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Abstract

Physical action is a spacetime bivector. Based on this single assumption, this paper argues
that spacetime itself is responsible for much of physics. The properties of its elements and their
derivatives, especially the transformations of special relativity, allow us to successively derive
and confirm major empirically found laws and equations. We exemplary derive equations for
electromagnetism including: Biot-Savart Law, Electrostatic Force, Lorentz Force, Maxwell’s
Equations including charges, and also constants like the fine-structure constant, electric per-
mittivity, and even additional terms that are related to spin. In strict analogy, we gain very
similar equations for gravitation which, e.g., include Poisson’s equation for gravity. A further
derivation of these equations of gravitation leads to field equations which are comparable to
the field equations of general relativity. Electromagnetism and gravitation unite into one set of
equations. The fact that bivectors can be written as wave equations also unify classical physics
with wave mechanics.

1 Introduction

In physics, different theoretical frameworks exist to describe nature. Besides the classical theories,
some of the best known are probably quantum mechanics, the standard model of particle physics”
[2], or even string theory [14]. However, these theories mostly concentrate on describing particles
and the short range interactions between them but fail to include gravitation.

Both electromagnetism and gravitation can describe long scale interactions. To develop a new
model, we approach the problem by not starting from particles and their properties but by looking
at the long scale aspect of their interactions and therefore looking more in depth at spacetime and
its properties itself.

Spacetime already is the basis of the theories of special relativity [3] and of general relativity [4].
We will show the unifying and explanatory effect that spacetime, the transformations of special
relativity, and the use of the spacetime derivative ∇̊, see (2), have by deriving the equations of
electromagnetism and gravitation from one of the most basic physical quantities: Action S. After
stating naming conventions, we begin with a very general overview before this paper then dives
right into spacetime, electromagnetism, and gravitation. Much of the necessary math resides in
the Appendix, not because it is less important, but because working step by step through a lot of
equations before arriving at the main topic seriously would obstruct the flow of this paper.

To simplify the equations and make connections and analogies more obvious, we use the notations
described below:
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General:
S Action.
E Energy
P Momentum
A Angular Momentum
F Force

Charges / charge operators:

q0ju , qiju Single unit charges, affected by the respective action or force fields

m0j
u , mij

u Single unit masses, affected by the respective action or force field
q0j , qij , Q0j , Qij Multiple charges, affected by the respective action or force fields
m0j , mij , M0j , M ij Multiple masses, affected by the respective action or force fields
q, m Simplified names without indices

Action fields:
BS Magnetic action field
ES Electric action field
GS Gravitational action field
PS Momentum action field

Force fields:
EF or just E Electric force field
BF or just B Magnetic force field
GF or just G Gravitational force field
PF or just P Momentum force field

Action:
SB = Q0jBS Magnetic action
SE = QijES Electric action
SG =M0jGS Gravitational action
SP =M ijPS Momentum action

Force:
FB = Q0jBF = Q0jB Magnetic force
FE = QijEF = QijE Electric force
FG =M0jGF =M0jG Gravitational force
FP =M ijPF =M ijP Momentum force

Momentum action field and force are new concepts that will be developed in this paper. They are
the gravitational equivalent to magnetic action and force. A static magnetic force as written here
FB = qB has not been observed yet. It is still useful for the math in this paper as seen below in e.g.
section 3.4 “Maxwell’s Equations of Static Charges” and we must include it in further derivatives.

In order to limit the complexity and allow for a mathematically manageable solution, some simpli-
fying assumptions are made. First, all equations describe either static scenarios in rest or scenarios
that can be described by the transformations of special relativity, e.g. two observer/rest frames
moving with a constant relative speed with regard to each other. Second, accelerations of observer
frames are not handled in this paper. Third, all spacetime geometry in a frame is described in a
fixed, extrinsic/global coordinate system like in special relativity. The intrinsic geometry of the
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curvature of spacetime in general relativity (G.R.) will only be pointed out when comparing these
two approaches in section 4.9. However, this is typical for such analysis and therefore does not limit
the relevance of the results. Most of relativistic quantum mechanics follow the same approach.

Before presenting the concrete derivations of electromagnetism and gravitation, the following over-
view shows how applying the spacetime derivative to bivectors of action leads to energy, momentum,
and angular momentum. Successively applying the spacetime derivative ∇̊, see (2), to each result
of the previous derivative then leads to forces and fields, which then leads to Maxwell’s equations
for electromagnetism and an equivalent for gravitation. The final derivative leads to equations of
energy-, stress- and momentum-density comparable to the field equations of general relativity :

S Action

∇̊ (S) Derivative level of energy, momentum, and angular momentum

∇̊
(
∇̊ (S)

)
Derivative level of forces

∇̊
(
∇̊
(
∇̊ (S)

))
Derivative level of Maxwell’s equations, Poisson’s equation for gravity

∇̊
(
∇̊
(
∇̊
(
∇̊ (S)

)))
Derivative level of energy-stress-momentum densities, G.R.

While we only look in detail at some of the steps described above, a summary of all the equations
gained in this paper – either derived directly or in analogy to other equations – can be found in
mostly bullet point style in section 5.

2 Spacetime

Since around the time that special relativity was first published by Einstein [3] and Minkowski held
his lecture about ”Space and Time” [16], it is assumed that we live in a four-dimensional spacetime.
Even before that time, four dimensional algebras were investigated by Hamilton [10], Gibbs [9],
Grassmann [7], Clifford [8] and others and later popularized e.g. as Geometric Algebra by Hestenes
[13] [12].

In general, a four-dimensional spacetime is described by scalars, vectors eα, bivectors eαβ, trivectors
eαβγ , quadvectors eαβγδ, pseudovectors (= trivectors in 4D), and pseudoscalars (= quadvectors in
4D). As usual, Greek letters α, β, γ, δ denote dimensions 0, 1, 2, 3 (in time and space context),
while Latin letters i, j, k denote only spatial dimensions 1, 2, 3. In this text, to shorten the
notation, we write the unit vectors and multivectors as follows:

eα unit vector
eα ∧ eβ → eαβ unit bivector
eα ∧ eβ ∧ eγ → eαβγ unit trivector/pseudovector
eα ∧ eβ ∧ eγ ∧ eδ → eαβγδ unit quadvector/pseudoscalar

The basic mathematics are summarized in Appendix A.1.

2.1 Derivatives of Spacetime

For the analysis we must understand the concepts of contravariant and covariant vectors which will
be generalized in the following. An example for a covariant vector is the derivative dxe

x and for
a contravariant vector the velocity vxex. These covariant and contravariant types can be turned
into each other by raising or lowering the indices. This is done by multiplying the vector with the
metric tensor, dαeα = gµνdαeα. The covariant derivative accounts for changes in field strength but
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also accounts for the changes of the local unit vectors. In general relativity, the changes of the local
unit vectors are described by Christoffel symbols.

As we will see later in this paper, equations for fields (E, B, G, P) describe how spacetime (=
fields) changes in a stationary frame of reference, flat spacetime. This frame of reference might be
called a stationary meta spacetime. As we mostly deal with a universal, flat meta spacetime, the
Minkowski metric can always be used in lieu of the metric tensor.

We can define the covariant meta-spacetime partial derivative as d0e
0 + d1e

1 + d2e
2 + d3e

3 with
d0 =

∂
c∂t , d1 =

∂
∂x , d2 =

∂
∂y , d3 =

∂
∂z or d0 =

∂
∂x0

, d1 =
∂

∂x1
, d2 =

∂
∂x2

, d3 =
∂

∂x3
.

By lowering the indices of the unit vectors, we get the partial contravariant spacetime derivative
d0e0 − d1e1 − d2e2 − d3e3.

In physics, the three-dimensional partial derivative / gradient is often written with the “nabla”
symbol, i.e., ∇ = ∂

∂x + ∂
∂y + ∂

∂z . Furthermore, the four-dimensional partial derivative is sometimes

written as ∂µ = ∂
c∂t + ∇. To distinguish this four-dimensional partial derivative from our partial

contravariant spacetime derivative, and to limit the use of indices, we define the symbol ∇̊ with

∇̊ def
= d0e0 − d1e1 − d2e2 − d3e3. (1)

To shorten the name “partial contravariant spacetime derivative”, we will simply refer to it as
“spacetime derivative”.

Next, we determine the second spacetime derivative:

∇̊∇̊ = (d0e0 − d1e1 − d2e2 − d3e3)(d0e0 − d1e1 − d2e2 − d3e3)

= d0d0 − d1d1 − d2d2 − d3d3

Thus, the result is

∇̊2 = ∇̊ · ∇̊ = d20 − d21 − d22 − d23 =
d2

c2dt2
− d2

dx2
− d2

dy2
− d2

dz2
=

d2

c2dt2
−∇2 = □, (2)

where the □-symbol is the d’Alembert operator (d’Alembertian). Besides other names, it is also
called the wave operator.

It should be noted that it is a property of spacetime itself or its second partial derivative that, no
matter what the argument is (scalar, vector, bivector, pseudovector or pseudoscalar), the second
spacetime derivative is always a wave equation. This does, however, not imply that every argument
can be quantized.

A complete step by step walk through of the first and second spacetime derivative of a bivector
field is gives as an example in appendix A.2.

2.2 Movements in Spacetime

Besides spacetime and the spacetime derivative, the most important building block of the model we
develop in this paper is the transformation of spacetime elements as described by special relativity.
Especially the transformations of bivectors will prove to be of particular interest and relevance.
To better understand the transformations and rotations in spacetime, we need to compare them
with transformations and rotations in euclidean space, respectively. In euclidean 2D or 3D space,
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e1

e2

Figure 1: Invariant circle,
unit axes,

unit grid area

cos (α)e1

sin (α)e2

cos (α)e2

− sin (α)e1

ẽ1
ẽ2

Figure 2: Invariant circle, rotated axes
ẽ1=+cos (α)e1+sin (α)e2
ẽ2=− sin (α)e1+cos (α)e2

a point R⃗ on a circle of radius r⃗ or on a sphere is an invariant. No matter the transformation of
the basis vectors, the value of r⃗ stays the same. To illustrate this for a circle, compare R⃗ written
with unit vectors, R⃗ = xe1 + ye2 and written as absolute values, R2 = x2(e1)

2 + y2(e2)
2 which

in euclidean space simplifies to r2 = x2 + y2. Similarly, a sphere written with unit vectors is
R⃗ = xe1+ ye2+ ze3 and written as an absolute value, R2 = x2(e1)

2+ y2(e2)
2+ z2(e3)

2 which again
simplifies to r2 = x2 + y2 + z2.

Rotating the unit vectors ei around the origin by an angle β leads to new unit vectors ẽi, but the
spacetime invariant R⃗ does not change its absolute value, hence the name “Invariant”.

S⃗ = xe1 + ye2

=
[
e1 e2

] [x
y

]
=

[
e1 e2

] [1 0
0 1

] [
x
y

]
=

([
e1 e2

] [+cosα − sinα
+sinα +cosα

])([
+cosα +sinα
− sinα +cosα

] [
x
y

])
= (transformation of unit vectors) (transformation of vector components)

=
[
ẽ1 ẽ2

] [x̃
ỹ

]
Together, the unit vectors span a unit grid area. The size of this area is 1 and does not change
under transformation of the basis vectors. The area of a rectangle is the determinant of the matrix
of the transformed vectors, in this case the unit area is always e1 ∧ e2 = (+cosα)(+ cosα) −
(+ sinα)(− sinα) = cosα2 + sinα2 = 1. To illustrate the rotation, figures 1 and 2 use the example
of α = 30◦, with cosα = 0.87 and sinα = 0.50.

In flat 4D spacetime, an invariant similar to R⃗ is often called S⃗. The equation corresponding to a
circle or sphere in unit vectors is:

S⃗ = cte0 + xe1 + ye2 + ze3 (3)
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In absolute values we get S2 = c2t2(e0)
2+x2(e1)

2+ y2(e2)
2+ z2(e3)

2 or simplified S2 = c2t2−x2−
y2 − z2. Note that, because of the Minkowski metric of flat 4D spacetime, the spatial parts now
show a negative sign.

Dynamic spacetime and special relativity are governed by the transformation of time and space
components and their unit vectors. The transformation of an invariant S⃗ in spacetime is called
Lorentz transformation if one of the involved unit vectors is e0 (cet).

S⃗ = ctect + xex

=
[
ect ex

] [ct
x

]
=

[
ect ex

] [1 0
0 1

] [
ct
x

]
=

([
ect ex

]
γ

[
1 β
β 1

])(
γ

[
1 −β
−β 1

] [
ct
x

])
= (transformation of unit vectors) (transformation of vector components)

=
[
ẽct ẽx

] [ct̃
x̃

]
= ct̃ẽct + x̃ẽx

To simplify many equations of special relativity, one often uses the parameters

β =
v

c
(4)

and

γ =
1√

1− β2
. (5)

The transformation of unit vectors and the transformation of vector components can be viewed
as two sides of a coin which complement each other. It is essential to point out that the “unit
grid area” covered by time and space unit vectors, both in rest and moving, remains the same and
makes vectors and components comparable in both cases.

Figures 3 and 4 are an example of the connections between the time- and space-axes in rest and
when moving, shown for values of β = 0.33 (=̂ 0.33 · 45◦), therefore γ = 1.06 and γβ = 0.35.

From the transformations of the unit vectors as described in A.3, we can directly conclude the
transformations of unit bivectors and their bivector components under movement. As unit bivectors
are formed by taking the wedge product of unit vectors, their transformations are obtained by taking
the wedge product of a transformed unit vector with another unit vector.

An example of a bivector transformation for a velocity v1 (in direction 1) is

ẽ02 = ẽ0 ∧ ẽ2

= γ1(e0 + β1e1) ∧ e2
= γ1e02 + γ1β1e12
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1 2 3

1

2

3

β

β x

ct

Figure 3: moving time- and space-axes, unit grid
area

0.5 1 1.5

0.5

1

ẽ1
γβe0

γe1

ẽ0

γβe1

γe0

x

ct

Figure 4: ẽ0 = γe0+ γβe1, ẽ1 = γe1+ γβe0

Just like a vector with the Lorentz transformation, the absolute (area) value of the bivector remains
the same. This makes bivectors and their components comparable when in rest and moving systems.
The area value of the transformed bivector is:

area =
√
γ1((e0)2 + (β1e1)2)

=
√
γ1(1− β21)

=
√
1

= 1

The area value stays the same.

When dealing with movements in four dimension, it makes sense to assign indices to v, β, and γ
according to the spatial direction of the movement, i.e., vi, βi, and γi when the direction of the
movement is in direction i = 1, 2, 3.
v1, β1, and γ1 when the direction of the movement is in direction 1.
v2, β2, and γ2 when the direction of the movement is in direction 2.
v3, β3, and γ3 when the direction of the movement is in direction 3.

Also useful are the following factors:
11 means this factor is 1 when the direction of the movement is in direction 1.
12 means this factor is 1 when the direction of the movement is in direction 2.
13 means this factor is 1 when the direction of the movement is in direction 3.

All parameters and factors that have other indices are 0 or ignored. Moreover, in the equations we
use “∨”, which means “logical or”. As an example, look at (γ1∨γ2∨γ3). This should be read as “if
the direction of movement is 1, then use γ1, parameters with other factors are 0 or ignored” or e.g.
“if the direction of movement is 2, then use γ2, parameters with other factors are 0 or ignored”.

In appendix A.3 we generalise the transformation of all unit bivectors under movement. Also in
A.3 we generalise the transformation of all bivector components under movement. To write down
these transformations we rely on the indexed parameters and factors above.
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2.3 Spacetime Invariants, Bivectors and Wave Equations

Gibbs [9] showed that bivectors can be written as an ellipse xe1 + ye2 or a complex number x+ iy
with vectors xe1 and ye2 and i2 = −1. The ellipse xe1 + ye2 can also be seen as a two dimensional
subspace of a spacetime invariant (3) S⃗ = cte0 + xe1 + ye2 + ze3.

Using Euler’s formula [6] - that states that eix = cos (x) + i sin (x) for every real x - we see that
a bivector can be written in this exponential form. We also associate this formula with wave
equations.

As we see in 5.2 the spacetime derivative of action, S, is mainly the difference between energy, E ,
and momentum, P (if we ignore for now angular momentum A),

∇̊ (S) = 0 = E − P.

With this, we can also write for ∆S

∆S(t) = ∆S(t)
∆t

∆t = +∆E∆t

∆S(x) = ∆S(x)
∆x

∆x = −∆P∆x

∆S(x, t) = ∆S(t) + ∆S(x) = ∆E∆t−∆P∆x

Dropping the deltas, we can write the action bivector field as a wave equation. Because the
argument of the exponential has to be unitless, one has to divide it by a unit of action, ℏ in this
case. We also flip the signs of momentum and energy to adjust for our usual definition of direction
of travel of the wave. The wave equation of action now therefore is:

S(x, t) = ψ(x, t) = e
i
ℏS(x,t) = e

i
ℏ (Px−Et) (6)

It is easy to see that this is a (non relativistic) wave equation as e.g. used in quantum mechanic.

On a side note: If we assumes that S is quantised and one quantum of S is h, then the minimum ∆S
is ∆S = h = ∆E∆t or ∆S = h = ∆P∆x. These are the values of the original uncertainty principle
of Heisenberg [11]. Because of other considerations Heisenberg’s uncertainty principle has been
corrected to ∆S = ℏ

2 . An equivalent for the quantisation of the unexpected angular momentum -
which we will derive later - should be added but is more complicated because of the curl.

As shown in a general form in appendix A.2 “First Derivative of a Bivector Field” and the more
concrete section 5.2 “Summary Gravitational Energy, Momentum, and Angular Momentum” and
“Summary Electromagnetic Energy, Momentum, and Angular Momentum”, the actual internal
structure of the spacetime derivative of S is more complicated than just the normally assumed E
and P, as it does not only contain the simple temporal and spatial derivatives of the action field
but also their curls, which we associate with angular momentum A - possibly related to spin and
magnetic moment.

To acquire an even more accurate equation, we would have to use energy, momentum and angular
momentum from the dynamic relativistic equations.
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2.4 Operators, Charge and Mass

As will be shown below in 3.1, B-fields are induced by the relative movement of electric charges
or E-fields and have “hidden” components of the cross product between velocity- and E-field
components, both only scalar values. Take for example from (10) the term

−B01e01 = (γ3β3Ẽ
31 − γ2β2Ẽ

12)e01

The direction or orientation is given by the unit bivector e0j . We can multiply both sides with a
scalar value q. Therefore, because for electric charge q no value for qB that is not zero is observed
for now, electric charge cannot be a simple scalar value with units.

In current physics, electric charge is not considered to be fundamental and only one type of a
number of different charges (e.g. electric charge, color charge, etc.). Generally, electric charge is
considered in the context of symmetry groups (the purely spatial rotations of U(1)) and conserved
quantum numbers/ conserved currents.

As we have seen in 2.3, for our at first seemingly “classical” problem here, a solution is to define
a charge operator q̂µν that acts on a bivector wave equation eµν and returns the charge qµν . Note
that this implies that the charge we use for action must be the same charge that we use for force,
as we use them on the same bivector. Moreover this charge operator acts a lot like the energy
operator on a wave equation, compare with ĤΨ = ÊΨ and similar equations. Also compare with
section 3.6, where an example for this “operator” is shown.

However, at least in a flat spacetime, the charge operator only appears to act on vectors or bivectors
that share common indices. When acting on other vectors and bivectors so far no observations were
made. After q̂µνeµν acted on the bivector, we will just write the value qµν instead of q̂µν .

To set up the indices for a good comparability to current physics, we could use the covariant form
of the well known existing electromagnetic field strength (Faraday) tensor (Here the factor c is
included in the tensor and the B-field)

Fem =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (7)

to guess the indices of an electric charge q0j and a magnetic charge qij . However, because our matrix
components should be two dimensional and because of other considerations described immediately
below, we use the Hodge dual of this tensor which exchanges the indices / positions of the electric
and the magnetic field, so that this tensor looks like

Fem =


0 −B01 −B02 −B03

B01 0 E12 −E31

B02 −E12 0 E23

B03 E31 −E23 0

 (8)

Later, in the chapter on gravitation 4, we will use a similar approach and use a hodge dual gravi-
tational tensor

Fem =


0 −G01 −G02 −G03

G01 0 P 12 −P 31

G02 −P12 0 P 23

G03 P 31 −P 23 0

 (9)
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The above ordering of the indices is useful if one wanted to make a connection between the ”circles”
of bivectors and spacetime invariants of the form S = (ct)2−x2−y2−z2. In this case, every bivector
e0j which includes an index 0 would represent a hyperbola, while every purely spatial bivector eij
represents a circle or ellipse. Derivatives of action hyperbolas and circles represent energies etc.,
second derivatives represent forces. The different resulting forces would therefore be attractive or
repulsive. Moreover circles represent a “periodic space” which is quantizable while hyperbolas are
not. It is beyond the scope of this paper to go into these details but the choice of the connection of
electric charge with purely spatial bivectors and mass with temporal-spatial bivectors stems from
here.

Taking this opportunity for a small detour into particle physics, this splitting might also suggests
that, assuming each bivector eij is linked to a electric charge ±1

3 , then each bivector e0j might be
linked to a fixed amount of different kind of charge (Compare with 3.5 for some thoughts about this).
The different rules of what makes up a whole, observable particle (quark, lepton, etc. ) should be
easily amendable and now possibly also explainable. Because of these ”observable particle” rules,
all charge bivectors should always be contained in a quark / electron etc. and not be observable as
an individual particle.

In an earlier, abandoned draft of this paper, it was assumed that mixed temporal-spatial bivectors
and charges were related to gravitation and purely spatial bivectors and charges were related to
electromagnetism. While this approach resulted in the same equations that are presented below
in this paper, ”magnetic charges” and ”momentum masses/charges” were not treated as virtual
(just a placeholder for the math) but treated more as an addition or something fundamental.
Also, there was the possibility of negative mass, which hasn’t been observed yet. Therefore, the
version presented in this paper assumes that electric charges directly work on / are linked to their
bivector. Because of this, a new idea for ”mass” had to be found. We now assume that mass
stems from the energy of the vibration of two bivectors against each other. The vibration of a
bivector eαβ against a bivector eβγ around the β-axis could now be described as a wave function /
bivector in the plane eαγ . Therefore we can also describe mass and gravitation with a bivector field.
Mass however now isn’t an intrinsic fixed property of a bivector itself, but depends on the energy
levels of the vibrations of the various bivectors of the particles themselves (and then additionally
their interactions with other particles). With this assumption, we can still handle gravitation in
complete analogy to electromagnetism and additionally make the prediction that the energy/mass
of a particle is computable. Also, the ground states of these energies/wave functions are spherical
(giving particles a spherical appearance) but possible higher order energies/wave functions are also
of different shapes (compare with the solutions for electron shells in atoms). It is beyond the scope
of this paper to go into these details.

3 Electromagnetism

Most of the equations that describe electromagnetism start at the derivative level of forces and
(electric and magnetic) fields. It is therefore best to start exploring electromagnetism right there.
Electromagnetic Action, Energy and Momentum and Energy Densities can be found in the Sum-
mary 5.

3.1 Electric and Magnetic Field, Biot-Savart Law

When looking at the first spacetime derivative of a bivector field, as shown in appendix A.2, we see
that, except for the naming of the field components, the unusual unit vectors and pseudovectors and
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some signs, this resembles Maxwell’s equations in vacuum. However, because we assume that the
purely spatial components Cij represent the electric field, the time and space related components
C0j cannot be original components of the magnetic field, as we will immediately below show that
the magnetic field is just a relativistic effect of a moving electric field. Also from this, we assume
that there are no magnetic charges.

To obtain the magnetic field, consider the following situation: An observer Õ is at rest in a system
S̃. Observer Õ and system S̃ are moving with velocity v relative to an observer 0, who is at rest
in system S. Observer Õ measures an Ẽ-field but no B̃-field. The magnetic field is understood to
be a relativistic effect of moving electric charges or fields. Utilising the reverse transformation of
components of bivectors under movement from appendix A.3

C01e01 = ((11 ∨ γ2 ∨ γ3)C̃01 + γ3β3C̃
31 − γ2β2C̃

12)e01

C02e02 = ((γ1 ∨ 12 ∨ γ3)C̃02 + γ1β1C̃
12 − γ3β3C̃

23)e02

C03e03 = ((γ1 ∨ γ2 ∨ 13)C̃
03 + γ2β2C̃

23 − γ1β1C̃
31)e03

C12e12 = ((γ1 ∨ γ2 ∨ 13)C̃
12 + γ1β1C̃

02 − γ2β2C̃
01)e12

C31e31 = ((γ1 ∨ 12 ∨ γ3)C̃31 + γ3β3C̃
01 − γ1β1C̃

03)e31

C23e23 = ((11 ∨ γ2 ∨ γ3)C̃23 + γ2β2C̃
03 − γ3β3C̃

02)e23

and assuming no stationary B̃-field exists (C̃01 = C̃02 = C̃03 = 0), we get

C01e01 = (γ3β3C̃
31 − γ2β2C̃

12)e01

C02e02 = (γ1β1C̃
12 − γ3β3C̃

23)e02

C03e03 = (γ2β2C̃
23 − γ1β1C̃

31)e03

C12e12 = (γ1 ∨ γ2 ∨ 13)C̃
12)e12

C31e31 = (γ1 ∨ 12 ∨ γ3)C̃31e31

C23e23 = (11 ∨ γ2 ∨ γ3)C̃23e23

Setting C̃12 = Ẽ12, C̃31 = Ẽ31 and C̃23 = Ẽ23, we identify the resulting space and time related
components as the magnetic field

−B01e01 = (γ3β3Ẽ
31 − γ2β2Ẽ

12)e01

−B02e02 = (γ1β1Ẽ
12 − γ3β3Ẽ

23)e02

−B03e03 = (γ2β2Ẽ
23 − γ1β1Ẽ

31)e03

E12e12 = (γ1 ∨ γ2 ∨ 13)Ẽ
12e12

E31e31 = (γ1 ∨ 12 ∨ γ3)Ẽ31e31

E23e23 = (11 ∨ γ2 ∨ γ3)Ẽ23e23

(10)

To justify the assumption – that the C0j are the bivector components of a B-field – compare the
equations to Biot-Savart law. Just by looking at the mixed time-space components of the above
equations, we can see that the C0j ’s are indeed a magnetic field (with same units as the E-field –
use factor c to convert to “normal” B∗-field units). Combining the time-space components of B
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into a vector B⃗∗, multiplied with c to adjust for units, one can look at the amount dB⃗∗ from the
contribution of dE⃗(r):

dB⃗∗c = γβ⃗ × dE⃗(r)

With the substitution β = v
c and some rearranging this becomes

dB⃗∗ = γ
v⃗

c2
× dE⃗(r)

Using 1
c2

= ϵ0µ0 and dE⃗(r) = ∆QE

4πϵ0r2
e⃗r we get dB⃗∗ = γϵ0µ0v⃗ × ∆QE

4πϵ0r2
e⃗r and then

dB⃗∗ = γ
µ0
4πr2

∆QE v⃗ × e⃗r

With the definition of current I = ∆QE
∆t and v⃗ = dL⃗

dt , ∆QE v⃗ can be rewritten as Id⃗L, so the whole
equation becomes

dB⃗∗ = γ
µ0
4πr2

IdL⃗× e⃗r

Except for the additional relativistic factor of γ (which can be set to 1 in non-relativistic scenarios),
this is Biot-Savart law:

dB⃗ =
µ0
4πr2

IdL⃗× e⃗r (11)

3.2 Static Electromagnetic Force

The electric field E is defined as E = force
electric unit charge . Multiplied with electric charge qe(= q), the

resulting force is

Fstatic = q̂ijEijeij = qE

This is the static electric force (electrostatic force). As stated above in section 2.4, electric charges
do not seem to interact with the magnetic field B. However, we can use the idea of virtual “magnetic
charges” that interact with the B-field to fill in the math. Therefore, the electrostatic force can –
for symmetry reasons – be extended to and written as the static electromagnetic force. Compare
with the field strength tensor (8) for the correct plus and minus signs.

Fstatic = −q̂0jB0je0j + q̂ijEijeij (12)

3.3 Dynamic Electromagnetic Force and Lorentz Force

An observer at rest in its system Õ measures the static electromagnetic field F̃ in this system. An
observer at rest in another system O, which moves with velocity v with respect to the system of
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the charge, measures a different field F . Utilising the reverse transformation formulas for bivector
components under movement from appendix A.3

C01e01 =
(
(11 ∨ γ2 ∨ γ3) C̃01 + γ3β3C̃

31 − γ2β2C̃
12
)
e01

C02e02 =
(
(γ1 ∨ 12 ∨ γ3) C̃02 + γ1β1C̃

12 − γ3β3C̃
23
)
e02

C03e03 =
(
(γ1 ∨ γ2 ∨ 13) C̃

03 + γ2β2C̃
23 − γ1β1C̃

31
)
e03

C12e12 =
(
(γ1 ∨ γ2 ∨ 13) C̃

12 + γ1β1C̃
02 − γ2β2C̃

01
)
e12

C31e31 =
(
(γ1 ∨ 12 ∨ γ3) C̃31 + γ3β3C̃

01 − γ1β1C̃
03
)
e31

C23e23 =
(
(11 ∨ γ2 ∨ γ3) C̃23 + γ2β2C̃

03 − γ3β3C̃
02
)
e23

and setting C̃01 = −B̃01, C̃02 = −B̃02, C̃03 = −B̃03, C̃12 = Ẽ12, C̃31 = Ẽ31, C̃23 = Ẽ23, we get

C01e01 =
(
− (11 ∨ γ2 ∨ γ3) B̃01 + (γ3β3Ẽ

31 − γ2β2Ẽ
12)

)
e01

C02e02 =
(
− (γ1 ∨ 12 ∨ γ3) B̃02 + (γ1β1Ẽ

12 − γ3β3Ẽ
23)

)
e02

C03e03 =
(
− (γ1 ∨ γ2 ∨ 13) B̃

03 + (γ2β2Ẽ
23 − γ1β1Ẽ

31)
)
e03

C12e12 =
(
(γ1 ∨ γ2 ∨ 13) Ẽ

12 + (−γ1β1B̃02 + γ2β2B̃
01)

)
e12

C31e31 =
(
(γ1 ∨ 12 ∨ γ3) Ẽ31 + (−γ3β3B̃01 + γ1β1B̃

03)
)
e31

C23e23 =
(
(11 ∨ γ2 ∨ γ3) Ẽ23 + (−γ2β2B̃03 + γ3β3B̃

02)
)
e23

(13)

These are the full equations of the dynamic electromagnetic field. In the equations above, comparing
the second terms in parenthesis of all fields F 0j with section 3.1, we identify these terms as newly
induced B-fields and E-fields.

The resulting observable force for an electric charge qij therefore is

F12e12 = q̂12
(
(γ1 ∨ γ2 ∨ 13) Ẽ

12 − (γ1β1B̃
02 − γ2β2B̃

01)
)
e12

F31e31 = q̂31
(
(γ1 ∨ 12 ∨ γ3) Ẽ31 − (γ3β3B̃

01 − γ1β1B̃
03)

)
e31

F23e23 = q̂23
(
(11 ∨ γ2 ∨ γ3) Ẽ23 − (γ2β2B̃

03 − γ3β3B̃
02)

)
e23

These are the components of the dynamic electromagnetic force.

In the non-relativistic limit we can set γi = 1. We can also set B01 = B̃01, B02 = B̃02, B03 = B̃03,
E12 = Ẽ12, E31 = Ẽ31 and E23 = Ẽ23. Observing that βi =

vi
c and that the B-fields in our unit

system have a factor of c included compared to the “normally” used B∗-fields, we can rewrite the
equations above as

F12e12 = q̂12
(
E12 − (

v1
c
cB02

∗ − v2
c
cB01

∗ )
)
e12

F31e31 = q̂31
(
E31 − (

v3
c
cB01

∗ − v1
c
cB03

∗ )
)
e31

F23e23 = q̂23
(
E23 − (

v2
c
cB03

∗ − v3
c
cB02

∗ )
)
e23

13



Using (8) for the correct plus and minus signs, the dynamic electromagnetic force in the non-
relativistic limit is thus identified as the Lorentz force

FLorentz = q(E + v ×B∗) (14)

3.4 Maxwell’s Equations for Static Charges

Some of the most important equations in electromagnetism and physics are Maxwell’s equations.
Instead of just using the result from the general derivative in Appendix A.2, we will now derive the
equations explicitly from the electrostatic force.

Looking at the static electromagnetic force in section 3.2 and assuming that forces are conserved,
we can write

∇̊F = 0 = ∇̊(−q̂0jB0je0j + q̂ijEijeij)) = −∇̊(q0j)B0je0j − q0j∇̊(B)e0j + ∇̊(qij)Eijeij + qij∇̊(Eijeij)

Because the components are separable by their unit bivectors, we can look at each bivector com-
ponent independently, e.g. for a magnetic field component

q03∇̊(B03)e03 = −∇̊(q03)B03e03 results in ∇̊B03e03 = −∇̊(q03)
B03

q03
e03

and e.g. for an electric field component

−q12∇̊(E12)e12 = ∇̊(q12)E12e12 results in − ∇̊(E12)e12 = ∇̊(q12)
E12

q12
e12

All components combined, we now have the equation

−∇̊(−B0je0j + Eijeij) = −∇̊(q0j)
B0j

q0j
e0j + ∇̊(qij)

Eij

qij
eij

The left side of the equation can be directly compared with ∇̊(−B+E) =M.E.′s in vacuum from
appendix A.2

−∇̊(−B0je0j + Eijeij) =− (d1B
01 + d2B

02 + d3B
03)e0

− (−d0B01 − (d2E
12 − d3E

31))e1

− (−d0B02 − (d3E
23 − d1E

12))e2

− (−d0B03 − (d1E
31 − d2E

23))e3

− (d0E
12 − (d1B

02 − d2B
01))e012

− (d0E
31 − (d3B

01 − d1B
03))e031

− (d0E
23 − (d2B

03 − d3B
02))e023

− (−d1E23 − d2E
31 − d3E

12)e231

The other, right side of the equation depends on the strengths of the B- and E-fields. With a unit
electric field strength Eu and a unit magnetic field strength Bu, one can write B0j = S0jBu and
Eij = SijEu.
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Therefore we can write

−∇̊(q0j)
B0j

q0j
e0j + ∇̊(qij)

Eij

qij
eij = −∇̊(q0j)

S0jBu

q0j
e0j + (∇̊qij)S

ijEu

qij
eij

= −S0j∇̊(q0j)
Bu

q0j
e0j + Sij∇̊(qij)

Bu

qij
eij

This “unit” E-field Eu and an unit electric charge qiju can be used to define a constant ϵ0 as

ϵ0 =
qiju
Eu

(15)

This constant is called vacuum electric permittivity ϵ0. For its value and units see appendix C.

Note that the units of charge are [A · s] and here an electric field has
[
kg·m
A·s3

]
, which combines to[

A2·s4
kg·m

]
. This discrepancy to the “normal” units of

[
A2·s4
kg·m3

]
stems from the fact that our resulting

separate equations are one dimensional, not three-dimensional densities.

With the well-known equivalence

ϵ0µ0 =
1

c2
(16)

we can also get the constant µ0, the vacuum magnetic permeability. For the values of these constants
also refer to section C.

In analogy to (15) we can also define a constant ϵb for magnetic unit charge and field

ϵb =
q0ju
Bu

(17)

even though we assume that magnetic charges don’t exist.

Combining it all, we now can write

−∇̊(q0j)
B0j

q0j
e0j + ∇̊(qij)

Eij

qij
eij = −∇̊(q0ju )

S0j

ϵb
e0j + ∇̊(qiju )

Sij

ϵ0
eij

= − 1

ϵb
∇̊(Sijq0ju )e0j +

1

ϵ0
∇̊(Sijqiju )eij

Because S0j and Sij are only scalar numbers, we can define Qij = S0jq0ju and Qij = Sijqiju . Using
these definitions, we now have − 1

ϵb
∇̊(Q0j)e0j +

1
ϵ0
∇̊(Qij)eij . It becomes clear that we can use the

same formula from Appendix A.2 that led to ∇̊(−B + E) = M.E.’s in vacuum. In summary, the
derivative of the (static) electromagnetic force ∇̊FEB = 0 = ∇̊(−q0jB0je0j + qijEijeij) leads to

∇̊(B0je0j − Eijeij) = − 1

ϵb
∇̊(Q0j)e0j +

1

ϵ0
∇̊(Qij)eij

This result will be used in 3.6 “Fine-Structure Constant”
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Components related to − 1
ϵb
∇̊Q0j:

1

ϵb
(d1Q

01 + d2Q
02 + d3Q

03)e0

− 1

ϵb
(d0Q

01)e1

− 1

ϵb
(d0Q

02)e2

− 1

ϵb
(d0Q

03)e3

− 1

ϵb
(d1Q

02 − d2Q
01)e012

− 1

ϵb
(d3Q

01 − d1Q
03)e031

− 1

ϵb
(d2Q

03 − d3Q
02)e023

All of these components contain virtual “magnetic charges” and are normally not included in
Maxwell’s equations.

Components related to 1
ϵ0
∇̊Qij:

− 1

ϵ0
(d2Q

12 − d3Q
31)e1

− 1

ϵ0
(d3Q

23 − d1Q
12)e2

− 1

ϵ0
(d1Q

31 − d2Q
23)e3

+
1

ϵ0
(d0Q

12)e012

+
1

ϵ0
(d0Q

31)e031

+
1

ϵ0
(d0Q

23)e023

− 1

ϵ0
(d1Q

23 + d2Q
31 + d3Q

12)e123

There are some previously unobserved vector components:

− 1

ϵ0
(d2Q

12 − d3Q
31)e1,−

1

ϵ0
(d3Q

23 − d1Q
12)e2, and − 1

ϵ0
(d1Q

31 − d2Q
23)e3

With the electric current
∆Qij

∆x0
= jijE (18)

and the electric charge density
∆Qij

∆xk
= −ρijE (19)
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the previously observed trivector components are

j12E
ϵ0
e012,

j31E
ϵ0
e031,

j23E
ϵ0
e023, and

ρE
ϵ0
e123

Remembering that we started from

∇̊F = 0 = −∇̊(q0j)B0je0j + ∇̊(qij)Eijeij − q0j∇̊(B0j)eij + qij∇̊(E)eij

∇̊(B0je0j − Eijeij) = − 1

ϵb
∇(Q0j)e0j +

1

ϵ0
∇(Qij)eij

we can recombine the equations and components from above side by side:

−(d1B
01 + d2B

02 + d3B
03)e0 =

1

ϵb
(d1Q

01 + d2Q
02 + d3Q

03)e0

−(−d0B01 − (d2E
12 − d3E

31))e1 = (− 1

ϵb
d0Q

01 − 1

ϵ0
(d2Q

12 − d3Q
31))e1

−(−d0B02 − (d3E
23 − d1E

12))e2 = (− 1

ϵb
d0Q

02 − 1

ϵ0
(d3Q

23 − d1Q
12))e2

−(−d0B03 − (d1E
31 − d2E

23))e3 = (− 1

ϵb
d0Q

03 − 1

ϵ0
(d1Q

31 − d2Q
23))e3

−(d0E
12 − (d1B

02 − d2B
01))e012 = (

1

ϵ0
d0Q

12 − 1

ϵb
(d1Q

02 − d2Q
01))e012

−(d0E
31 − (d3B

01 − d1B
03))e031 = (

1

ϵ0
d0Q

31 − 1

ϵb
(d3Q

01 − d1Q
03))e031

−(d0E
23 − (d2B

03 − d3B
02))e023 = (

1

ϵ0
d0Q

23 − 1

ϵb
(d2Q

03 − d3Q
02))e023

−(−d1E23 − d2E
31 − d3E

12)e123 = − 1

ϵ0
(d1Q

23 + d2Q
31 + d3Q

12)e123

(20)

While the new and unobserved terms might seem surprising at first, there are engineering applica-
tions where it is helpful and customary to introduce terms like “magnetic charge”, e.g. in Antenna
theory [1]. However, we will have a critical look at the validity of all parts of these equations below
in 3.5.

If we substitute B0j := Bj (No change of sign! We included this step in the beginning), Q0j := Qj
B,

Eij := Ek, and Qij := Qk
E and rearrange slightly we can write in short notation (with terms that

are so far not included in Maxwell’s Equations marked in the color gray)

∇ ·B =
1

ϵb
(∇ ·QB)

∇× E = −d0B − 1

ϵb
(d0QB)−

1

ϵ0
(∇×QE)

∇×B = d0E +
1

ϵ0
Jq −

1

ϵb
(∇×QB)

∇ · E =
1

ϵ0
ρq

(21)
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Setting the unobserved terms to 0, we get these four lines, which represent all four of Maxwell’s
equations:

∇ ·B = 0

∇× E = −d0B

∇×B = d0E +
1

ϵ0
Jq

∇ · E =
1

ϵ0
ρq

(22)

Gauss’s Law for Magnetism
Look at (20) and at the real temporal component e0:

(d1B
01 + d2B

02 + d3B
03) = 0

This can be written as Gauss’s law for magnetism

∇ ·B = 0 (23)

Maxwell-Faraday Equation (Faraday’s Law of Induction)
Look at e.g. the real spatial components e1 (and at e2 and e3):

d2E
12 − d3E

31 = d0B
01

Up to here, B was measured in the same units as E. With the substitutions B = cB∗ and
d0 = 1

c
∂
∂t and eliminating c, these can be combined into Maxwell-Faraday equation (Faraday’s law

of induction)

∇× E = − ∂

∂t
B∗ (24)

Ampère’s Circuital Law (with Maxwell’s Addition)
Look at the imaginary component e012 or similar at components e031 and e023: The familiar com-
ponents here are

ϵ0(d1B
02 − d2B

01) = J12
q + ϵ0d0E

12

With B = cB∗ and Jq = d0Qe =
1
c
∂
∂tQe =

1
c jq this becomes

cϵ0(cd1B
02
∗ − cd2B

01
∗ ) = (j12q + ϵ0

∂

∂t
E12)

1

µ0
(d1B

02
∗ − d2B

01
∗ ) = (j12q + ϵ0

∂

∂t
E12)

(d1B
02
∗ − d2B

01
∗ ) = µ0(j

12
q + ϵ0

∂

∂t
E12)

These components can be combined into Ampère’s circuital law (with Maxwell’s addition)

∇×B∗ = µ0(jq + ϵ0
∂

∂t
E) (25)

Gauss’s Law
Look at the imaginary temporal component e123:

(d1E
23 + d2E

31 + d3E
12)e123 = (

ρq
ϵ0
)e123

This can be written as Gauss’s law
∇ · E =

ρq
ϵ0

(26)
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3.5 Interpretation of the Equations Leading to Maxwell’s Equations

Looking at equation (20) and comparing them with the known form of Maxwell’s equations (22) the
most obvious thing to notice is that no terms including Q0j have been observed. As the magnetic
field B is only a relativistic effect of the electric field E, maybe the terms including Q0j are really
zero or non-existent. Perhaps they are some other kind of charge which work on original, non
derived action and force fields Field0jS and Field0j .

Before we take a guess about these new kind of charges and fields, there is one more unknown term
in (21) which contain the definitely existing Qij , this is − 1

ϵ0
(∇ × QE). Looking at the units and

the components, this is a spatial derivative - which makes it equivalent to a momentum (at the
derivative level of energy, momentum ...). However, it also adds a rotation, which, when combined,
makes this equivalent to an angular momentum. Looking a bit further back in the history of the
derivation of this term, we see that it comes actually from the (internal) rotation of a unit charge.
A reasonable assumption therefore seems to be that this term is connected to some kind of spin
and should be included in extended Maxwell’s equations:

∇ ·B = 0

∇× E = −d0B − 1

ϵ0
(∇×QE)

∇×B = d0E +
1

ϵ0
Jq

∇ · E =
1

ϵ0
ρq

(27)

This leaves the question of what Charge0j represents and to which fields they connect. A possibly
far fetched idea that would need serious research might be the following: For symmetry reasons,
these charges should show similar behaviour to electric charges. There should be two or three
different fractional values of them which can be summed up to a whole or zero and there should
be a positive and a negative value to each (charge / anti-charge). Thinking about quarks and their
properties, the idea presents itself that these charges Charge0j might represent color charges which
work on their own color field (which of course must have a complementary derived field in analogy
to the B-field of the electric E-field. Also equations equivalent to Maxwell’s equations must exist,
including some kind of color spin).

All in all, from this we now could assume that quarks and leptons are made up of combinations of
up to six independent bivectors. These are acted upon by color and electric charge operators.

If one wanted to continue to leave the realm of ”reasonable assumptions” and go a bit further then
one could come up with the idea that, when viewing these bivectors as spacetime invariants, it
might also be possible to view them as strings (which are described by the equation of spacetime
invariants). One step further might lead to the assumption that these are not strings of some kind
in spacetime, but that these strings actually represent spacetime itself. However, when thinking
about the field equations of general relativity and how they are interpreted as ”mass tells spacetime
how to bend” then one could also actually take the equality sign to literally mean ”mass is bent
spacetime”. In this way, the idea that these bivectors represent/are spacetime does not seem to be
too unlikely. The superposition of all the bivectors/wave functions would make up all of spacetime.
Particle/wave duality could also easily be explained this way. Energy or force singularities at r = 0
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would no longer be problematic (Derivative/slope of a circle at angle α = 0. α stands in for radius
/ distance from origin)

3.6 Fine-Structure Constant

Generally speaking, a bivector field Cµνeµν can be written as qµνFµνeµν .

Cµνeµν = qµν
Cµν

qµν
eµν = qµνFµνeµν

For simplification, we will not write out eµν or any unit vectors below. The first spacetime derivative
yields

∇̊Cµν = ∇̊(qµνFµν) = Fµν∇̊(qµν) + qµν∇̊(Fµν)

With the condition ∇̊Cµν = 0, we can write

0 = Fµν∇̊(qµν) + qµν∇̊(Fµν)

−qµν∇̊(Fµν) = Fµν∇̊(qµν)

−∇̊(Fµν) =
Fµν

qµν
∇̊(qµν)

With qµν = Sµν
q qµνu and Fµν = Sµν

F Fµν
u this leads to

−∇̊(Fµν) =
Fµν
u

qµνu
∇̊(Sµν

q qµνu )
Sµν
F

Sµν
q

and finally, using a constant proportionality factor 1
ϵ = Fµν

u

qµν
u

−∇̊(Fµν) =
1

ϵ
∇̊(Sµν

F qµνu )

−∇̊(Fµν) =
1

ϵ
∇̊(Qµν

F ) (28)

An example of such a proportionality factor can be seen above in 3.4 when deriving the electric
permittivity ϵ0 from the electromagnetic force:

Fµν
EM = qµν

Fµν
EM

qµν
= qµνEµν

Taking the derivative leads to the combined form of Maxwell’s Equations

−∇̊(Eµν) =
1

ϵ0
∇̊(Sµνqµνu ) =

1

ϵ0
∇̊(Qµν)

After this – and according to equation (61) – the second derivative of electromagnetic force leads
to

−(∇̊ · ∇̊ · Eµν) =
1

ϵ0
(∇̊ · ∇̊ ·Qµν)
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and more general, the second derivative of a bivector field Cµν leads to

−(∇̊ · ∇̊ · Fµν) =
1

ϵ
(∇̊ · ∇̊ · Sµνqµνu ) (29)

Remembering from 2.3 that bivectors can be written as wave functions and taking the second
derivative of a complex wave function, we get

dx · dx · eikx = ikdx · eikx = −k2eikx

Because each side of equation (29) is such a wave equation, this can also be written as

−(∇̊ · ∇̊ · Fµν) =
−k2

ϵ
(Sµνqµνu ) =

−2α

ϵ
(Sµνqµνu ) (30)

Here, we use the constant −α instead of the constant −k2 for reasons that will become clear below
in 3.6.

In analogy, the second derivative of the general bivector field from 28 and above is

−(∇̊ · ∇̊ · Fµν) =
−α
ϵ
Qµν (31)

Another concrete example of this can be seen later in 4.8 “Field Equations Of Gravitation”.

After looking at this general derivation, we can now look at a concrete example. Just above, as an
example, we looked at the first and second derivative of a general bivector field. Looking at the
concrete bivector field of electric action S, we know that action, with the right scaling, is

Su = h = 2πℏ (32)

we can also write

Su = q
Su

q
= q

2πℏ
q

= qES

With ∇̊S = 0 = ∇̊(qES) = ∇̊(q)ES + q∇̊(ES) the first derivative becomes

−∇̊(ES) =
2πℏ
q2

∇̊(q) (33)

Note that this is the full spacetime derivative that not only includes energy but also momentum
and angular momentum. We chose to ignore Heisenberg’s uncertainty principle here which does
apply to each single term of the derivative. The second derivative, a force, becomes

−(∇̊ · ∇̊ · ES) =
2πℏ
q2

(∇̊ · ∇̊ · q) (34)

We contract the terms of the second derivative to gain a single term for force. This of course intro-
duces a proportianality factor. As we have seen in 3.4 “Maxwell’s Equations for Static Charges”,
we can assume that the static electric force is F = qijEij = 0. We can therefore write the first
derivative of this force as

−∇̊E =
1

ϵ0
∇̊q = ∇̊(

1

ϵ0
q)
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The factor 1
ϵ0

was also derived while deriving Maxwell’s equations. We can compare this with the
derivative of (34), the third derivative of electromagnetic action

−∇̊(∇̊ · ∇̊ · ES) = ∇̊
(
2πℏ
q2

(∇̊ · ∇̊ · q)
)

By comparing the arguments in the parentheses of the derivatives with charge, we see that

2πℏ
q2

(∇̊ · ∇̊ · q) = 1

ϵ0
q

and

∇̊ · ∇̊ · q = q2

2πϵ0ℏ
q (35)

With the fine-structure constant α

α =
q2

4πϵ0ℏc
(36)

this leads to

∇̊ · ∇̊ · q = 2

c
αq (37)

The somewhat unexpected factor of 2
c is explainable by only looking at energy and observing

Heisenberg’s uncertainty principle. Using ℏ
2 instead of just ℏ in the first derivative of action equation

(33) and c, which often is the conversion factor between t and x0, lets us derive the fine-structure
constant α.

The above is actually the equation of a bivector component qeµν . We therefore might assume that
q can be written as a wave equation

q = qeikx (38)

and
∇̊ · ∇̊ · q = −k2qeikx = −k2q (39)

Comparing equations (37) and (39) and removing the factor 2
c as described above, we can see that

the wave number k of electromagnetic action charge would be k =
√
α =

√
q2

4πϵ0ℏc = q√
2ϵ0hc

k =
q√

2ϵ0hc
(40)

While the above only shows the example of electromagnetic action, the same should be true for all
kinds of “charge”, electromagnetic, gravitational, and others.

4 Gravitation

4.1 Action and Angular Momentum, Gravitational and Momentum Action
Field

The second derivative of action is force. As shown in (2) and equation (61), the second derivative
of a bivector field is also a bivector field. Therefore, in analogy to electric forces and electric
force fields, e.g. FE = qE and E = FE

q , we can define a gravitational action SG = mGS with a
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gravitational action field GS = SG
m with units

[
action
mass

]
. In analogy to E and the motion induced

field B ∝ β×E we introduce another field PS ∝ β×GS . This leads to similar equations to equation
(10) and (11), “Biot-Savart law”.

−G01
S e01 = −(11 ∨ γ2 ∨ γ3)G̃S

01
e01

−G02
S e02 = −(γ1 ∨ 12 ∨ γ3)G̃S

02
e02

−G03
S e03 = −(γ1 ∨ γ2 ∨ 13)G̃S

03
e03

P 12
S e12 = −(γ2β2G̃S

23 − γ1β1G̃S
31
)e12

P 31
S e31 = −(γ1β1G̃S

12 − γ3β3G̃S
23
)e31

P 23
S e23 = −(γ3β3G̃S

31 − γ2β2G̃S
12
)e23

(41)

In analogy to the static electromagnetic action and force, and with electromagnetic charge replaced
be mass mµν we can write down a static gravitational action

Sstatic = −m0jG0j
S e0j +mijP ij

S eij (42)

4.2 Dynamic Gravitational Action

In analogy to 3.3 “Dynamic Electromagnetic Force” and equation (13) we can write

S01e01 = m01
(
− (11 ∨ γ2 ∨ γ3) G̃S

01
+ (γ3β3P̃S

31 − γ2β2P̃S
12
)
)
e01

S02e02 = m02
(
− (γ1 ∨ 12 ∨ γ3) G̃S

02
+ (γ1β1P̃S

12 − γ3β3P̃S
23
)
)
e02

S03e03 = m03
(
− (γ1 ∨ γ2 ∨ 13) G̃S

03
+ (γ2β2P̃S

23 − γ1β1P̃S
31
)
)
e03

S12e12 = m12
(
(γ1 ∨ γ2 ∨ 13) P̃S

12 − (γ1β1G̃S
02 − γ2β2G̃S

01
)
)
e12

S31e31 = m31
(
(γ1 ∨ 12 ∨ γ3) P̃S

31 − (γ3β3G̃S
01 − γ1β1G̃S

03
)
)
e31

S23e23 = m23
(
(11 ∨ γ2 ∨ γ3) P̃S

23 − (γ2β2G̃S
03 − γ3β3G̃S

02
)
)
e23

(43)

In analogy to 3.3 “Dynamic Electomagnetic Force and Lorentz Force” and equation (14) we can
write in the non-relativistic limit the dynamic gravitational action

Sdynamic = m(GS + v × PS) (44)

4.3 Energy, Mass, Momentum, and Angular Momentum

Assuming action is conserved, the spacetime derivative of the static gravitational action is

0 = ∇̊S = ∇̊(−m0jG0j
S e0j +mijP ij

S eij) (45)

With G0j
S = S0jG0j

Su (scalar strength of G multiplied by unit action field), P ij
S = SijP ij

Su (scalar

strength of P multiplied by unit action field), 1
αG

=
G0j

Su

m0j
u
, and 1

αP
=

P ij
Su

mij
u
, equation (45) can be split

into

−∇̊(−G0j
S e0j + P ij

S eij) = −S
0j

αG
∇̊(m0j

u )e0j +
Sij

αP
∇̊(mij

u )eij

−∇̊(−G0j
S e0j + P ij

S eij) = − 1

αG
∇̊M0j +

1

αG
∇̊M ij
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Even though the equations above describe derivatives of action and Maxwell’s equations describe
derivatives of force, both sides transform like Maxwell’s equations, with MG and GS taking the
place of components related to the B-field and MP and PS taking the place of components related
to the E-field. Comparing with the short form of Maxwell’s Equations (21) gravitation has its
analogy in

∇ ·GS =
1

αG
(∇ ·MG)

∇× PS = −d0GS − 1

αG
(d0MG)−

1

αP
(∇×MP )

∇×GS = d0PS +
1

αP
(d0MP )−

1

αG
(∇×MG)

∇ · PS = − 1

αP
(∇ ·MP )

When applying the same logic as we did when interpreting the equations leading to Maxwell’s
equations in 3.5, we assume that all terms with MP can be dropped and that the likely equations
for gravitation are

∇ ·GS =
1

αG
(∇ ·MG)

∇× PS = −d0GS − 1

αG
(d0MG)

∇×GS = d0PS +
1

αG
(∇×MG)

∇ · PS = 0

(46)

All the terms that are derivatives of action with respect to time, d0, are related to energy. All the
terms that are derivatives of action with respect to spatial directions, di, are related to momentum.
The crossproduct terms are related to angular momentum (spin?).

Mass does not act like charges (eg. it is only positive and only a measure of the energy levels of the
vibrations of the bivectors), so there might be some differences in the logic. However, there should
be an equivalent to the color charge and the color fields, just like mass is the equivalent to the
electric charge.ON the other hand, if mass acts differently than charge and the masses connected
with the momentum filed cannot be dropped, then this might play a role in the different energy
levels caused by spin that should be investigated.

Effectively, the sum of these energy, momentum, and angular momentum terms represent the
gravitational/mass related Lagrangian of this system. If there is an equivalent to the color field, this
adds another Lagrangian. Combined with the electromagnetic Lagrangian and the color Lagrangian
we then have a total of four Lagrangian describing the whole system. This might be closely related
to the Standard Model of Particle Physics.

4.4 Perihelion Shift of Mercury

One of the earliest confirmations of general relativity is the successful prediction of the Perihelion
shift of Mercury. To see if our approach to gravitation can yield the same results, we can look at
the equations of energies in the different approaches to gravitation.
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Orbital Energies in Newtonian Gravitation

total energy = rest energy + kinetic energy + potential energy

Et = mc2 +
1

2
mv2 +mVG(r)

With (63), the velocity v in polar coordinates, this becomes

Et = mc2 +
1

2
m(ṙ2 + r2ϕ̇2) +mVG(r)

Et = mc2 +
1

2
mṙ2 +m

1

2
r2ϕ̇2 +mVG(r)

With equation (64), angular velocity and angular momentum, this becomes

Et = mc2 +
1

2
mṙ2 +m

1

2
r2(

L

mr2
)2 +mVG(r)

Et = mc2 +
1

2
mṙ2 +

mL2

2m2r2
− GnmM

r

Et −mc2 =
1

2
mṙ2 +m

(
L2

2m2r2
− GnM

r

)
(47)

Orbital Energies in General Relativity: Looking at energy from the viewpoint of gravitation
and general relativity, as described e.g. in [17], one finds the following equation. With eigentime τ
and angular momentum per unit mass L = L

m we have

1

2
(
E2

m
−mc2) =

1

2
m(

dr

dτ
)2 +m

(
L
2r2

− GnM

r
− GnM

c2
L2

r3

)
1

2
(
E2

m
−mc2) =

1

2
m(

dr

dτ
)2 +m

(
L2

2m2r2
− GnM

r
− GnM

c2
L2

m2r3

)
1

2
(
E2

m
−mc2) =

1

2
m(

dr

dτ
)2 +m

(
L2

2m2r2
− GnM

r

)
− GnM

c2
L2

mr3
(48)

Comparing this equation with equation (47) from Newtonian gravitation, we find that the significant
term responsible for the precession of the perihelion of Mercury is the last term,

−GnM

c2
L2

mr3
(49)

Derivation of the additional energy term With our assumptions about relativistic effects, we
can look again at the energies of Newtonian gravitation. We also assume the simplification that –
for the instant of our observation – Mercury moves on a circular geodesic around the sun. Circular
and geodesic here means that r is constant and we can still apply special relativity because no
acceleration takes place. The velocity v of Mercury is parallel to the tangent of movement to the
circle, v is perpendicular to r.

Static case / energies: Estatic = mc2 −mGnM
r

Dynamic case / total energies: Just like rest mass/energy gets an additional dynamic term – the
kinetic energy – the potential energy VG becomes VG + β × VP . Remembering that VP originated
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from β × VG, we get VG + β × β × VG. Because v is perpendicular to VG, γ is only applied to the
first term of the energy, the rest mass.

Et = γmc2 − VG − β × β × VG

Et = γmc2 −m
GnM

r
− β × β ×m

GnM

r

β × β × VG is a vector triple product, see B, but because v (and therefore β) is perpendicular to

VG, we get β × β × VG = β2VG = VG
v2

c2
. With γmc2 = mc2 + 1

2
v2

c2
mc2 = mc2 + 1

2mv
2 the total

energy becomes

Et = mc2 +
1

2
mv2 −m

GnM

r
−m

GnM

rc2
v2

The last term, −mGnM
rc2

v2, is a new term compared with Newtonian gravitation. It is a relativistic
effect of potential energy.

Transforming the new energy term Using equations (63) and (64) we can write |v|2 = ṙ2 +

ϕ̇2r2 = |v|2 = ṙ2 + L2

m2r2
. Using this, we write

−m
GnM

rc2
v2

= −mGnM

rc2
(ṙ2 +

L2

m2r2
)

= −mGnM

rc2
(ṙ)2 − GnM

c2
L2

mr3

Because we assumed that Mercury – in the instant of our observation – is moving on the tangent
of a circular orbit and therefore r – in that instant – is constant, the first term vanishes and we are
left with the term

−GnM

c2
L2

mr3
(50)

This matches with the last term from (48) “Orbital Energies in General Relativity” above, the
significant term for the perihelion shift of Mercury.

4.5 Static Gravitational Force

In analogy to section 3.2 “Static Electromagnetic Force”, the gravitational force field G is defined
as G = force

mass . Multiplied with a mass m, the resulting force is

Fstatic = mG = −m̂0jG0je0j

This is the static gravitational force.

The static gravitational force can also be extended as

Fstatic = −m̂0jG0je0j + m̂ijP ijeij .
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4.6 Dynamic Gravitational Force

In analogy to section 3.3 “Dynamic Electromagnetic Force” we can derive the dynamic gravitational
force. Utilising the reverse transformation formulas for bivector components under movement from
appendix A.3

C01e01 =
(
(11 ∨ γ2 ∨ γ3) C̃01 + γ3β3C̃

31 − γ2β2C̃
12
)
e01

C02e02 =
(
(γ1 ∨ 12 ∨ γ3) C̃02 + γ1β1C̃

12 − γ3β3C̃
23
)
e02

C03e03 =
(
(γ1 ∨ γ2 ∨ 13) C̃

03 + γ2β2C̃
23 − γ1β1C̃

31
)
e03

C12e12 =
(
(γ1 ∨ γ2 ∨ 13) C̃

12 + γ1β1C̃
02 − γ2β2C̃

01
)
e12

C31e31 =
(
(γ1 ∨ 12 ∨ γ3) C̃31 + γ3β3C̃

01 − γ1β1C̃
03
)
e31

C23e23 =
(
(11 ∨ γ2 ∨ γ3) C̃23 + γ2β2C̃

03 − γ3β3C̃
02
)
e23

Setting C01 = −G01, C02 = −G02, C03 = −G03, C12 = P 12, C31 = P 31, and C23 = P 23, we get

−G01e01 =
(
− (11 ∨ γ2 ∨ γ3)G01 + (γ3β3P

31 − γ2β2P
12)

)
e01

−G02e02 =
(
− (γ1 ∨ 12 ∨ γ3)G02 + (γ1β1P

12 − γ3β3P
23)

)
e02

−G03e03 =
(
− (γ1 ∨ γ2 ∨ 13)G

03 + (γ2β2P
23 − γ1β1P

31)
)
e03

P 12e12 =
(
(γ1 ∨ γ2 ∨ 13)P

12 − (γ1β1G
02 − γ2β2G

01)
)
e12

P 31e31 =
(
(γ1 ∨ 12 ∨ γ3)P 31 − (γ3β3G

01 − γ1β1G
03)

)
e31

P 23e23 =
(
(11 ∨ γ2 ∨ γ3)P 23 − (γ2β2G

03 − γ3β3G
02)

)
e23

These are the full equations of the dynamic gravitational force field.

In the equations above, comparing the second terms in parenthesis of all fields F ij with equation
(41) we can identify these terms as the definition of a newly induced P -fields, much like the definition
of the B-field in (11) “Biot-Savart Law”.

P 12
induced = −(γ1β1G

02 − γ2β2G
01)

P 31
induced = −(γ3β3G

01 − γ1β1G
03)

P 23
induced = −(γ2β2G

03 − γ3β3G
02)

(51)

Assuming, in analogy to electromagnetism, that all forces F ij are unobserved and no masses mij

exist to work on these fields/bivectors, the remaining mixed time and spatial terms F0j of the force
should be observable.

F01e01 = m̂01
(
− (11 ∨ γ2 ∨ γ3)G01 + (γ3β3P

31 − γ2β2P
12)

)
e01

F02e02 = m̂02
(
− (γ1 ∨ 12 ∨ γ3)G02 + (γ1β1P

12 − γ3β3P
23)

)
e02

F03e03 = m̂03
(
− (γ1 ∨ γ2 ∨ 13)G

03 + (γ2β2P
23 − γ1β1P

31)
)
e03

These are the components of the dynamic gravitational force.

Reminder: The G- and P -field each include a factor c because of e0j . In the non-relativistic limit,
one could also write the equations in analogy to the Lorentz force as

FLorentz−like = m(G+ v × P )
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A “new” force/field in nature should have been observed by now. However, just like the magnetic
field is much weaker than the electric field in non-relativistic scenarios, the momentum field should
also be much weaker than the gravitational field. Small variations of the gravitational field are very
hard to detect with today’s technologies. To be observable, one would have to study something
with a lot of mass at considerable speed. This is only possible for heavy astronomical objects like
stars and planets – see above in 4.4 “Perihelion Shift Of Mercury” – or even more extreme objects
like black holes or galaxies. Indeed, one of the “riddles” of galaxies is that they appear to be flatter
than one would expect from gravitation and angular momentum alone, an effect that could be
attributed to the momentum field. Also the tendency of galaxies to develop spiral arms might be
an effect of the momentum field.

4.7 Maxwell-like Equations of Gravitation

In analogy to section 3.4 “Maxwell’s Equations of Static Charges” we can write

∇̊F = 0 = ∇̊(−m̂0jG0je0j + m̂ijP ijeij) = −∇̊(mg)G+ ∇̊(mp)P −mg∇̊(G) +mp∇̊(P )

Based on our experience with Maxwell’s equations we can define some factors 1
g0

= Gu
mgu

and
1
gp

= Pu
mpu

.

While for Maxwell’s Equations we used both the equivalent factors 1
ϵ0

and 1
ϵb

(which both have the

same units), we now instead use only the factor 1
g0

and absorb the unit less scalar factor sϵ from
1
gp

= sϵ
g0

into the strengths of all M ij
P . S0jm0j

g =M0j
G and sϵS

ijmij
p =M ij

P

Now we can split and transform the equation above immediately into a left side

∇̊(G01e01 +G02e02 +G03e03 − P 12e12 − P 31e31 − P 23e23)

and a right side

∇̊(−S01
G

mg

g0
e01 − S02

G

mg

g0
e02 − S03

G

mg

g0
e03 + sϵS

12
P

mp

g0
e12 + sϵS

31
P

mp

g0
e31 + sϵS

23
P

mp

g0
e23) =

∇̊(−
M01

G

g0
e01 −

M02
G

g0
e02 −

M03
G

g0
e03 +

M12
P

g0
e12 +

M31
P

g0
e31 +

M23
P

g0
e23)

Here, by comparing the factor 1
4πϵ0

of the electric potential 1
4πϵ0

qQ
r er with Newton’s gravitational

constant Gn of the gravitational potential Gn
mM
r er we can replace the constant Gn = 1

4πg0
with

1

g0
= 4πGn (52)
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In analogy to (20) from 3.4 “Maxwell’s Equations for Static Charges”, with some rearranging, the
equivalent gravitational and momentum terms above become

−(d1G
01 + d2G

02 + d3G
03)e0 = 4πGn(d1M

01
G + d2M

02
G + d3M

03
G )e0

−(−d0G01 − (d2P
12 − d3P

31))e1 = 4πGn(−d0M01
G − (d2M

12
P − d3M

31
P ))e1

−(−d0G02 − (d3P
23 − d1P

12))e2 = 4πGn(−d0M02
G − (d3M

23
P − d1M

12
P ))e2

−(−d0G03 − (d1P
31 − d2P

23))e3 = 4πGn(−d0M03
G − (d1M

31
P − d2M

23
P ))e3

−(d0P
12 − (d1G

02 − d2G
01))e012 = 4πGn(d0M

12
P − (d1M

02
G − d2M

01
G ))e012

−(d0P
31 − (d3G

01 − d1G
03))e031 = 4πGn(d0M

31
P − (d3M

01
G − d1M

03
G ))e031

−(d0P
23 − (d2G

03 − d3G
02))e023 = 4πGn(d0M

23
P − (d2M

03
G − d3M

02
G ))e023

−(−d1P 23 − d2P
31 − d3P

12)e123 = 4πGn(−d1M23
P − d2M

31
P − d3M

12
P )e123

(53)

In compact notation, with G0j = Gj , M0j
G =M j

G, P
ij = P k, and M ij

P =Mk
P :

−∇ ·G =
1

g0
(∇ ·MG)

d0G+∇× P =
1

g0
(−d0MG −∇×MP )

−d0P +∇×G =
1

g0
(d0MP −∇×MG)

∇ · P =
1

g0
(−∇ ·MP )

Dropping all terms with Mk
P leads to

−∇ ·G =
1

g0
(−∇ ·MG)

d0G+∇× P = − 1

g0
(d0MG)

−d0P +∇×G = − 1

g0
(∇×MG)

∇ · P = 0

Something like an internal mass-spin as in − 1
g0
(∇×MG) has not been observed yet.

4.8 Field Equations of Gravitation

From section A.2 we know that the second derivative of a bivector field C is

∇̊(∇̊(C01e01 + C02e02 + C03e03 + C12e12 + C31e31 + C23e23)) =

+ d0d0C
01e01 − d3d3C

01e01 + d1d1C
01e10 + d2d2C

01e10

+ d0d0C
02e02 − d1d1C

02e02 + d2d2C
02e20 + d3d3C

02e20

+ d0d0C
03e03 − d2d2C

03e03 + d1d1C
03e30 + d3d3C

03e30

+ d0d0C
12e12 − d1d1C

12e12 + d2d2C
12e21 + d3d1C

23e21

+ d0d0C
31e31 − d3d3C

31e31 + d1d1C
31e13 + d2d2C

31e13

+ d0d0C
23e23 − d2d2C

23e23 + d1d1C
23e32 + d3d3C

23e32
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Looking at the components of e01 and e10 we realize that this can be written as

+ d0d0C
01e01 − d3d3C

01e01 + d1d1C
01e10 + d2d2C

01e10 =

+
1

2
d0d0C

01e01 +
1

2
d0d0C

01e01 −
1

2
d3d3C

01e01 −
1

2
d3d3C

01e01

+
1

2
d1d1C

01e10 +
1

2
d1d1C

01e10 +
1

2
d2d2C

01e10 +
1

2
d2d2C

01e10

Reversing the direction of half of the bivectors and resorting the components accordingly results in

=

+
1

2
d0d0C

01e01 −
1

2
d1d1C

01e01 −
1

2
d2d2C

01e01 −
1

2
d3d3C

01e01

− 1

2
d0d0C

01e10 +
1

2
d1d1C

01e10 +
1

2
d2d2C

01e10 +
1

2
d3d3C

01e10

It should be remembered that we actually have values for the off diagonal elements of Rµν . C01 =
−G01, C02 = −G02, C03 = −G03, C12 = P 12, C31 = P 31, and C23 = P 23. Contracting the
components of these bivectors like

Rµν = +d0d0C
µν − d1d1C

µν − d2d2C
µν − d3d3C

µν

leaves us with Rµνeµν

=
1

2
(+d0d0C

µν − d1d1C
µν − d2d2C

µν − d3d3C
µν)eµν

+
1

2
(+d0d0C

µν − d1d1C
µν − d2d2C

µν − d3d3C
µν)eµν

=
1

2
(+d0d0C

µν − d1d1C
µν − d2d2C

µν − d3d3C
µν)eµν

−1

2
(+d0d0C

µν − d1d1C
µν − d2d2C

µν − d3d3C
µν)eνµ

so that all tensor components Rµνeµν written out are

+
1

2
R01e01 −

1

2
R01e10

+
1

2
R02e02 −

1

2
R02e20

+
1

2
R03e03 −

1

2
R03e30

+
1

2
R12e12 −

1

2
R23e21

+
1

2
R31e31 −

1

2
R31e13

+
1

2
R23e23 −

1

2
R23e32

The above is a symmetric field tensor where all the diagonal elements are 0.

=
1

2


0 R01 R02 R03

−R01 0 R12 R31

−R02 −R12 0 R23

−R03 −R31 −R23 0


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Remembering that the diagonal elements are 0, we can write this, the left side of equation (53), as
the field tensor

1

2
Rµν (54)

In analogy to the above, for the right side of the equation we can set C01 = −M01
G , C02 = −M02

G ,
C03 = −M03

G , C12 = M12
P , C31 = M31

P , and C23 = M23
P . In analogy to 1

2R
µν we can now contract

the right side of equation (53) to

4πGn
1

2
Tµν . (55)

Combing both equations (54) and (55) and dropping the factor 1
2 on both sides, we now have the

complete field equations of gravitation

Rµν = 4πGnT
µν (56)

However, because some of the Tµν terms containing mass are not observable, it is better to write

R01 = 4πGnT
01

R02 = 4πGnT
02

R03 = 4πGnT
03

R12 = 4πGnT
12

R31 = 4πGnT
31

R23 = 4πGnT
23

Einstein’s field equations have a different factor of 8πGn
c4

on the right side. This difference is
explained in the next section.

4.9 Einstein’s Field Equations of General Relativity

The Maxwell-like equations of gravitation and the Maxwell equations of electromagnetism are
the second spacetime derivative of their potential energies. They describe vectors. Sorting the
equations as they are (in component order) we have all the fields on the left hand side and all
energy/mass/charge densities and currents on the right hand side. In equation (53), the line with
the e0 components is Poisson’s equation for gravitation:

(d1G
01 + d2G

02 + d3G
03) = ∇G = ∇2ϕg

∇2ϕg = 4πGnρm

Here, ϕg is the gravitational scalar potential. “Normally”, from this equation, one would start to
derive the stress-energy tensor Tµν and the Einstein field equations of general relativity.

Rµν − 1

2
Rgµν + λgµν =

8πGn

c4
Tµν (57)

To derive the Energy-Stress-Momentum Tensor in Einstein’s Field equations of general relativity,
we can look these field equations and compare them with our equations above. There is a 4 x 4
Tensor both on the left and on the right hand side. We have a 4 vector on each side which, when

31



we once again take the spacetime derivative, gives back bivector components, which can be written
as a 4 x 4 Tensor.

Concentrating on the right hand side first, dropping grayed out and spin related terms, and using
ρ = ∇ ·QG and J = d0QG, with

1
g0

= 4πGn we get the vector components

−4πGnρe0

4πGnJ
1e1

4πGnJ
2e2

4πGnJ
3e3

Taking the spacetime derivative of the right side:

(d0e0 − d1e1 − d2e2 − d3e3)4πGn(−ρe0 + J1e1 + J2e2 + J3e3)

= 4πGn(− d0ρe00 + d0J
1e01 + d0J

2e02 + d0J
3e03

+ d1ρe10 − d1J
1e11 − d1J

2e12 − d1J
3e13

+ d2ρe20 − d2J
1e21 − d2J

2e22 − d2J
3e23

+ d3ρe30 − d3J
1e31 − d3J

2e32 − d3J
3e33)

The tensor above is the second derivative of a force.

In Einstein’s field equations, the factor out front is multiplied by 1
c4
. The most important term in

the tensor is the component C00 which, in Einstein’s field equations, is an energy density but in
our case is a mass density ρm. With E = mc2, we can extract a factor of 1

c2
from our mass density

ρm and now have an energy density 1
c2
ρE . Furthermore, in our case the units of the bivector e00 are

in meter squared [m2], while Einstein’s units are seconds squared [s2], the result of two derivation
with respect to time. To align our tensor with Einstein’s, we must therefore extract another factor
of 1

c2
.

Combined, this results in the energy-stress-momentum tensor

(d0e0 − d1e1 − d2e2 − d3e3)
4πGn

c4
(−ρEe0 + J1

Ee1 + J2
Ee2 + J3

Ee3)

=
4πGn

c4
(− d0ρEe00 + d0J

1
Ee01 + d0J

2
Ee02 + d0J

3
Ee03

+ d1ρEe10 − d1J
1
Ee11 − d1J

2
Ee12 − d1J

3
Ee13

+ d2ρEe20 − d2J
1
Ee21 − d2J

2
Ee22 − d2J

3
Ee23

+ d3ρEe30 − d3J
1
Ee31 − d3J

2
Ee32 − d3J

3
Ee33)

=
4πGn

c4
Tµν

Equating this to the field tensor from (54), we get 1
2R

µν = 4πGn
c4

Tµν or

Rµν =
8πGn

c4
Tµν (58)

This looks like the original version of Einstein’s field equations of general relativity [5]. To arrive at
equation (57), Einstein later [4] amended the left side of this equation with the term −1

2Rg
µν+λgµν .
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The addition of the cosmological constant +λgµν is just a suggestion and can be left out. The terms
with the Ricci scalars −1

2Rg
µν are due to the fact that Einstein’s equations describe the intrinsic

geometry of spacetime – with the coordinate system depending on each point of spacetime itself –
while this paper only describes an extrinsic geometry of spacetime.

5 Summary

To simplyfy some of the equations in the following summary, we use “∨”, which stands for “logical
or”, and we substitute

(γ1 ∨ γ2 ∨ γ3) = γ123

Moreover 1i stands for “this is one if vi ̸= 0” with i = 1, 2, 3.

11 stands for “this is one if v1 ̸= 0”.

12 stands for “this is one if v2 ̸= 0”.

13 stands for “this is one if v3 ̸= 0”.

5.1 Action

S = Constant

S =− S01e01 − S02e02 − S03e03 + S12e12 + S31e31 + S23e23

S =− S01
G e01 − S02

G e02 − S03
G e03 + S12

P e12 + S31
P e31 + S23

P e23

− S01
B e01 − S02

B e02 − S03
B e03 + S12

E e12 + S31
E e31 + S23

E e23

Gravitational Action

Starting off with only gravitational components of an action bivector field, we gain additional –
momentum related – components by investigating relativistic effects of the moving bivector field (in
analogy to 3.1 “Electric and Magnetic Field”). If we then assume that these additional components
pre-exist or exist independently from our gravitational field, we can write

SGP = Constant

SGP = −S01
G e01 − S02

G e02 − S03
G e03 + S12

P e12 + S31
P e31 + S23

P e23

Static:

SGP = −m̂01G01
S e01 − m̂02G02

S e02 − m̂03G03
S e03 + m̂12P 12

S e12 + m̂31P 31
S e31 + m̂23P 23

S e23

Dynamic: In the static equations, replace

GS with γ123G̃S + γβ × P̃S

PS with γ123P̃S + γβ × G̃S
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This leads to

S01
GP e01 = m̂01(−(11 ∨ γ2 ∨ γ3)G̃01

S + (γ3β3P̃
31
S − γ2β2P̃

12
S ))e01

S02
GP e02 = m̂02(−(γ1 ∨ 12 ∨ γ3)G̃02

S + (γ1β1P̃
12
S − γ3β3P̃

23
S ))e02

S03
GP e03 = m̂03(−(γ1 ∨ γ2 ∨ 13)G̃

03
S + (γ2β2P̃

23
S − γ1β1P̃

31
S ))e03

S12
GP e12 = m̂12((γ1 ∨ γ2 ∨ 13)P̃

12
S − (γ1β1G̃

02
S − γ2β2G̃

01
S ))e12

S31
GP e31 = m̂31((γ1 ∨ 12 ∨ γ3)P̃ 31

S − (γ3β3G̃
01
S − γ1β1G̃

03
S ))e31

S23
GP e23 = m̂23((11 ∨ γ2 ∨ γ3)P̃ 23

S − (γ2β2G̃
03
S − γ3β3G̃

02
S ))e23

S0j
GP = m̂0j(−γ123G̃0j

S + γβ × P̃S) for all j = 1, 2, 3

Sij
Gp = m̂ij(γ123P̃

ij
S − γβ × G̃S) for all i, j = 1, 2, 3 with i ̸= j

Electromagnetic Action

Starting off with only electric components of an action bivector field, we gain additional – magnetism
related – components by investigating relativistic effects of the moving bivector field (in analogy to
3.1 “Electric and Magnetic Field”). If we then assume that these additional components pre-exist
or exist independently from our electric field. We can write

SEB = Constant

SEB = −S01
B e01 − S02

B e02 − S03
B e03 + S12

E e12 + S31
E e31 + S23

E e23

Static:

SEB = Constant = −q̂01B01
S e01 − q̂02B02

S e02 − q̂03B03
S e03 + q̂12E12

S e12 + q̂31E31
S e31 + q̂23E23

S e23

Dynamic: In the static equations, replace

BS with γ123B̃S + γβ × ẼS

ES with γ123ẼS + γβ × B̃S

This leads to:

S01
EBe01 = q̂01(−(11 ∨ γ2 ∨ γ3)B̃01

S + (γ3β3Ẽ
31
S − γ2β2Ẽ

12
S ))e01

S02
EBe02 = q̂02(−(γ1 ∨ 12 ∨ γ3)B̃02

S + (γ1β1Ẽ
12
S − γ3β3Ẽ

23
S ))e02

S03
EBe03 = q̂03(−(γ1 ∨ γ2 ∨ 13)B̃

03
S + (γ2β2Ẽ

23
S − γ1β1Ẽ

31
S ))e03

S12
EBe12 = q̂12((γ1 ∨ γ2 ∨ 13)Ẽ

12
S − (γ1β1B̃

02
S − γ2β2B̃

01
S ))e12

S31
EBe31 = q̂31((γ1 ∨ 12 ∨ γ3)Ẽ31

S − (γ3β3B̃
01
S − γ1β1B̃

03
S ))e31

S23
EBe23 = q̂23((11 ∨ γ2 ∨ γ3)Ẽ23

S − (γ2β2B̃
03
S − γ3β3B̃

02
S ))e23

S0j
EB = q̂0j(−γ123B̃0j

S + γβ × ẼS) for all j = 1, 2, 3

Sij
EB = q̂ij(γ123Ẽ

ij
S − γβ × B̃S) for all i, j = 1, 2, 3 with i ̸= j
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5.2 Derivative Level of Energy, Momentum, and Angular Momentum

With S01 := −S01, S02 := −S02, and S03 := −S03

∇̊S = 0 =

−(d1S01 + d2S02 + d3S03)e0 (-Momentum)

−(−d0S01 − (d2S12 − d3S31))e1 (Energy - Angular Momentum)

−(−d0S02 − (d3S23 − d1S12))e2 (Energy - Angular Momentum)

−(−d0S03 − (d1S31 − d2S23))e3 (Energy - Angular Momentum)

−(d0S12 − (d1S02 − d2S01))e012 (Energy + Angular Momentum)

−(d0S31 − (d3S01 − d1S03))e031 (Energy + Angular Momentum)

−(d0S23 − (d2S03 − d3S02))e023 (Energy + Angular Momentum)

−(−d1S23 − d2S31 − d3S12)e123 (-Momentum)

Each S0j can be replaced by S0j
G or S0j

B , m0jG0j
S or q0jB0j

S ,

each Sij can be replaced by Sij
P or Sij

E , mijP ij
S or qijEij

S .

Separating the masses/charges and their action fields from each other generates a proportionality
factor α (or its reciprocal value 1

α), which relates the different units of the charges/masses and the
fields to each other. Examples for this separation are given below.

Gravitational Energy E, Momentum P, and Angular Momentum A

∇̊SGP = 0

Static:

−(d1G
01
S + d2G

02
S + d3G

03
S )e0 =

1

αGP
(d1m

01 + d2m
02 + d3m

03)e0

−(−d0G01
S − (d2P

12
S − d3P

31
S ))e1 =

1

αGP
(−d0m01 − (d2m

12 − d3m
31))e1

−(−d0G02
S − (d3P

23
S − d1P

12
S ))e2 =

1

αGP
(−d0m02 − (d3m

23 − d1m
12))e2

−(−d0G03
S − (d1P

31
S − d2P

23
S ))e3 =

1

αGP
(−d0m03 − (d1m

31 − d2m
23))e3

−(d0P
12
S − (d1G

02
S − d2G

01
S ))e012 =

1

αGP
(d0m

12 − (d1m
02 − d2m

01))e012

−(d0P
31
S − (d3G

01
S − d1G

03
S ))e031 =

1

αGP
(d0m

31 − (d3m
01 − d1m

03))e031

−(d0P
23
S − (d2G

03
S − d3G

02
S ))e023 =

1

αGP
(d0m

23 − (d2m
03 − d3m

02))e023

−(−d1P 23
S − d2P

31
S − d3P

12
S )e123 = − 1

αGP
(d1m

23 + d2m
31 + d3m

12)e123
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In short notation with unobserved terms grayed out

−∇ · ϵG =
1

αGP
(∇ ·m0j)

d0GS +∇× PS =
1

αGP
(−d0m0j −∇×mij)

−d0PS +∇×GS =
1

αGP
(d0m

ij −∇×m0j)

∇ · PS = − 1

αGP
(∇ ·mij)

Lines 1 and 4 of the short notation represent momentum P.
Lines 2 and 3 of the short notation represent energy E and angular momentum/spin.

Dynamic: In the static equations, replace

GS with γ123G̃S + γβ × P̃S

PS with γ123P̃S + γβ × G̃S

Electromagnetic Energy E, Momentum P, and Angular Momentum A

∇̊SEB = 0

Static:

−(d1B
01
S + d2B

02
S + d3B

03
S )e0 =

1

αEB
(d1q

01
BS + d2q

02
BS + d3q

03
BS)e0

−(−d0B01
S − (d2E

12
S − d3E

31
S ))e1 =

1

αEB
(−d0q01BS − (d2q

12
ES − d3q

31
ES))e1

−(−d0B02
S − (d3E

23
S − d1E

12
S ))e2 =

1

αEB
(−d0q02BS − (d3q

23
ES − d1q

12
ES))e2

−(−d0B03
S − (d1E

31
S − d2E

23
S ))e3 =

1

αEB
(−d0q03BS − (d1q

31
ES − d2q

23
ES))e3

−(d0E
12
S − (d1B

02
S − d2B

01
S ))e012 =

1

αEB
(d0q

12
ES − (d1q

02
BS − d2q

01
BS))e012

−(d0E
31
S − (d3B

01
S − d1B

03
S ))e031 =

1

αEB
(d0q

31
ES − (d3q

01
BS − d1q

03
BS))e031

−(d0E
23
S − (d2B

03
S − d3B

02
S ))e023 =

1

αEB
(d0q

23
ES − (d2q

03
BS − d3q

02
BS))e023

−(−d1E23
S − d2E

31
S − d3E

12
S )e123 = − 1

αEB
(d1q

23
ES + d2q

31
ES + d3q

12
ES)e123
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In short notation with unobserved terms

−∇ ·BS =
1

αEB
(∇ · q0j)

d0BS +∇× ES =
1

αEB
(−d0q0j −∇× qij)

−d0ES +∇×BS =
1

αEB
(d0q

ij −∇× q0j)

∇ · ES = − 1

αEB
(∇ · qij)

Lines 1 and 4 of the short notation represent momentum P.
Lines 2 and 3 of the short notation represent energy E and angular momentum/spin.

Dynamic: In the static equations, replace

BS with γ123B̃S + γβ × ẼS

ES with γ123ẼS + γβ × B̃S

5.3 Derivative Level of Forces and Fields

∇̊
(
∇̊ (S)

)
= ∇̊ (E + P) = 0

∇̊
(
∇̊ (S)

)
= (∇̊ · ∇̊)(−S01e01 − S02e02 − S03e03 + S12e12 + S31e31 + S23e23)

Note that each component (∇̊ · ∇̊)Sijeij represents a wave function

(d0d0Sij − d1d1Sij − d2d2Sij − d3d3Sij)eij = (
1

c2
dtdtSij − dxdxS

ij − dydySij − dzdzSij)eij

In analogy to the contraction of the Riemann Tensor to the Ricci Tensor, we can set

(d0d0Sij − d1d1Sij − d2d2Sij − d3d3Sij)eij = F ijeij

∇̊
(
∇̊ (S)

)
= F = −F01e01 −F02e02 −Fi03e03 + F12e12 + F31e31 + F23e23

Gravitational Forces and Fields

(∇̊ · ∇̊)(−S01
G e01 − S02

G e02 − S03
G e03 + S12

P e12 + S31
P e31 + S23

P e23) = 0

Static:

FGP = −m̂01G01e01 − m̂02G02e02 − m̂03G03e03 + m̂12P 12e12 + m̂31P 31e31 + m̂23P 23e23
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Dynamic: In the static equations, replace

G with γ123G̃+ γβ × P̃

P with γ123P̃ + γβ × G̃

Electromagnetic Forces and Fields

(∇̊ · ∇̊)(−S01
EBe01 − S02

EBe02 − S03
EMe03 + S12

EBe12 + S31
EBe31 + S23

EBe23) = 0

Static:

FEB = −q̂01B01e01 − q̂02B02e02 − q̂03B03e03 + q̂12E12e12 + q̂31E31e31 + q̂23E23e23

Dynamic: In the static equations, replace

B with γ123B̃ + γβ × Ẽ

E with γ123Ẽ + γβ × B̃

5.4 Derivative Level of Maxwell’s Equations and Action Densities

∇̊
(
∇̊
(
∇̊ (S)

))
= ∇̊

(
∇̊ (E + P)

)
= ∇̊ (F) = 0

The first derivative of a force bivector field ∇̊F = ∇̊(−F01e01−F02e02−F03e03+F12e12+F31e31+
F23e23) is

∇̊F =

+ (d1F01 + d2F02 + d3F03)e0

+ (−d0F01 − (d2F12 − d3F31))e1

+ (−d0F02 − (d3F23 − d1F12))e2

+ (−d0F03 − (d1F31 − d2F23))e3

+ (d0F12 − (d1F02 − d2F01))e012

+ (d0F31 − (d3F01 − d1F03))e031

+ (d0F23 − (d2F03 − d3F02))e023

+ (−d1F23 − d2F31 − d3F12)e123

Gravitational Equivalent to Maxwell’s Equations

∇̊FGP = 0
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Static:

−(d1G
01 + d2G

02 + d3G
03)e0 =

1

ϵGP
(d1Q

01
G + d2Q

02
G + d3Q

03
G )e0

−(−d0G01 − (d2P
12 − d3P

31))e1 =
1

ϵGP
(−d0Q01

G − (d2Q
12
P − d3Q

31
P ))e1

−(−d0G02 − (d3P
23 − d1P

12))e2 =
1

ϵGP
(−d0Q02

G − (d3Q
23
P − d1Q

12
P ))e2

−(−d0G03 − (d1P
31 − d2P

23))e3 =
1

ϵGP
(−d0Q03

G − (d1Q
31
P − d2Q

23
P ))e3

−(d0P
12 − (d1G

02 − d2G
01))e012 =

1

ϵGP
(d0Q

12
P − (d1Q

02
G − d2Q

01
G ))e012

−(d0P
31 − (d3G

01 − d1G
03))e031 =

1

ϵGP
(d0Q

31
P − (d3Q

01
G − d1Q

03
G ))e031

−(d0P
23 − (d2G

03 − d3G
02))e023 =

1

ϵGP
(d0Q

23
P − (d2Q

03
G − d3Q

02
G ))e023

−(−d1P 23 − d2P
31 − d3P

12)e123 = − 1

ϵGP
(d1Q

23
P + d2Q

31
P + d3Q

12
P )e123

In short notation with unobserved terms

−∇ ·G =
1

ϵGP
(∇ ·QG)

d0G+∇× P =
1

ϵGP
(−d0QG −∇×QP )

−d0P +∇×G =
1

ϵGP
(d0QP −∇×QG)

∇ · P = − 1

ϵGP
(∇ ·QP )

Lines 1 and 4 of the short notation represent momentum P.
Lines 2 and 3 of the short notation represent energy E .

Dynamic: In the static equations, replace

G with γ123G̃+ γβ × P̃

P with γ123P̃ + γβ × G̃

QG with γ123Q̃G + γβ × Q̃P

QP with γ123Q̃P + γβ × Q̃G

Maxwell’s Equations

∇̊FEB = 0
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Static (with ϵEB = ϵ0):

−(d1B
01 + d2B

02 + d3B
03)e0 =

1

ϵb
(d1Q

01 + d2Q
02 + d3Q

03)e0

−(−d0B01 − (d2E
12 − d3E

31))e1 = (− 1

ϵb
d0Q

01 − 1

ϵ0
(d2Q

12 − d3Q
31))e1

−(−d0B02 − (d3E
23 − d1E

12))e2 = (− 1

ϵb
d0Q

02 − 1

ϵ0
(d3Q

23 − d1Q
12))e2

−(−d0B03 − (d1E
31 − d2E

23))e3 = (− 1

ϵb
d0Q

03 − 1

ϵ0
(d1Q

31 − d2Q
23))e3

−(d0E
12 − (d1B

02 − d2B
01))e012 = (

1

ϵ0
d0Q

12 − 1

ϵb
(d1Q

02 − d2Q
01))e012

−(d0E
31 − (d3B

01 − d1B
03))e031 = (

1

ϵ0
d0Q

31 − 1

ϵb
(d3Q

01 − d1Q
03))e031

−(d0E
23 − (d2B

03 − d3B
02))e023 = (

1

ϵ0
d0Q

23 − 1

ϵb
(d2Q

03 − d3Q
02))e023

−(−d1E23 − d2E
31 − d3E

12)e123 = − 1

ϵ0
(d1Q

23 + d2Q
31 + d3Q

12)e123

with unobserved terms

−∇ ·B =
1

ϵ0
(∇ ·QB)

d0B +∇× E =
1

ϵ0
(−d0QB −∇×QE)

−d0E +∇×B =
1

ϵ0
(d0QE +∇×QB)

∇ · E = − 1

ϵ0
(∇ ·QE)

Lines 1 and 4 of the short notation represent momentum P.
Lines 2 and 3 of the short notation represent energy E .

Dynamic: In the static equations, replace

B with γ123B̃ + γβ × Ẽ

E with γ123Ẽ + γβ × B̃

QB with γ123Q̃B + γβ × Q̃E

QE with γ123Q̃E + γβ × Q̃B

5.5 Derivative Level of General Relativity and Energy, Momentum and Stress
Density

∇̊
(
∇̊
(
∇̊
(
∇̊ (S)

)))
= 0

(∇̊ · ∇̊)(F01e01 + F02e02 + F03e03 + F12e12 + F31e31 + F23e23) = 0
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Note that each component (∇̊ · ∇̊)F ijeij represents a wave function

(d0d0F ij − d1d1F ij − d2d2F ij − d3d3F ij)eij = (
1

c2
dtdtF ij − dxdxF

ij − dydyF ij − dzdzF ij)eij

In analogy to the contraction of the Riemann Tensor to the Ricci Tensor, we can set

(d0d0F ij − d1d1F ij − d2d2F ij − d3d3F ij)eij = Rijeij

∇̊
(
∇̊ (F)

)
= R = R01e01 +R02e02 +Ri03e03 +R12e12 +R31e31 +R23e23

Gravitational Energy, Momentum and Stress Density

(∇̊ · ∇̊)(F01
GP e01 + F02

GP e02 + F03
GP e03 + F12

GP e12 + F31
GP e31 + F23

GP e23) = 0

(d0d0G
01 − d1d1G

01 − d2d2G
01 − d3d3G

01)e01 = − 1

ϵGP
Q01

G e01

(d0d0G
02 − d1d1G

02 − d2d2G
02 − d3d3G

02)e02 = − 1

ϵGP
Q02

G e02

(d0d0G
03 − d1d1G

03 − d2d2G
03 − d3d3G

01)e03 = − 1

ϵGP
Q03

G e03

(d0d0P
12 − d1d1P

12 − d2d2P
12 − d3d3P

12)e12 = − 1

ϵGP
Q12

P e12

(d0d0P
31 − d1d1P

31 − d2d2P
31 − d3d3P

31)e31 = − 1

ϵGP
Q31

P e31

(d0d0P
23 − d1d1P

23 − d2d2P
23 − d3d3P

23)e23 = − 1

ϵGP
Q23

P e23

∇̊
(
∇̊
(
∇̊
(
∇̊ (SGP )

)))
= R01

GP e01 +R02
GP e02 +R03

GP e03 +R12
GP e12 +R31

GP e31 +R23
GP e23

Static:

RGP = qGR
01e01 + qGR

02e02 + qGR
03e03 + qGR

12e12 + qGR
31e31 + qGR

23e23

Dynamic: In the static equations, replace

G with γ123G̃+ γβ × P̃

P with γ123P̃ + γβ × G̃

Electromagnetic Energy, Momentum and Stress Density

(∇̊ · ∇̊)(F01
EBe01 + F02

EBe02 + F03
EBe03 + F12

EBe12 + F31
EBe31 + F23

EBe23) = 0
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(d0d0B
01 − d1d1B

01 − d2d2B
01 − d3d3B

01)e01 = − 1

ϵEB
Q01

B e01

(d0d0B
02 − d1d1B

02 − d2d2B
02 − d3d3B

02)e02 = − 1

ϵEB
Q02

B e02

(d0d0B
03 − d1d1B

03 − d2d2B
03 − d3d3B

01)e03 = − 1

ϵEB
Q03

B e03

(d0d0E
12 − d1d1E

12 − d2d2E
12 − d3d3E

12)e12 = − 1

ϵEB
Q12

E e12

(d0d0E
31 − d1d1E

31 − d2d2E
31 − d3d3E

31)e31 = − 1

ϵEB
Q31

E e31

(d0d0E
23 − d1d1E

23 − d2d2E
23 − d3d3E

23)e23 = − 1

ϵEB
Q23

E e23

∇̊
(
∇̊ (SEB)

)
= F01

EBe01 + F02
EBe02 + FEBi

03e03 + F12
EBe12 + F31

EBe31 + F23
EBe23

Static:

FEB = qEB
01e01 + qEB

02e02 + qEB
03e03 + qEE

12e12 + qEE
31e31 + qEE

23e23

Dynamic: In the static equations, replace

B with γ123B̃ + γβ × Ẽ

E with γ123Ẽ + γβ × B̃

6 Conclusion and Outlook

This paper showed that many major laws, equations and even constants of electromagnetism and
gravitation can be viewed as and derived from properties of spacetime. This is achieved by con-
secutively applying the spacetime derivative and utilizing the effects of movement on the elements
of spacetime. Through the assumption that gravitational action depends on the vibrational move-
ment of the electromagnetic (and possibly color) bivectors, gravitation and electromagnetism can
be unified into one common framework or model. All the physics in this paper can be combined
into the equation

∇̊
(
∇̊

(
∇̊
(
∇̊ (S)

)))
= ∇̊4S = 0 (59)

Here, each pair of parentheses () represents a different level of derivation and therefore different
physical laws and equations. The analogies between electromagnetism and gravitation introduces
new ideas like a momentum action, force, and others. Moreover, the connections to quantum
mechanics is present throughout.

This invites to ask new questions that deserve further research. Some of these questions have been
mentioned earlier in this paper, some of them are repeated and some of them are added in the
following short sections.

Gravitation is the result of “curved spacetime”. Because of this, electromagnetism can also be
viewed as being the result of “curved spacetime”. Because of the analogies between electromag-
netism and gravitation and both their tight connection to spacetime, it might be of some interest
to investigate the idea that the atomic orbitals electrons move on are – in analogy to gravitation –
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geodesics and electrons would therefore move around the nucleus without experiencing any force.
This might be a solution to the problem that charged particles that are accelerated give off photons
because of energy conservation. Classically one would therefore expect that electrons, bound in an
atom by the electric force, should emit photons while moving around the atomic nucleus. This is
however not the case. One existing possible attempt of explanation is the idea that an electron
– or rather its quantum mechanical wave function – forms a standing wave around the nucleus.
However, if electric force, just like gravitational force, is not really a force at all but is also caused
by the curvature of spacetime, then no acceleration takes place. Note that the quantum mechanical
description of the electric force by the exchange of virtual photons should not be affected by this
different view of the “force”.

Taking the interpretation of this paper’s results even further, one can start to speculate even more.
Einstein’s field equations (57) Rµν − 1

2Rg
µν + λgµν = 8πGn

c4
Tµν are often interpreted as “Energy

and mass tell spacetime how to curve”. However, if one takes the equality sign“=” literally, then
one could say that energy and mass are curved spacetime. This opens up a completely new way to
think about and explore physics, which might combine some aspects of particle physics and string
theory.

Several ideas worth to research have been presented throughout this paper. Especially the much
stronger than previously realized connections between classical physics and quantum mechanics
suggest many areas for further research.

A Appendix Spacetime

A.1 Elements

Imaginary Unit I
The pseudoscalar from above is also called the imaginary unit I

e0123 = I

e20123 = I2 = −1

−e0123e0123 = 1

This is a generalisation of imaginary “i” of complex numbers in 2D.

Metric Tensor
The metric of spacetime is given by the metric tensor gµν . In a curved spacetime like in general
relativity all elements gµν of the metric tensor can be non-zero. In a flat spacetime like in spe-
cial relativity only the diagonal elements are non-zero and the metric tensor is sometimes called
Minkowski tensor ηµν .

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33


Figure 5: The metric tensor in general relativity

ηµν =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Figure 6: The metric tensor in flat spacetime
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Contraction
Two equal indices can be contracted. The respective signs for this contraction are defined by the
Minkowski metric (+,-,-,-).

e00 = +1

e11 = −1

e22 = −1

e33 = −1

More generally, if two adjacent indices are equal, they can be contracted

eα00β = +eαβ

eαiiβ = −eαβ( for i ̸= 0)

Reordering

The order of two non-equal indices can be reversed.

eαβ = −eβα for (α ̸= β)

More generally, reversing the order of two adjacent, non-equal indices reverses the sign

eµαβν = −eµβαν for (α ̸= β)

Note: The “order” of two adjacent, equal indices cannot be reversed.

Identities of Unit-Vectors and -Pseudovectors

e0 = −e0123e0123e0 = +e0123e00123 = Ie123 = Ie231

e1 = −e0123e0123e1 = −e0123e01123 = Ie023

e2 = −e0123e0123e2 = +e0123e01223 = −Ie013 = Ie031

e3 = −e0123e0123e3 = −e0123e01233 = Ie012

e0 = Ie231, e231 = −Ie0
e1 = Ie023, e023 = −Ie1
e2 = Ie031, e031 = −Ie2
e3 = Ie012, e012 = −Ie3

Identities of Unit-Bivectors

e01 = −e0123e0123e01 = +e0123e001123 = −Ie23
e02 = −e0123e0123e02 = −e0123e001223 = +Ie13 = −Ie31
e03 = −e0123e0123e03 = +e0123e001233 = −Ie12
e12 = −e0123e0123e12 = +e0123e011223 = +Ie03

e31 = −e0123e0123e31 = +e0123e011233 = +Ie02

e23 = −e0123e0123e23 = +e0123e01 = +Ie01
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Together with the anti unit-bivectors:

e01 = −e10 = +Ie32 = −Ie23
e02 = −e20 = +Ie13 = −Ie31
e03 = −e30 = +Ie21 = −Ie12
e12 = −e21 = −Ie30 = +Ie03

e31 = −e13 = −Ie20 = +Ie02

e23 = −e32 = −Ie10 = +Ie01

Identities of imaginary unit-bivectors:

Ie23 = −e01, Ie32 = −e10
Ie31 = −e02, Ie13 = −e20
Ie12 = −e03, Ie21 = −e30
Ie03 = e12, Ie30 = e21
Ie02 = e31, Ie20 = e13
Ie01 = e23, Ie10 = e32

Real and Imaginary Unit-Vectors and Unit-Bivectors
In this paper we often use the following identities from the previous sections:

Convert “space only” bivectors to imaginary “time and space” bivectors (with only one spatial
direction):

e12 = Ie03

e31 = Ie02

e23 = Ie01

Convert trivectors into imaginary vectors (with only one spatial direction):

e231 = −Ie0
e023 = −Ie1
e031 = −Ie2
e012 = −Ie3

To complete the symmetry, remember

e0123 = I

Geometric Product

As an example for the usage of some of the above mentioned rules and identities, we can derive the
geometric product. Besides addition, it is considered to be one of the two fundamental operations
of Geometric Algebra (also called Clifford Algebra) [8].
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Consider a vector/tensor multiplication v⃗w⃗ in three dimensions. Example with
v⃗ = (v1e1 + v2e2 + v3e3) and w⃗ = (w1e1 + w2e2 + w3e3):

v⃗w⃗

= (v1e1 + v2e2 + v3e3)(w
1e1 + w2e2 + w3e3)

= +v1w1e11 + v1w2e12 + v1w3e13 + v2w1e21 + v2w2e22 + v2w3e23 + v3w1e31 + v3w2e32 + v3w3e33

= +v1w1e11 + v2w2e22 + v3w3e33 + v1w2e12 + v2w1e21 + v3w1e31 + v1w3e13 + v2w3e23 + v3w2e32

= +v1w1e11 + v2w2e22 + v3w3e33 + v1w2e12 − v2w1e12 + v3w1e31 − v1w3e31 + v2w3e23 − v3w2e23

= v⃗ · w⃗ + v⃗ × w⃗

The result of this multiplication is called “Geometric Product”. It is described as:

Geometric Product = Inner Product + Outer Product

Geometric Product = Scalar Product + Cross (Wedge) Product

v⃗ · w⃗ is equivalent to the scalar product, the wedge product v⃗ ∧ w⃗ is sometimes considered the
4D generalisation of the cross product v⃗ × w⃗. For unit vectors, unit bivectors etc., this product
effectively contracts or expands the indices.

A.2 First and Second Derivative of Bivector Fields

First Derivative of a Bivector Field
Using the spacetime derivative ∇̊ = d0e0−d1e1−d2e2−d3e3 from equation (1) we can get the first
derivative of a bivector field
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∇̊Cαβeαβ =

+ d0C
01e0e01 + d0C

02e0e02 + d0C
03e0e03 + d0C

12e0e12 + d0C
31e0e31 + d0C

23e0e23

− d1C
01e1e01 − d1C

02e1e02 − d1C
03e1e03 − d1C

12e1e12 − d1C
31e1e31 − d1C

23e1e23

− d2C
01e2e01 − d2C

02e2e02 − d2C
03e2e03 − d2C

12e2e12 − d2C
31e2e31 − d2C

23e2e23

− d3C
01e3e01 − d3C

02e3e02 − d3C
03e3e03 − d3C

12e3e12 − d3C
31e3e31 − d3C

23e3e23

=

+ d0C
01e1 + d0C

02e2 + d0C
03e3 + d0C

12e012 + d0C
31e031 + d0C

23e023

− d1C
01e0 + d1C

02e012 − d1C
03e031 + d1C

12e2 − d1C
31e3 − d1C

23e123

− d2C
01e012 − d2C

02e0 + d2C
03e023 − d2C

12e1 − d2C
31e123 + d2C

23e3

+ d3C
01e031 − d3C

02e023 − d3C
03e0 − d3C

12e123 + d3C
31e1 − d3C

23e2

=

− d1C
01e0 − d2C

02e0 − d3C
03e0

+ d0C
01e1 − d2C

12e1 + d3C
31e1

+ d0C
02e2 − d3C

23e2 + d1C
12e2

+ d0C
03e3 − d1C

31e3 + d2C
23e3

+ d0C
12e012 − d2C

01e012 + d1C
02e012

+ d0C
31e031 − d1C

03e031 + d3C
01e031

+ d0C
23e023 − d3C

02e023 + d2C
03e023

− d1C
23e123 − d2C

31e123 − d3C
12e123

In general, the first derivative of a bivector field therefore is

∇̊Cαβeαβ =

+ (−d1C01 − d2C
02 − d3C

03)e0

+ (d0C
01 − (d2C

12 − d3C
31))e1

+ (d0C
02 − (d3C

23 − d1C
12))e2

+ (d0C
03 − (d1C

31 − d2C
23))e3

+ (d0C
12 + (d1C

02 − d2C
01))e012

+ (d0C
31 + (d3C

01 − d1C
03))e031

+ (d0C
23 + (d2C

03 − d3C
02))e023

+ (−d1C23 − d2C
31 − d3C

12)e123

(60)
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When adhering to the ± signs suggested in 2.4 we exchange C0j with −C0j
∗ . This makes it easier

to compare this equation with other equations throughout the paper.

∇̊Cαβeαβ =

+ (+d1C
01
∗ + d2C

02
∗ + d3C

03
∗ )e0

+ (−d0C01
∗ − (d2C

12 − d3C
31))e1

+ (−d0C02
∗ − (d3C

23 − d1C
12))e2

+ (−d0C03
∗ − (d1C

31 − d2C
23))e3

+ (d0C
12 − (d1C

02
∗ − d2C

01
∗ ))e012

+ (d0C
31 − (d3C

01
∗ − d1C

03
∗ ))e031

+ (d0C
23 − (d2C

03
∗ − d3C

02
∗ ))e023

+ (−d1C23 − d2C
31 − d3C

12)e123

Second Derivative of a Bivector Field
Once again applying the spacetime derivative to the previous result (60) gives us the second deriva-
tive of a bivector field

∇̊∇̊Cαβeαβ =

∇̊(

− (d1C
01 + d2C

02 + d3C
03)e0

+ (d0C
01 − (d2C

12 − d3C
31))e1

+ (d0C
02 − (d3C

23 − d1C
12))e2

+ (d0C
03 − (d1C

31 − d2C
23))e3

+ (d0C
12 + (d1C

02 − d2C
01))e012

+ (d0C
31 + (d3C

01 − d1C
03))e031

+ (d0C
23 + (d2C

03 − d3C
02))e023

− (d1C
23 + d2C

31 + d3C
12)e123

)
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=

+ (−d0d1C01 − d0d2C
02 − d0d3C

03)e00

+ (d0d0C
01 − (d0d2C

12 − d0d3C
31))e01

+ (d0d0C
02 − (d0d3C

23 − d0d1C
12))e02

+ (d0d0C
03 − (d0d1C

31 − d0d2C
23))e03

+ (d0d0C
12 + (d0d1C

02 − d0d2C
01))e0012

+ (d0d0C
31 + (d0d3C

01 − d0d1C
03))e0031

+ (d0d0C
23 + (d0d2C

03 − d0d3C
02))e0023

+ (−d0d1C23 − d0d2C
31 − d0d3C

12)e0123

+ (+d1d1C
01 + d1d2C

02 + d1d3C
03)e10

+ (−d1d0C01 + (d1d2C
12 − d1d3C

31))e11

+ (−d1d0C02 + (d1d3C
23 − d1d1C

12))e12

+ (−d1d0C03 + (d1d1C
31 − d1d2C

23))e13

+ (−d1d0C12 − (d1d1C
02 − d1d2C

01))e1012

+ (−d1d0C31 − (d1d3C
01 − d1d1C

03))e1031

+ (−d1d0C23 − (d1d2C
03 − d1d3C

02))e1023

+ (+d1C
23 + d1d2C

31 + d1d3C
12)e1123

+ (+d2d1C
01 + d2d2C

02 + d2d3C
03)e20

+ (−d2d0C01 + (d2d2C
12 − d2d3C

31))e21

+ (−d2d0C02 + (d2d3C
23 − d2d1C

12))e22

+ (−d2d0C03 + (d2d1C
31 − d2d2C

23))e23

+ (−d2d0C12 − (d2d1C
02 − d2d2C

01))e2012

+ (−d2d0C31 − (d2d3C
01 − d2d1C

03))e2031

+ (−d2d0C23 − (d2d2C
03 − d2d3C

02))e2023

+ (+d2d1C
23 + d2d2C

31 + d2d3C
12)e2123

+ (+d3d1C
01 + d3d2C

02 + d3d3C
03)e30

+ (−d3d0C01 + (d3d2C
12 − d3d3C

31))e31

+ (−d3d0C02 + (d3d3C
23 − d3d1C

12))e32

+ (−d3d0C03 + (d3d1C
31 − d3d2C

23))e33

+ (−d3d0C12 − (d3d1C
02 − d3d2C

01))e3012

+ (−d3d0C31 − (d3d3C
01 − d3d1C

03))e3031

+ (−d3d0C23 − (d3d2C
03 − d3d3C

02))e3023

+ (+d3d1C
23 + d3d2C

31 + d3d3C
12)e3123
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=

+ (−d0d1C01 − d0d2C
02 − d0d3C

03)e00

+ (d0d0C
01 − (d0d2C

12 − d0d3C
31))e01

+ (d0d0C
02 − (d0d3C

23 − d0d1C
12))e02

+ (d0d0C
03 − (d0d1C

31 − d0d2C
23))e03

+ (d0d0C
12 + (d0d1C

02 − d0d2C
01))e12

+ (d0d0C
31 + (d0d3C

01 − d0d1C
03))e31

+ (d0d0C
23 + (d0d2C

03 − d0d3C
02))e23

+ (−d0d1C23 − d0d2C
31 − d0d3C

12)e0123

+ (+d1d1C
01 + d1d2C

02 + d1d3C
03)e10

+ (−d1d0C01 + (d1d2C
12 − d1d3C

31))e11

+ (−d1d0C02 + (d1d3C
23 − d1d1C

12))e12

+ (−d1d0C03 + (d1d1C
31 − d1d2C

23))e13

+ (−d1d0C12 − (d1d1C
02 − d1d2C

01))e02

+ (−d1d0C31 − (d1d3C
01 − d1d1C

03))(−e03)
+ (−d1d0C23 − (d1d2C

03 − d1d3C
02))(−e0123)

+ (+d1C
23 + d1d2C

31 + d1d3C
12)(−e23)

+ (+d2d1C
01 + d2d2C

02 + d2d3C
03)e20

+ (−d2d0C01 + (d2d2C
12 − d2d3C

31))e21

+ (−d2d0C02 + (d2d3C
23 − d2d1C

12))e22

+ (−d2d0C03 + (d2d1C
31 − d2d2C

23))e23

+ (−d2d0C12 − (d2d1C
02 − d2d2C

01))(−e01)
+ (−d2d0C31 − (d2d3C

01 − d2d1C
03))(−e0123)

+ (−d2d0C23 − (d2d2C
03 − d2d3C

02))e03

+ (+d2d1C
23 + d2d2C

31 + d2d3C
12)e13

+ (+d3d1C
01 + d3d2C

02 + d3d3C
03)e30

+ (−d3d0C01 + (d3d2C
12 − d3d3C

31))e31

+ (−d3d0C02 + (d3d3C
23 − d3d1C

12))e32

+ (−d3d0C03 + (d3d1C
31 − d3d2C

23))e33

+ (−d3d0C12 − (d3d1C
02 − d3d2C

01))(−e0123)
+ (−d3d0C31 − (d3d3C

01 − d3d1C
03))e01

+ (−d3d0C23 − (d3d2C
03 − d3d3C

02))(−e02)
+ (+d3d1C

23 + d3d2C
31 + d3d3C

12)(−e12)
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In general, the second derivative of a bivector field therefore is

∇̊∇̊Cαβeαβ =

+ d0d0C
01e01 − d3d3C

01e01

+ d1d1C
01e10 + d2d2C

01e10

+ d0d0C
02e02 − d1d1C

02e02

+ d2d2C
02e20 + d3d3C

02e20

+ d0d0C
03e03 − d2d2C

03e03

+ d1d1C
03e30 + d3d3C

03e30

+ d0d0C
12e12 − d1d1C

12e12

+ d2d2C
12e21 + d3d1C

23e21

+ d0d0C
31e31 − d3d3C

31e31

+ d1d1C
31e13 + d2d2C

31e13

+ d0d0C
23e23 − d2d2C

23e23

+ d1d1C
23e32 + d3d3C

23e32

Because e01 = −e10, e02 = −e20, e03 = −e30, e12 = −e21, e31 = −e13, and e23 = −e32, the
components of the equation combine as

R01e01 = (+d0d0C
01 − d1d1C

01 − d2d2C
01 − d3d3C

01)e01 = −k201C01e01

R02e02 = (+d0d0C
02 − d1d1C

02 − d2d2C
02 − d3d3C

02)e02 = −k202C02e02

R03e03 = (+d0d0C
03 − d1d1C

03 − d2d2C
03 − d3d3C

03)e03 = −k203C03e03

R12e12 = (+d0d0C
12 − d1d1C

12 − d2d2C
12 − d3d3C

12)e12 = −k212C12e12

R31e31 = (+d0d0C
31 − d1d1C

31 − d2d2C
31 − d3d3C

31)e31 = −k231C31e31

R23e23 = (+d0d0C
23 − d1d1C

23 − d2d2C
23 − d3d3C

23)e23 = −k223C23e23

Considering (2), this is the expected result.

Take particular note that we have already established in 2.3 that each bivector represents a wave
equation itself. In classical mechanics, the components Cµν represent measured values like electric
and magnetic forces or charges and fields. This applies also to all actions, forces, charges and fields
in this paper: Electric and magnetic action, gravitational and momentum action, gravitational and
momentum force and all the related charges. In wave mechanics, these components are operators
that work on the bivector wave equation and return their respective values.

All in all, the second spacetime derivative of a bivector wave equation is the same bivector wave
equation multiplied with a proportionality factor −k2.
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(∇̊ · ∇̊)(C01e01 + C02e02 + C03e03 + C12e12 + C31e31 + C23e23)

=R01e01 +R02e02 +R03e03 +R12e12 +R31e31 +R23e23
(61)

Note the use of the scalar product between the two ∇̊.

Example: Maxwell’s Equations in Vacuum
In the resulting equation from A.2 “First derivative of a bivector field”, if you replace the C0j ’s
with −B0j ’s and Cij ’s with Eij ’s, you can see close similarities to Maxwell’s equations in vacuum.

0 =
+(d1B

01 + d2B
02 + d3B

03)e0
+(−d0B01 − (d2E

12 − d3E
31))e1

+(−d0B02 − (d3E
23 − d1E

12))e2
+(−d0B03 − (d1E

31 − d2E
23))e3

+(d0E
12 − (d1B

02 − d2B
01))e012

+(d0E
31 − (d3B

01 − d1B
03))e031

+(d0E
23 − (d2B

03 − d3B
02))e023

+(−d1E23 − d2E
31 − d3E

12)e231

Looking at the components individually and component-wise replacing the −B0j with Bj and the
Eij with Ek as explained in 2.4 gives:
0 = −∇B (Component e0)
0 = d0B −∇× E (Components e1, e2, e3)
0 = d0E +∇×B (Components e012, e021, e023)
0 = −∇E (Component e231)

Note that e0 is cet, d0 =
1
c
∂
∂t and B has the same units as E. A “normal” B∗ with time as its unit

vector and units
[

kg
A·s2

]
is connected to the B we use in this paper via cB∗ = B.

Starting with these equations, with some mathematical rearranging we can gain the electromagnetic
wave equations. Of course, they are simply the second spacetime derivative of the electric and
magnetic field

∇2
αE = 0

∇2
αB = 0

1
c2

∂2

∂2t
E −∇2E = 0

1
c2

∂2

∂2t
B −∇2B = 0

Example: Maxwell-like Equations of Gravitation in Vacuum
In the derivative of bivectors equation from A.2, if you replace the C0j with −G0j and Cij with
P ij , you can see strong similarities to Maxwell’s equations in vacuum.

0 =
+(d1G

01 + d2G
02 + d3G

03)e0
+(−d0G01 − (d2P

12 − d3P
31))e1

+(−d0G02 − (d3P
23 − d1P

12))e2
+(−d0G03 − (d1P

31 − d2P
23))e3

+(d0P
12 − (d1G

02 − d2G
01))e012

+(d0P
31 − (d3G

01 − d1G
03))e031
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+(d0P
23 − (d2G

03 − d3G
02))e023

+(−d1P 23 − d2P
31 − d3P

12)e231

This then leads to
0 = −∇G (Component e0)
0 = d0G−∇× P (Components e1, e2, e3)
0 = d0P +∇×G (Components e012, e021, e023)
0 = −∇P (Component e231)

In analogy to Maxwell’s equation in vacuum, we can write down the gravitational(-momentum)
wave equations

∇2
αG = 0

∇2
αP = 0

1
c2

∂2

∂2t
G−∇2G = 0

1
c2

∂2

∂2t
P −∇2P = 0

A.3 Movement of Vectors and Bivectors in Spacetime

Transformation of Unit-Vectors under Movement

These transformations are based on the Lorentz transformations. Note that the length/value C∗
i

of all the resulting vector components stay the same as Ci.

For the meaning of the indexed parameters and factors look at 2.2 “Special Relativity and Bivector
Transformations”. In short, the index gives the spatial direction of the movement. Moreover “∨”
is a “logical or”. All parameters and factors that have other indices are 0 or ignored.

Case v1:
ẽ0 = γ1e0 + γ1β1e1
ẽ1 = γ1e1 + γ1β1e0
ẽ2 = e2
ẽ3 = e3

Case v2:
ẽ0 = γ2e0 + γ2β2e2
ẽ1 = e1
ẽ2 = γ2e2 + γ2β2e0
ẽ3 = e3

Case v3:
ẽ0 = γ3e0 + γ3β3e3
ẽ1 = e1
ẽ2 = e2
ẽ3 = γ3e3 + γ3β3e0

Combination of Transformation of Movements
ẽ0 = (γ1 ∨ γ2 ∨ γ3)e0 + γ1β1e1 + γ2β2e2 + γ3β3e3
ẽ1 = (γ1 ∨ 12 ∨ 13)e1 + γ1β1e0
ẽ2 = (11 ∨ γ2 ∨ 13)e2 + γ2β2e0
ẽ3 = (11 ∨ 12 ∨ γ3)e3 + γ3β3e0
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Reverse Combination of Transformation of Movements
e0 = (γ1 ∨ γ2 ∨ γ3)ẽ0 − γ1β1ẽ1 − γ2β2ẽ2 − γ3β3ẽ3
e1 = (γ1 ∨ 12 ∨ 13)ẽ1 − γ1β1ẽ0
e2 = (11 ∨ γ2 ∨ 13)ẽ2 − γ2β2ẽ0
e3 = (11 ∨ 12 ∨ γ3)ẽ3 − γ3β3ẽ0

Transformation of Vector-Components under Movement

These transformations are based on the Lorentz transformations. Note that the length/value C∗
i

of all the resulting vector components stay the same as Ci.

Case v1:
C̃0 = γ1C

0 − γ1β1C
1

C̃1 = γ1C
1 − γ1β1C

0

C̃2 = C2

C̃3 = C3

Case v2:
C̃0 = γ2C

0 − γ2β2C
2

C̃1 = C1

C̃2 = γ2C
2 − γ2β2C

0

C̃3 = C3

Case v3:
C̃0 = γ3C

0 − γ3β3C
3

C̃1 = C1

C̃2 = C2

C̃3 = γ3C
3 − γ3β3C

0

Combination of Transformation of Movements
C̃0 = (γ1 ∨ γ2 ∨ γ3)C0 − γ1β1C

1 − γ2β2C
2 − γ3β3C

3

C̃1 = (γ1 ∨ 12 ∨ 13)C
1 − γ1β1C

0

C̃2 = (11 ∨ γ2 ∨ 13)C
2 − γ2β2C

0

C̃3 = (11 ∨ 12 ∨ γ3)C3 − γ3β3C
0

Reverse Combination of Transformation of Movements
C0 = (γ1 ∨ γ2 ∨ γ3)C̃0 + γ1β1C̃

1 + γ2β2C̃
2 + γ3β3C̃

3

C1 = (γ1 ∨ 12 ∨ 13)C̃
1 + γ1β1C̃

0

C2 = (11 ∨ γ2 ∨ 13)C̃
2 + γ2β2C̃

0

C3 = (11 ∨ 12 ∨ γ3)C̃3 + γ3β3C̃
0

Transformation of Unit-Bivectors under Movement

Example 1:
ẽ01 = ẽ0ẽ1
= (γ1e0 + γ1β1e1)(γ1e1 + γ1β1e0)
= (γ1e0γ1e1 + γ1β1e1γ1e1 + γ1e0γ

1β1e0 + γ1β1e1γ1β1e0)
= (γ21e01 + γ21β1e11 + γ21β1e00 + γ21β

2
1e10)

= (γ21e01 − γ21β1 + γ21β1 − γ21β
2
1e01)

= γ21(1− β21)e01
= 1

1−β2
1
(1− β21)e01
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= e01
→ Area value stays the same

Example 2:
ẽ02 = ẽ0ẽ2
= γ1(e0 + β1e1) ∧ e2
= γ1e02 + γ1β1e12
Length:
γ1((e0)

2 + (β1e1)
2)

γ1(1− β21)
→ Area value stays the same

Example 3:
ẽ03 = ẽ0ẽ3
= γ1(1e0 + β1e1) ∧ e3
= γ1e03 − γ1β1e31
→ Area value stays the same

Case v1:
ẽ01 = e01
ẽ02 = γ1e02 + γ1β1e12
ẽ03 = γ1e03 − γ1β1e31
ẽ12 = γ1e12 + γ1β1e02
ẽ31 = γ1e31 − γ1β1e03
ẽ23 = e23

Case v2:
ẽ01 = γ2e01 − γ2β2e12
ẽ02 = e02
ẽ03 = γ2e03 + γ2β2e23
ẽ12 = γ2e12 − γ2β2e01
ẽ31 = e31
ẽ23 = γ2e23 + γ2β2e03

Case v3:
ẽ01 = γ3e01 + γ3β3e31
ẽ02 = γ3e02 − γ3β3e23
ẽ03 = e03
ẽ12 = e12
ẽ31 = γ3e31 + γ3β3e01
ẽ23 = γ3e23 − γ3β3e02

Combination of Transformation of Movements
ẽ01 = (11 ∨ γ2 ∨ γ3) e01 + (γ3β3e31 − γ2β2e12) e01
ẽ02 = (γ1 ∨ 12 ∨ γ3) e02 + (γ1β1e12 − γ3β3e23) e02
ẽ03 = (γ1 ∨ γ2 ∨ 13) e03 + (γ2β2e23 − γ1β1e31) e03
ẽ12 = (γ1 ∨ γ2 ∨ 13) e12 + (γ1β1e02 − γ2β2e01) e12
ẽ31 = (γ1 ∨ 12 ∨ γ3) e31 + (γ3β3e01 − γ1β1e03) e31
ẽ23 = (11 ∨ γ2 ∨ γ3) e23 + (γ2β2e03 − γ3β3e02) e23
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Reverse Combination of Transformation of Movements
e01 = (11 ∨ γ2 ∨ γ3) ẽ01 − (γ3β3e31 − γ2β2e12) ẽ01
e02 = (γ1 ∨ 12 ∨ γ3) ẽ02 − (γ1β1e12 − γ3β3e23) ẽ02
e03 = (γ1 ∨ γ2 ∨ 13) ẽ03 − (γ2β2e23 − γ1β1e31) ẽ03
e12 = (γ1 ∨ γ2 ∨ 13) ẽ12 − (γ1β1e02 − γ2β2e01) ẽ12
e31 = (γ1 ∨ 12 ∨ γ3) ẽ31 − (γ3β3e01 − γ1β1e03) ẽ31
e23 = (11 ∨ γ2 ∨ γ3) ẽ23 − (γ2β2e03 − γ3β3e02) ẽ23

Transformation of Bivector Components under Movement

Case v1:
C̃01 = C01

C̃02 = γ1C
02 − γ1β1C

12

C̃03 = γ1C
03 + γ1β1C

31

C̃12 = γ1C
12e12 − γ1β1C

02

C̃31 = γ1C
31e31 + γ1β1C

03

C̃23 = C23

Case v2:
C̃01 = γ2C

01 + γ2β2C
12

C̃02 = C02

C̃03 = γ2C
03 − γ2β2C

23

C̃12 = γ2C
12 + γ2β2C

01

C̃31 = C31

C̃23 = γ2C
23 − γ2β2C

03

Case v3:
C̃01 = γ3C

01 − γ3β3C
31

C̃02 = γ3C
02 + γ3β3C

23

C̃03 = C03

C̃12 = C12

C̃31 = γ3C
31 − γ3β3C

01

C̃23 = γ3C
23 + γ3β3C

02

Combination of Transformation of Movements
C̃01 = (11 ∨ γ2 ∨ γ3)C01 −

(
γ3β3C

31 − γ2β2C
12
)

C̃02 = (γ1 ∨ 12 ∨ γ3)C02 −
(
γ1β1C

12 − γ3β3C
23
)

C̃03 = (γ1 ∨ γ2 ∨ 13)C
03 −

(
γ2β2C

23 − γ1β1C
31
)

C̃12 = (γ1 ∨ γ2 ∨ 13)C
12 −

(
γ1β1C

02 − γ2β2C
01
)

C̃31 = (γ1 ∨ 12 ∨ γ3)C31 −
(
γ3β3C

01 − γ1β1C
03
)

C̃23 = (11 ∨ γ2 ∨ γ3)C23 −
(
γ2β2C

03 − γ3β3C
02
)

Reverse Combination of Transformation of Movements
C01 = (11 ∨ γ2 ∨ γ3) C̃01 +

(
γ3β3C̃

31 − γ2β2C̃
12
)

C02 = (γ1 ∨ 12 ∨ γ3) C̃02 +
(
γ1β1C̃

12 − γ3β3C̃
23
)

C03 = (γ1 ∨ γ2 ∨ 13) C̃
03 +

(
γ2β2C̃

23 − γ1β1C̃
31
)

C12 = (γ1 ∨ γ2 ∨ 13) C̃
12 +

(
γ1β1C̃

02 − γ2β2C̃
01
)
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C31 = (γ1 ∨ 12 ∨ γ3) C̃31 +
(
γ3β3C̃

01 − γ1β1C̃
03
)

C23 = (11 ∨ γ2 ∨ γ3) C̃23 +
(
γ2β2C̃

03 − γ3β3C̃
02
)

B Appendix Mathematical Helper Functions

Vector Triple Product

Compute
β × P

With
P = β ×G
P1 = β2G3 − β3G2

P2 = β3G1 − β1G3

P3 = β1G2 − β2G1

β × P becomes
β2(β1G2 − β2G1)− β3(β3G1 − β1G3)
β3(β2G3 − β3G2)− β1(β1G2 − β2G1)
β1(β3G1 − β1G3)− β2(β2G3 − β3G2)

β2β1G2 − β22G1 − β23G1 + β3β1G3

β3β2G3 − β23G2 − β21G2 + β1β2G1

β1β3G1 − β21G3 − β22G3 + β2β3G2

(β2G2 + β3G3)β1 − (β22 + β23)G1

(β3G3 + β1G1)β2 − (β23 + β21)G2

(β1G1 + β2G2)β3 − (β21 + β22)G3

This can be further simplified to
(β ·G)β − (β2)G

Unsurprisingly, this is the Vector triple product [15]
a× b× c = (a · c)b− (a · b)c

All combined, we have
β × P = β × β ×G = (β ·G)β − (β2)G (62)

Velocity in Polar Coordinates

v = dR
dt = dr dR

dt dr + dϕ dR
dt dϕ = dr

dt er +
dϕ
dt eϕ = ṙer + ϕ̇eϕ

|v|2 = |dRdt |
2

= (ṙer + ϕ̇eϕ)(ṙer + ϕ̇eϕ)
= ṙ2(er · er) + 2ṙϕ̇(er · eϕ) + ϕ̇2(eϕ · eϕ)
= ṙ2 + ϕ̇2r2

|v|2 = ṙ2 + ϕ̇2r2 (63)

Angular Velocity and Angular Momentum

L = R× p
= R×mdR

dt
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= m
(
R× dR

dt

)
= m

(
(rer)×

(
ṙer + ϕ̇eϕ

))
= m

(
rṙ (er × er) + rϕ̇ (er × eϕ)

)
with er × er = 0 and er × eϕ = rez this becomes
L = mrϕ̇ (rez)
L = mr2ϕ̇

Rearranging gives

ϕ̇ =
L

mr2
(64)

C Appendix Constants of Nature

c 299 792 458
[
m
s

]
Speed of light

ϵ0 8.854 187 817 62039× 10−12
[
A2·s4
kg·m3

]
Electric vacuum permittivity

µ0 1.256 637 0614× 10−6
[
kg·m
A2·s2

]
Magnetic vacuum permeability

Gn 6.67408× 10−11
[

m3

kg·s2

]
Gravitational constant

ke 8.987 551 7923(14)× 109
[
kg·m3

A2·s4

]
Coulomb constant

h 6.62607015× 10−34
[
kg·m2

s

]
Planck constant

qu 1.60217663× 10−19 [A · s] Unit charge
α 0.007 297 352 5693(11) Fine-structure constant ( 1α = 137.035 999 084(21))
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