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Abstract. General Relativity is known for its local character;
unlike the omnipresence, i.e., instancy/immediacy of Einstein’s
“spooky action” while Quantum Entanglement. Hence, it is ex-
pected that a local observer can measure/harvest the energy. This
means that the famous problem of energy localization should have
a positive solution. I introduce an inertial coordinate system (a
local inertial tetrad) and derive conservation laws from the covari-
ant four-dimensional divergence of the energy-momentum tensor.
As an introduction to the revealing power of such tetrads, different
mathematical methods have coincided in showing that Black Holes
can start shrinking and, in the finale, completely vanish the falling
test objects; the annual pointing of the rotational axis of Earth on
the North Star area is also explained.
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1. Importance of this research

Please read my explorations in the field of inertia. Why inertia?
Please, recall that Sir Isaac Newton’s first law is all about inertia.

Yes, the notion of an “inertial frame of reference in General Rela-
tivity” is known [1], but upon a deep examination, I know that I have
made substantial progress because I have convincingly discovered (con-
firmed in many alternative ways) a never known effect: a Black Hole
can apply size reduction to the falling objects even at a significant dis-
tance from the event horizon, and this is not in contradiction with the
observed “Spaghettification/noodle effect” in Ref. [2].

As well as the “energy localization problem”, which is troubling the
Physics Community, is convincingly solved in my paper.

eestidima@gmail.com.
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2. Introduction and Summary of results

There is the demand for an inertial tetrad in the Galilean Postu-
late of Relativity because the measurement apparatue is acceleration-
dependent, vibration-dependent. Therefore, strictly speaking, Science
must be done with an observers from the inertial measurement systems
only.

By recalling the basic need to study problems in an inertial coor-
dinate system (ICS tetrad), I found no problem with the local con-
servation of the fundamental laws of Nature. But others have faced
significant problems [3].

As an application of such tetrads, different mathematical methods
have coincided in showing that Black Holes can start shrinking and, in
the finale, completely vanish the falling test bodies. How? First of all,
consider for a moment a distant analogy. It is the collapsing cloud of
dust. It is natural to feel the shrinking of yourself together with the
cloud, being a free-falling observer in a shrinking dust cloud.

In the case of a Black Hole, there are two opposite effects: EffectN
and EffectS. The distant observer never experiences a test body crossing
the event horizon (due to gravitational time dilation). Hence, he sees
that the falling body starts to fall slower and shrinks in the radial
direction. This is EffectS. The opposite EffectN is that the legs of the
falling body (the latter should belong not to a doomed astronaut but to
a test dummy of scientific endeavor) are closer to the singularity than
the head; hence, under Newton’s Laws, the Black Hole spaghettified the
falling body. And indeed, this happens at the first stage of accretion
and fall of matter (as seen in Ref. [2]).

But in the second phase, the factor EffectS grows stronger and over-
comes EffectN. The body begins to shrink and to self-collapse. Why?
It is being told to public that the final stage of any falling body is the
smallest point at the central singularity. Hence, there cannot be an ex-
clusive stretching out between the two evolutionary states of the body:
an initial large object and a final tiny dot. There has to be stretching
first. But near the “dot stage” (at r = 0), there must be shrinking to
prepare the object to unite with the dot.

Therefore, shrinking has to happen, even to an indefinite size at r =
rm > 0. I have “seen” this happening outside the central singularity
(latter one is at r = 0), where the geodesic motion stops: no trace
of the falling body at 0 < r < rm. Notably, the “Riemann curvature
tensor” has no “physical” singularity at r = rm, as I have seen in a
local tetrad using methods of Ref. [8].
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Such effect occurs at the radial straight line falling with θ = const,
ϕ = const, where the falling body re-bounce at rm is not possible. The
re-bounce would mean that at r = rm, the body “flies by”, having the
closest approach to the Black Hole singularity. Such an rm ̸= 0 effect
is characteristic for the Kerr, Reissner-Nordström, and Kerr–Newman
space-times. In the case of Reissner-Nordström space-time, the direct
radial falling is studied, so it has no bouncing or “turning” point. More-
over, the Kerr space-time is considered, and falling goes along the axis
of rotation θ = 0, so it has no turning point. In the case of the general
falling with θ ̸= 0, the space-time point with rm has zero velocity of the
falling body: ur = uθ = uϕ = 0, which points not to a turning point
but to a complete stop and vanishing by shrinking to an indeterminate
size.

One of my methods is the study of a falling drop of “perfect fluid”.
To avoid any misconception, I declare that my “density equation”
[Eq. (33)] is applied to the falling of a small drop, not a star’s evo-
lution/collapse. Here I have given my results and a verbal explanation
for them. But below are the methods and mathematics of General
Relativity.

3. The idea of Energy localization and inertial
coordinate system

The Christoffel Symbols (Γα̂
û µ̂) are necessary in curved coordinate

systems; it means their metric is not Minkowski. [8] Professor Lev
Davidovich Landau has proven on a single page of his famous book
“Theory of Fields” that there is a coordinate transformation at any
point of space-time, in that all Christoffel Symbols turn to zero. The
proof might be in Ref. [4], but I used the original, 1960 AD edition,
printed in his native languadge. In the following, under xν = xν({xµ̂})
is meant just that Landau’s transformation.

The definition of covariant derivatives [8] imply that if T û µ̂
;û = 0

holds together with Γα̂
û µ̂ = 0 holding, then T û µ̂

,û = 0 holds too. The
latter formula means that the classical conservation laws do hold in the
vicinity of the space-time point P ({xν}).

Here and in the following, the index with a comma means an ordi-
nary derivative with respect to the space-time coordinate xû while the
index with semicolon means the covariant derivative using Christoffel
symbols.

Here and in the following, I am using the “Einstein summation con-
vention.” For example, aν bν ≡ at bt + ar br + aθ bθ + aϕ bϕ, where
xν = t, r, θ, ϕ are so called “curvature coordinates,” or “coordinates of
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background spacetime.” To cite an Encyclopedia of 2023 AD, Einstein
summation is a notational convention that implies summation over a
set of indexed terms in a formula. It is used in mathematics and physics
to simplify expressions involving vectors, matrices, and tensors. The
main rule of Einstein summation is that repeated indices are implicitly
summed over. Each index can appear at most twice in any term. It
was introduced by Albert Einstein in 1916 AD.

And if you calculate such coordinate systems along the world-line of
the observer Dmitri Martila, then Dmitri will see the energy-momentum
conservation in his vicinity. Such co-moving coordinate systems will
have the denotation xû. Therefore,

(1) T û µ̂
,û ≡ ∂T ûµ̂

∂xû
= 0 .

My contribution is that the inertial orthonormal tetrad (in the follow-
ing, it is ICS – inertial coordinate system) is such a coordinate system
at event P ({xν}). The local matrix of the coordinate transformation
xν = xν({xµ̂}) is

(2) Mν
µ̂ =

∂xν

∂xµ̂

∣∣∣∣∣
{xµ̂}=0

.

The localized (i.e., the entire set {xµ̂} → 0) tetrad is a local ICS system
of four vectors given at “space-time event” P ({xν}) ≡ P ({xµ̂} = 0).
The vectors are: eνµ̂ ≡ Mν

µ̂ . They are numerated by {µ̂} = 0̂, 1̂, 2̂, 3̂.
The index {ν} = 0, 1, 2, 3 numerates components of a vector in a
background space-time.

The rate of a vector in ICS has

(3)
dAû

dτ
= eûα

DAα

dτ
,

where the covariant τ -derivative DAα/dτ is a tensor [4, 8]. All this
means that dAû/dτ is a tensor too.

Therefore, if Aû is meant to be conserving, i.e., Aû = ⃗const, then

(4)
dAû

dτ
= 0 ,

D Aα

dτ
= 0 .

Then,

(5) Aα = eαû A
û , Aû D eαû

dτ
= 0 ,
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where both of Eqs. (4) were used. Now, because Aû can be an arbitrary
conserving vector, the necessary condition for Eq. (5) to hold is

(6)
D eαû
dτ

=
d eαû
dτ

+ Γα
β γ e

β
û u

γ = 0 .

Latter is my definition of an inertial tetrad; these are such crucially
important tetrads, in which the conservation of vectors and tensors is
possible. Hence, the energy-momentum conservation happens there,
making energy harvesting a local process.

This formula solves the Energy Localization problem in General Rel-
ativity in the following way. The famous formula is [4, 8]

(7) T νµ
;ν = 0 .

Energy-momentum conservation

(8) T û µ̂
,û = 0

is going on in the ICS. Left-hand side of the Eq. (3) is a tensor; there-

fore, T û µ̂
,û is also tensor, but in ICS. It must hold because, using the

coordinate transformation, the original tensor components T νµ
;γ become

tetrad components T û µ̂
,γ̂ And then, I sum over û = γ̂ using Einstein’s

summation rule.
All this means that

(9) Γα̂
û µ̂ = 0 .

Please, recall that due to the Strong Equivalence Principle, the free-
moving laboratory’s physical laws are independent of gravity. [9] Latter
means that the Christoffel symbols are not necessary; so, they can
vanish.

It turned that Eq. (6) is the definition of a geodesic vector. [8] There-
fore, tetrad vectors eνµ̂ are all geodesic vectors in ICS,

(10)
D eν

0̂

dτ
=

D eν
1̂

dτ
=

D eν
2̂

dτ
=

D eν
3̂

dτ
= 0 .

For instance, one has [8]

(11)
D eν

3̂

dτ
=

d eν
3̂

dτ
+ Γν

µα e
µ

3̂
uα ,

where uα is the four-dimensional velocity of ICS, to which the tetrad
vectors are “attached”.
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Working in the Schwarzschild metric, I have managed to find the
following ICS,

(12) et̂µ̂ =

(
4
√
70

35
, 0, 0, − 10√

7

)
,

(13) er̂µ̂ =

(
2√
35

cos(w τ), −
√
5

2
sin(w τ), 0, −20

√
14

7
cos(w τ)

)
,

(14) eθ̂µ̂ = (0, 0, r, 0) ,

(15) eϕ̂µ̂ =

(
2√
35

sin(w τ), −
√
5

2
cos(w τ), 0, −20

√
14

7
sin(w τ)

)
.

where w =
√
10/100, M = 1, r = 10 = const. Let this tetrad be

co-moving with Earth, namely, all four vectors are in the center of the
Earth. These tetrad vectors enable a conserving vector (Aû), which is
constantly directed into North Star. Why? Because this tetrad vectors
contain periodic functions cos(w τ) and sin(w τ) only.

The real-life situation was simplified because it has not acknowledged
the size of the planet; the latter was taken as zero for the sake of
argument. But a more detailed application of ICS systems should reveal
the slow precession of the planet axis. A recent paper about precession
is in Ref. [5].

4. Four mutually consistent methods

A fluid drop falls along the geodesic line because the drop size is
negligible. There is water in heaven [6]. As a background example, I
consider the Schwarzschild metric of the space-time, gνµ = diag(−(1−
2M/r), 1/(1 − 2M/r), r2, r2 sin2 θ). One finds velocity vector using
the “integral of motion” ut = −E = const, and the norm given by
uν u

ν = −1. The non-zero components are [8]

(16) ut = −E , ur = −
√

E2 − 1 + (2M/r)

1− (2M/r)
,

where E =
√

1− (2M/r0). TheM , Q, Sû, τ , and r are being measured
in meters: they are “geometrized.” The initial velocity (at r = r0)
is zero, ur = 0. The free-falling ICS has a time-like geodesic vec-
tor e0̂ν = uν and space-like vectors e1̂ν = (A,H, 0, 0) (which is radially

directed), e2̂ν = (0, 0, r, 0), and e3̂ν = (0, 0, 0, r sin θ), with the inner
product eq̂α e

û α = ηq̂ û = diag(−1, 1, 1, 1).
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5. First method: Alternative to the known deviation
Equation

A free, small particle falls following a “geodesic” trajectory in the
four-dimensional space-time, i.e., a geodesic world-line. There can be
several small particles freely moving in space-time along geodesics.
While following the propagation of neighboring geodesics, people see
that they start to deviate from each other more and more, going each
own way.

The derivation of the Geodesics Deviation Equation is in Ref. [8],
pages 58 and 291. The bundle of geodesic world-lines is xα = xα(λ, η)
and the tangent vector to a geodesic trajectory (one from the bundle)
is uα = ∂xα/∂λ.

People are writing very complicated papers (unlike my simple paper)
because they are using the famous second-order Deviation Equation [7],
latter is in Eq. (30). However, I present an easily accessible way to
study problems through the lens of the first-order Geodesics Deviation
Equation in Eq. (20). Please note that, unlike the known Geodesics
Deviation Equation, Eq. (20) includes the property of the bundle of
geodesic world-lines: a starting area with E = E(r0) ≡ η, whereas
proper time runs along each geodesic τ ≡ λ.

One can write open:

(17) Uα({xν}; λ, η) = Uα({xν(λ, η)}; λ, η) = uα(λ, η)

with

(18) Uα
,ν ≡ ∂Uα(x0, x1, x2, x3; λ, η)

∂xν
̸= 0 .

Because mathematically speaking

(19)
∂2xα

∂η ∂λ
=

∂2xα

∂λ ∂η
,

one has

(20)
∂nα

∂λ
=

∂uα

∂η
,

where nα = ∂xα/∂η. With nα = nû eαû , where nû is the projection of
the vector nα onto the ICS. This turns into

(21)
d nû

dλ
eαû =

∂ uα

∂η
− nû ∂ eαû

∂λ
.

Now, because of Eq. (17), one has

(22)
∂uα

∂η
≡ Uα

,ν

∂xν

∂η
+

∂Uα

∂η
,
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where

(23)
∂ xν

∂η
= nν = nûeνû .

To make my point, I will consider a small pressure-free (p = 0) dust
cloud in this section of the paper.

If the body falls in the Schwarzschild metric with proper time τ ≡ λ,
I come to

(24) M n1̂ +
d n1̂

dτ
r
√
r2 (E2 − 1) + 2M r − r2 = 0 ,

and the τ -derivative (note that r = r(τ)) of both sides of Eq. (24)
results in

(25)
d2 n1̂

dτ 2
=

2M

r3
n1̂ .

The proper (i.e., directly measurable) distance is given by Sû = ∆η nû,
if the constant ∆η is small.

The Strong Equivalence principle implies [9], what the same time

shall be in the locality/vicinity of the observer, namely S 0̂ = 0. By

taking τ -derivative of both sides of S 0̂ = 0, I come to d S 0̂/dτ = 0.

So, solution given in Eqs. (24) and (25) was derived using fixed S 0̂ =

d S 0̂/dτ = 0. Therefore, S 1̂ can be recognized as the proper distance be-

tween the dust particles. Vector S 1̂ is radially directed, i.e., it is placed
along the line which connects a falling body and the Schwarzschild
Black Hole.

Amazingly, despite the positive acceleration of deviation, the radial
size of the body can shrink,

(26) f =
d2 S 1̂

dτ 2
> 0 ,

d S 1̂

dτ
< 0 ,

if M n1̂ > r2. I am giving the following explanation for it. The devi-
ation forces (f) are not forces at all. Why? The Strong Equivalence
Principle stays clear: the Physics of the small laboratory is not affected
by the outside curvature of space-time. [9] So, introducing an alien force
f into such an “oasis” is conceptually wrong.

6. Second Method: Known Deviation Equation agrees

The pressure is still absent in this section: p = 0. In the inertial
tetrad, one has

(27)
dn hû

dτn
= eûα

Dn hα

dτn
,
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where

(28) hû = eûµ h
µ , hα = eαû h

û .

The inertial tetrad is defined by

(29)
D eαû
dτ

=
d eαû
dτ

+ Γα
β γ e

β
û u

γ = 0 .

It is known that [8]

(30)
D2 nα

dτ 2
= −Rα

µρ ν u
µ uν nρ ,

where Rα
µρ ν is the famous Riemann curvature tensor. If S 0̂ = 0 is fixed,

then

(31)
d2 S 1̂

dτ 2
= −e1̂αR

α
µρ ν u

µ uν (eρ
1̂
S 1̂) ,

which, in the case of the Schwarzschild metric, gives

(32)
d2 S 1̂

dτ 2
=

2M

r3
S 1̂ ,

exactly matching Eq. (25).
My way of getting Eq. (31) was the following. I multiplied both sides

of Eq. (30) by eûα and used Einstein’s rule of summation (over index
α). After that, I used Eq. (27) with n = 2. The formula from Section
5, which is Sû = ∆η nû, where ∆η = const, was used too.

7. Third Method: density from energy-momentum

This section allows a non-zero pressure p ̸= 0. It is known (from
Ref. [8], pages 226–227, see Appendix), that the rate of compression of
a perfect fluid behaves as

(33)
d ρ

dτ
= −(ρ+ p)uν

;ν .

If one inserts the velocity uν into the divergence, one gets to know that
uν
;ν behaves like 1/ur, latter shows −∞ in the limit r → rm. For the

Schwarzschild Black Hole, one has

(34) H = uν
;ν = M

4 r − 3 r0√
2M r0 r3 (r0 − r)

,

with the zero at r = 3 r0/4 as the start of the compression. At the
initial moment (i.e., r = r0), H > 0, and it is infinite. It behaves
like 1/

√
r0 − r. It means: the drop’s density goes down but in a finite

proportion,
∫
(dρ/dτ)dτ < ∞. Why? It is the very start of “Spaghet-

tification” [2], predicted by Newton’s Theory of Gravity.
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Then the H < 0 stage starts at r = 3 r0/4: the drop shrinks. No-
tably, this happens at an infinite distance from the Black Hole if r0 is
infinite. This effect does not fit the intuition, where the gravity devi-
ation forces are trying to rip apart the “falling astronaut body” in a
tragic scenario. This would be an unexpected result for Sir Newton’s
age, even though I have a weak gravity field at r = (3/4) r0 ≫ 2M .
The deadly ripping with extremely large H > 0 never begins; however,
H < 0 holds at r = rm = 0 and is infinite. At this moment, H be-
haves like −1/r3/2, the integral of which is diverging at the curvature
singularity r = 0.

At a more complicated Black Hole than idealistic Schwarzschild black
hole, rm ̸= 0 holds. The drop’s density while r approaches rm diverges
because of

(35)
d ρ

ρ
=

(
−H −H

p

ρ

)
dτ ,

which is the rewritten Eq. (33). Integration of both sides of Eq. (35)
produces

(36) ln(C ρ) =

∫ (
−H −H

p

ρ

)
dτ =

∫ (
H

ur
+

H

ur

p

ρ

)
dr = ∞ ,

where C is a constant of integration; and the definition of radial velocity
component ur = dr/dτ was used. Why? The H behaves like 1/ur at
rm, but u

r = 0 at r → rm.

8. Fourth Method: geometric density change

In this section, a small layer of pressure-free and turbulence-free dust
is falling in a space-time with the Schwarzschild Black Hole. The entire
cloud remains to evolve within the solid angle Ω = const throughout
the entire process of the fall. The proper thickness of the dust layer
is S 1̂. Then, for pure geometrical reason, ρ = K/(S 1̂ r2), where the
K = const. Then, by taking the τ -derivative of both sides, i.e.,

(37)
dρ

dτ
=

d

dτ

(
K

S 1̂(τ) r2(τ)

)
,

one has

(38)
dρ

dτ
= ρ

3 r0 − 4 r

2
√

r0 r3 (r0 − r)
+O(∆η) ,

which coincided with Eqs. (33) and (34) for a small falling object (dust
cloud) with initial radial size ∆r0. If the ∆r0 is small, ∆η is small as
well because they are connected via E(r0) ≡ η. The latter formula is
from Section 5.
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I have used p = 0 and Eqs. (24) and (37) with M = 1/2.

9. Abrupt-end-geodesics

Now, I consider a Kerr Black Hole with mass M = 1/2 and rotation
a = 1/4. A test body starts falling from θ0 = π/4 at a large distance
r0 = 20 with zero initial velocity. The radial component of the velocity
vector is given by [8]

(39) ur ≡ d r

dτ
= −

√
B

r2 + (1/16) cos2 θ
,

where B = −(640/12801) r4 + r3 − (742460/155672961) r2 +

(12481/194576) r− (62405/622691844). Presence of
√
B demands pos-

itivity of B; but for r < rm = 1/640 one has B < 0. Therefore, there
is no falling body in 0 ≤ r < rm because the trajectory is impossible in
r < rm. Note that the Black Hole tidal forces do not stretch the body
apart but compress it to a point size. At the r = rm, u

r = uθ = uϕ = 0
holds (to demonstrate, I have used [8]), which points not to a turn-
ing/bouncing point but to a complete stop and vanishing by shrinking
to an indeterminate size.

Now, I consider velocity of free fall in the Reissner-Nordström met-
ric [8],

(40) ur ≡ dr

dτ
= −

√
B

r2
, uϕ = uθ = 0 ,

where B = E2 r4 − (r2 − 2M r + Q2) r2. Let me choose Q = 1/5 and
M = 1/2. Zero initial velocity (B = 0 at r = r0 = 20) determines the
trajectory with

(41) E =

√
9501

100
.

Therefore

(42) B = − 499

10000
r4 + r3 − r2

25
,

which is negative in r < rm = 20/499. Thus, at rm one has ur = 0.

10. Appendix: density rate for perfect fluid

Consider a drop of “perfect fluid” falling into a Black Hole. Because
the drop is small, every part of it has about velocity of the fall. The
equation of matter is T µ ν

;ν = 0; thus, uµ T
µ ν
;ν = 0, where

(43) T µ ν = (ρ+ p)uµ uν + p gµ ν .
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To write open,

(44) −(ρ+ p),ν u
ν − (ρ+ p)uν

;ν + (ρ+ p)uν uµ
;ν uµ + p,ν u

ν = 0 ,

where uµ
;ν uµ = 0 was used because (uµ uµ);ν = (−1);ν = 0. Then

(45) −d(ρ+ p)

dτ
− (ρ+ p)uν

;ν +
d p

dτ
= 0

because I have velocity definition: uν = dxν/dτ .
Finally,

(46)
dρ

dτ
= −(ρ+ p)H ,

where H = uν
;ν .
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