(y11y2)1 )/3)S C1|y1|'|y2|E '”AY2||E '”ys”’ y,eV,y, e D(A), y;€H, (2.7)
where C, >0 is a constant independent of Q,R_, R, ([34])

The weak formulation of problem (2.1)-(2.5) can be written a variation forms as follows
v, 2)+(Ay, 2)+(Glyl, 2) =(FJ,),2) VvzeV, vte(0,T), (2.8)
y(0) =Y, vzeV, (2.9)
where y= {u, B} is called a weak solution if yel?(0,T;V) and yel?(0,T;V') are the
solutions of equations (2.8)-(2.9).
Next, we will introduce the weak gradient operator, weak divergence operator and newly weak

rotation operator defined on a space of generalized functions.
To explain weak gradient, weak divergence and weak rotation, let K be any polygonal domain

with interior K° and boundary &K .
A weak function on the region K refers to a function v ={v,, v, } such that v, e L?(K) and

1 1 d
v, e H2(0K) = {H 2 (8K)} ,where the first component v, can be understood as the value of v in t

he interior of K and the second component v, is the value of v on the boundary of K.
Denote by W(K) the space of weak functions associated with K ; i.e.,

W(K) :{v: Vo V| Vo elL*(K), v, € H;(aK)} (2.10)

The dual of L?(K) can be identified with itself by using the standard L* inner product as the
action of linear functional.



Definition 1.([16]) For any v e W(K), the weak gradient of v is defined as a linear function V v
in the dual space of H(div, K) whose action on each q € H(div, K) is given by
(VWV7 Q)K :_(Vo’ V'Q)K"' <V, QN >4,
where n is the outward normal direction to oK .
The discrete weak gradient operator denoted by V. is defined as the unique polynomial

V... «Ve[P (K™ satisfying the following equation:
(Ve Vs W) =—(Vg, divw), + <V, w-n>,, vYwe[P, (K)]* (2.11)
Definition 2.([16]). For any v € W(K), the weak divergence of v is defined as a linear function
div,,v in the dual space of W, (K) whose action on each q e W, (K) is given by

(dinV' q)K = _(Vo’ vq)K+ <V Q>4 ,

w,r,K

where n is the outward normal direction to oK .
The discrete weak divergence operator denoted by div,, . is defined as the unique polynomial
div,, (Vv e P, (K) satisfying the following equation:
Ay -V, ) =—(Vo, VA) + <V, N, 0 >4, VG e P (K) (2.12)

Then we introduce the definition of a weak rotation operator.
Definition 3. For any v e W(K), the weak rotation of v is defined as a linear function rot,Vv in

the dual space of H(rot, K) whose action on each q € H(rot, K) is given by
(rot, v, Q) =(V,, rotq) —<v, xn, >4 ,
where n is the outward normal direction to oK .
The discrete weak rotation operator denoted by rot, . is defined as the unique polynomial
rot,,, « €[P.(K)]* satisfying the following equation:
(rot,, i, )i = (Vo, 10WA) =<V, XN, G >4, VO [P, (K)]° (2.13)

3. Weak Galerkin finite element method (WGFEM)
In this section, we design a continuous time and discontinuous time WGFEM for the problem

(2.8)-(2.9).
Let K, be a regular, quasi-uniform partition of the domain Q and K € K, be any polygonal

domain with interior K° and boundary 6K ,where the mesh size h =max h,, h, is the diameter of

element K.
Then, we can introduce the discrete weak Galerkin finite element spaces on a given mesh: for the

velocity variable,
Vi =y =, ull ul] e[R K1 U] e[P(K)) forall K eK,}
and denote Vy, = %Jh ={ug, uiY u, eV, ug‘amm = 0}; for the magnetic field variable,
Vo = (B, = (8, BY) B e[R(K)I',B}| <[P, (K forall KeK,}

and denote VJ = {Bh ={B{, BL‘}{ B,eV,, Bl-n

Ko O}'

Moreover, we denote y, ={yp,yr} by yo ={ug, B}, yi ={u!,B/}.

In the further, we shall drop the subscript r and K to simplify the notations for the discrete weak
gradient, divergence and rotation operators.




To investigate the approximation properties of the discrete weak Galerkin finite element spaces V,,
and V,,, we use three projection operators: Q,v ={Q,V, Q,Vv} is L* projection operator from W,
onto V,, or V,,, R,V is L* projection operator onto [P, (K)]"*, R,v is L* projection operator onto
P(K) and II,v is L? projection operator from H(div, Q) onto H(div,Q) , IT,ve[P (K)]"

satisfies
(divv, vy) = (divIT, Vv, v,), vV, € P.(K) (3.1)
For y={u,B}eV=V,xV,, we set Qy={Qu Q,B}, R,y={R,u,R,B}, Ryy={R,u, R,B} and
I,y ={IT,u, I1,B}.
The L* projection operators Q,, R, and R, satisfy the following properties.

Lemma 3.1. For any y ={u,B}e V=V, xV,, The L projection operators Q,, R, and R, satisfy

V.Qy =R, (Vy), div,Q,y = R, (divy), rot,Q,y = R, (roty) (3.2)
y-Qu,, <Chilyl,, 0ss<ii KekK, (3.3)
IVuQwy = VY[, <ChelY]l,, « 0<s<i+l KeK, (3.4)

Proof. From Definition 1, L projection operator Q,y and Green’s formula, we have
[V.Quy-adx=—-[(Qy)V-qdx+ [(Q,y)a-nds, ¥qe[P (K" (3.5)
K K oK

Since Q, and Q, are L’-projection operator, then the right-hand side of (3.5) is given by
— [(Quy)V-adx+ [(Qy)a-nds =—[yV-qdx+ [yq-nds = [ (Vy)-qdx = [R,(Vy)-qdx
K oK K oK K K

This shows that V Q,y =R, (Vy) holds.
Similarly, from Definition 2, we can derive div,Q,y = R, (divy) and rot,Q,y = R, (roty) .
Also, it implies approximation property (3.3) and estimate (3.4).
Lemma 3.2. For any g e H(div, Q)x H(div, Q),

SEVeayok = 2La Vy, Y=Y, Y,) € Vo xVy, (3.6)

KeK, KeKy,

Proof. From L projection IT, and Definition 1,

Z(_V'Qayo)K = Z(_V'th’ yO)K =

KeKy KeKj
= Z nd V Z(yb’th'n)eK = Z(tha wa)K
KeKp KeK, KeK

The weak Galerkin finite element method is to replace the classical gradient and rotation operators by
the weak gradient operator V,, and weak rotation operator rot, and to use the discrete weak finite

element space V), x V.

First, we introduce the semi-discrete WG finite element method.

The semi-discrete WG finite element method of (2.8) — (2.9) is to find y, (x,t) e V) xV,. |
satisfying uy =0 and B -n=0 on oQ, te[0,T] for Q,y =y, ={u;, B}, v, (x,0)=Q,y, in Q

and the following equation



Vnr20)+AWh, 2+ (Glyn]. 2) = (F(3c). 20) VZe Vi x Vg, te[0,T] (3.7)
where (Ay, z) and (G[y], z) are respectively the weak bilinear and trilinear form defined by
Aly. z)=a,(u, v) +a,(B, w)
a,(u, v) = »(V u, Vv, v)=y(rot,u, rot,v)
a, (B, w) =y,(rot,B, rot,w)
(G, [y, z)=(rot,uxu—rot,BxB, v)-(uxB, rot,w)
and (F(J,), z,) is defined by (F(J,), z,)=(J,, rot,w,).
For the equation (3.7), we can get the following splitting equation, respectively:

(a;t_h Y j—i_y.(kuh’vwv)—l_(rOtwuhth'v)_(rOtWBhXBh’V)zo

B (3.8)
(# w0]+ y.(rot, B, rot,w)—(u, xB,, rot,w)=(J,, rot,w,),
where
(V,u, vV, v)=>(V,u v,v),,(rot,B, rot,w)= > (rot,B, rot,w),(rot,u,v)= > (rot,u, v), .
KeK, KeK, KeKp
Next, we turn our attention to the full discrete WG finite element method.
Let z be the time step size and t, =nz, where n is a nonnegative integer.
We denote by y, (t,) =Y. the approximation of y(t,).
Writing the full discrete WG finite element scheme for equation (2.8) — (2.9),
By, 2,)+ AL, 2)+ (G, Iyl 2) = (F(,), z,), VzeV2 %V}, (39)
= tho
Vi =Y Yi = Yn
where 0,yf =2 2" or gy} =20 2h -
T T
For the equation (3.9), we can get the following splitting equation, respectively:
n__ ,n1
(ﬁ, Voj+7~(kuﬂ, VWV)+(rothﬂ XUy, v)—(rotWBﬂ xByp, v)= 0
T
B" _ gt 3.10
(u, WO]+}/ﬂ (rot, BY, rot,w)— (uf xBY, rot,w)=(J,, rot,w, ) (3.10)
T
0 0
u, =Quu,, By =Q,B,
or
n+1 n
(M, VOJ—F - (unﬂ, VWV)+ (rotwuﬂ XUy, v)—(rotWBﬂ x By, v): 0
.
n+1 _ n 311
(u W0]+yy(rotWBQ, rotww)—(uﬂ x B, rotww): (3, rot,w,) 31D
T

uﬂ :QhUO’ Bg :QhBO
This approximate solutions uf and B} are called the approximate solutions of the full discrete WG

finite element method for the equations (2.8) — (2.9).
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Remark 1. In this article, we haven't indicated for the hydrodynamic pressure p = p(x,t), because

we can find easily the hydrodynamic pressure p = p(x,t) from the equation (2.1) if we have found

out the approximate solutions uf and B in the equation (3.8) or (3.10).

4. Error analysis of approximate solution

In this section, we derive some error estimates for semi-discrete and full discrete WG finite element
methods.

By means of projections Q, and R, , we can derive the following approximation property.

Lemma 4.1. For u, B e H**(Q) with s> 0, we have respectively
11, (Vu)- v, (Quu) < ch®|u],... [T, (rotB)—rot, (Q,B) < ch|B|
[Vu-v,,(Q.u) < ch|ul,.. rotB —rot, (Q,B) <ch’|B],..
Proof. Since from (3.2) we have V,Q,u=R,(Vu) and V,Q,B=R,(VB), then
[T, (Vu)- v, @Q,u)]| =[1, (Vu)-R, (Vu)|

(4.1)
(4.2)

1+s

1+s’ |

Using the triangle inequality and the definition of I, , we have
[T, (Vu) =R, (Vu)| < T, (Vu) = Vu| +|[Vu - R, (Vu)| <

<c;h™|vul,  +c,h™*|Vul|  <ch®|u

1+s 1+s 1+s

Similarly, we can derive [T, (rotB)-rot,,(Q,B)| <ch®|B|

The estimate (4.2) can be derived in a similar way. This completes a proof of the lemma.

Next, we shall prove the following estimate for the error of the semi-discrete solution.

Next, we introduce following lemma. ([26])

Lemma 4.2. Assume that y ={u, B} ={y,, Y, } € V) x Vs, (Y, ={U,, B, }. ¥, ={u,, B,}), then

there exist a constant C such that

1+s

vl = Cfrot, | (43)
where V,y €V, xV,, .

Theorem 4.3. Let y e H*® (Q) and y, be the solutions of equations (2.8)-(2.9) and (3.7),
respectively. Then, there exists a constant ¢ such that

Iy, ®)-Quy )" <eh™ |y, ct (4.4)

where Y (t) :{uh (t)1 Bh (t)}1 th(t) :{Qhu1 Qh B}-
Proof. Let ze{z,,z,}e V. xVJ, be the testing function.

For y e H'**(Q), we know that rot,,(Q.y)= R, (roty), (Q.Y, 2,) = (¥, Z,) and (Q,Y,2,) = (¥, 2,)
For y e H"*(Q), we obtain

(FUo) 2o)=( Zo)+ DAY, 2), +(G,(y, y) 2)=

KeK,



= (y,2,) + (1, (roty), rot, 2)+(G,,(y, y). 2) =

= (QuY 2o) +(rot, (Quy), rot,z)+ (1, (roty) - R, (roty), V,,2) + (G, (Q,y, QY). 2).
Also, as the solution y, of equation (3.7), we have

(F(3:) 20)=(Vn. 2o)+ (ot y,, rot,z)+ (G, (s, Y1), 2)
Combining the above two equations, we get
(Yh -QuY, ZO)+(r0tw(yh -Quy), rOth): (4.5)
= (IT, (roty) - R, (roty), V,,2)+ (G, (Q,y, QY), 2)- Gy (¥, ¥0) 2)
Now, Denote by e, =y, —Q,Yy the difference between the weak Galekin approximation and the
L* projection of the exact solution y .

Substituting e, for z in (4.4) and using the Cauchy-Schwarz inequality, we obtain

(€n,en0)+ (rOtweh’ rot,ey, ) = (Hh (roty) — R, (roty), rot e, )"’ (Gw (QnY, Qny). ey, )_
_(Gw(yh’th)’eh)+(Gw(yhlth)leh)_(Gw(yh'yh)!eh):
= (Hh (rotvy) - R, (roty), rot, e, )_ (Gw (en, Quy). €, ) <

<[, (roty) ~ R, (roty)][rot, e, |+ e, |+ e |+ -[Quyi-fe |+ e 1 <
<|r1, (roty) - R, (roty)| - [rot,.e,, | + c|eh|g -||eh||% 1Quy| <

<|r1, (roty) - R, (roty)||[rot,e, | + c|[rot, e, ||% Jlen ||% vl <

<[, (roty) ~ R (rot) +-glrot,e, | + 2 [rot e, | + e -

= |1, (roty) - R, (roty)||2 + ||rotweh||2 + c2||eh||2
Therefore, we have
1d
Ea”eh”z +||rotweh||2 <|Ir1,, (roty) — Rh(roty)||2 +||rotweh||2 + c2||eh||2.

We obtain by Lemma 4.1
1d

L el <calenlf +en® . 5)
Thus, integrating with respect to t and from e(— , O):O , We arrive at
leo|” <260 [y, ot + 2c, e, | 47
By Gronwall’s inequality O 0
e | < e e [yt 48)
0

That is,

t
Jenl” <€ -h¥ Iyl ot
0

The proof is completed.
Now, we shall derive an error estimate for the full discrete WG approximation.



Theorem 4.4. Let y e H**(Q) and y| be the solutions of equations (2.8)-(2.9) and (3.10),
respectively. Denote by e":=y; —Q,y(t,) the difference between the full discrete WG

approximation and the L® projection of the exact solution y .
Then, there exists a constant C such that

en|” +rzn:HrotWe‘H2 < HeOH2 +C[h2r - +rz.f %ﬁs) dSJ (n > 0) (4.9)
where y, =y, (t,) ={u,(t,), B, (t,)}. Q,y(t,) ={Q,u, Q,B}.
Proof. From the equations (2.8) and (3.9),
(V. 2o) + AlY, 2) + G(y, ¥, 2) = (F(J,), Z,) (4.10)
(—yﬂ “Ya zOJ+ AYR 2 +G, v v 2)=(FQ.). 20)  (41D)
-

Subtracting the equation (4.10) from the equation (4.11)
n_ n-1
(% -y(t,), zoJ + A 2) - AY(L,), 2) =Gy (t,), (L), 2) -G, (v}, V5. 2) (4.12)

Writing the equation (4.12) similarly with the equation (4.5),
(yz Vit Q) -Quylt) | Hth(tn) ~Quy(t,.,)
1 L0
T

T T

-y(t,), Zoj +Ayp, 2) - Aly(t,). 2) =

= (I, (roty(t,)) - R, (roty(t,)), rot, 2) + G(y (t,), y(t,), 2) - G, (v, ¥, 2)
Rewriting the above equation,

(yﬂ Vit Q) -Quy(t) | Hth(m—th(tnl)
T

—yh(tn),zoj+A(yE,2)—

T T

— AQuY(t,), 2) = (T, (roty(t,)) - R, (roty(t, )), rot, z)+ G(y(t, ), ¥(t,), 2)- G, (y!, yi, 2)

Taking account of " =y —Q,y(t,), we obtain

[e” e ) ZoJ +A€",2) = (Yh (t,) —M, zoj+ (T, (roty(t,)) — R, (roty(t, )), rot, z) +
+6(y(t,), ¥(t,), 2)- G, (vh. v1. 2)

Also, let w; :y(tn)_wl wj =11,
T

roty(t,))— R, (roty(t,)) and choosing the z=¢",

en _en—l n n An n An n n n n n An
( e j+A<e &) =(w],e") +(w}, rot,e") + Gly(t,). y(t,). €")- G, [y, vi.€")

Therefore, we have

e[~ e e") + efrot,e" | <olwi] "+ ws] - [V.ue"[+ BQ (). Quytt).e")- G, i i )=
:r‘wf -|le” +r‘wg -HVWe" +rG(e",th(tn),e”)£
ST‘W; -le" +r‘wg ~HVWe” +crle” ‘. e" %~|th(tn)|- e" ‘.. e" %
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Then,

n2 nl n

e

1
2 .|le"||2 - (tn)|

By the boundedness of y and the Poincare mequallty, it follows
1 2 1

nll2

2 2
e"| +7 "IT< e +=]e" +r(] "+ )
2
Consequently,
2 2 2 2
~le"l +z ° < et +£q "+ 1)
2
That is,
lenz n2<£ n—12+£(wn2 2)
2 2 2 UMt !

By repeated application,

nl2

e

<l e S+ Sl vef) e
i=1 i=1
By Lemma 4.1 and R, (roty)=rot, (Q,y),
|| < eshely(@)l .
gl

From zw; =722

- () -y(t))= j(t t ‘”(t)

i aZY(t)
wi = . ijl(t —ti,l)?dt (4.14)

Thus,

il = fo10720] a0< 2 foos e [[220) oo

1

HERIO!N dt

SC4T'J. o

£y

(4.15)

Then by substituting (4.15) into (4.13), we have

+rZHrot e H <He H +C(hzr T||y||1+r

The proof is completed.

Ho° y(t)

I’]

ds] (n>0)

5. Numerical experiment
In this section, we present the results of numerical experiment. We carry out benchmark test in 2D.
We consider a simple problem for the incompressible viscous MHD equations with known
analytical solution in 2D.

We choose Q =[0, 1] x[0, 1] and time interval 1 =[0, 1] with computational domain.
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Also we assume that problem (2.1)-(2.5) has an analytic solution, which is given by

u=(e"'sin 2zxcos2zy, —e ' cos2zxsin 2zy)" ,B = (e sin 22y, e ' sin 22x)"

. . 1 .
By simple computation, we use the parameters y = pyey Yu= a =1 in the tests.
T

472
We choose uniform triangular mesh and let h=1/N (N =8, 16, 32, 64, 128) be mesh sizes for

triangular meshes.
Let U and u, be the exact velocity and the WG finite element approximation, B and B, be the

exact magnetic field and the WG finite element approximation.
In the test, z=h and 7 = h® are used to check the order of convergence with respect to time step

size 7 and mesh size h.

The results are shown in Tables | and I1.

Table |
Result of WG finite element method with 5 21/87;2 Y :]/4,;2 ,a=land  =h.
1/h HV(u—uﬂ) Hu—uﬂ HV(B—BQ) HB—BQ
8 1.054e-2 1.32e-3 3.78e-1 4.16e-3
16 3.42e-3 2.64e-4 6.15e-1 3.58e-4
32 2.609e-3 5.41e-4 2.79e-2 5.17e-4
64 4.27e-4 3.92e-5 4.38e-3 3.26e-5
128 8.11e-4 4.59%-6 7.43e-4 2.91e-5
Table Il
Result of WG finite element method with y =1/87%, y, =1/4z* ,a=1 and z =h*.
Yh  [Vu-up) lu-up|  |vB-B) |B-B;
8 2.37e-3 1.74e-5 4.05e-2 2.95e-4
16 6.27e-4 3.89e-6 2.71e-2 5.38e-5
32 3.19e-4 7.15e-6 3.83e-3 4.79e-5
64 4.08e-5 2.57e-6 1.82e-4 7.48e-6
128 3.93e-5 5.2%e-7 2.36e-5 6.83e-6

From these results, we can know that WG finite element method is advisable and efficient.
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Remark 2. For the above exact solutions U and B, we know that hydrodynamic pressure p and
minor control possible electromotive force J_ are p=e?(cos® 27X +cos’ 27y —C0S 27X - COS 27y)

J, =—e % (sin? 27 - cos 2zy + cos 27X - sin ? 27y) , respectively.

C

6. Conclusion
In this paper, we have formulated the weak Galerkin finite element scheme for the incompressible
viscous magneto-hydrodynamic equations on arbitrary polygons or polyhedra with certain shape
regularity.
Also, we have estimated the error of the semi-discrete and full-discrete approximate solutions by
the weak Galerkin finite element method for the incompressible viscous Magneto-hydrodynamic
equations.

In future work, we will develop for more general problems.
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