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UNDERSTANDING QUANTUM MECHANICS 
D. J. Larson 

 

Abstract. Quantum mechanics presently has many unanswered questions, paradoxes, and even 
outright logical contradictions. To make progress in understanding quantum mechanics, we begin 
by proposing that relativity be set aside in favor of an absolute aetherial theory. Once that step is 
taken, we can understand quantum collapse as a description of real wave-packets collapsing in a 
faster-than-light way. By assuming that a partially observable reality exists, we can then extend 
our analysis of wave-packets into the subquantum, and the Heisenberg uncertainty principle then 
follows from the Fourier uncertainty principle coupled with the de Broglie relation. Further 
progress in understanding quantum mechanics is possible by modifying the de Broglie and Planck 
relations. Those modifications lead to matter-waves moving at the speed of light rather than 
superluminally as presently theorized, and they allow the results of matter-wave two-slit 
experiments to be understood from any reference frame. A modified time-dependent Schrödinger 
Equation results from our modifications, but the spatial time-independent Schrödinger Equation is 
retained. 

 

1. Introduction. Since its inception, quantum mechanics has been difficult to understand. 
Interference experiments show that entities sometimes behave like distributed waves, while 
scattering experiments show that entities sometimes behave like particles. This behavior led to the 
idea of a wave/particle duality. The concept of a wavefunction was introduced wherein the square 
of the wavefunction is the probability density of where an underlying particle will be found. The 
wavefunction is a distributed entity, and it can therefore interfere, and certain events can cause it 
to collapse to a much smaller state. However, this concept of quantum mechanics is inherently in 
conflict with Einstein’s relativity[1], an issue most famously raised by Einstein, Podolsky and 
Rosen[2] (EPR). Bell[3] extended the work of EPR, and Aspect, Dalibard and Roger[4] provided 
experimental validation of Bell’s inequalities, showing that quantum mechanics does indeed give 
correct predictions in spite of its confrontation with relativity. 

Part of our inability to understand quantum mechanics comes from two fundamental contradictions 
often found in quantum mechanics interpretations: 1) a quantum collapse exists that must be (via 
Bell[3]), and yet cannot be (via Einstein[1]), a faster-than-light phenomenon; and 2) the ultimate 
nature of physical entities is that they are both a particle and a wave. Since these are statements of 
contradiction, they of course cannot be understood. Here we will eliminate these contradictions by 
asserting single choices for each: 1) quantum collapse is a faster-than-light phenomenon; and 2) 
the ultimate nature of physical entities is that they are never point-like particles. Since relativity is 
a point-like theory in a curved four-dimensional space-time continuum, and relativity also 
precludes faster-than-light phenomena, both of our assertions confront relativity. Hence, we shall 
set relativity aside. Instead we will adopt the absolute theory of the Quantum Luminiferous 
Aether[5], which returns us to a flat three dimensional Euclidean space and an absolute time which 
includes absolute simultaneity: the Quantum Luminiferous Aether theory is a continuum theory 
that allows faster-than-light collapse. 
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2. The Impulse-Initiated-Collapse Interpretation. To better understand quantum mechanics, we 
will begin with a simple physical interpretation for observed quantum behavior: 

The impulse-initiated-collapse interpretation: A wavefunction experiencing an impulse undergoes 
a faster-than-light collapse determined by: 

 dx ≥ h/2dp (1) 

In Eq. (1) dx is the post-impulse spatial spread of the wavefunction, dp is the relevant impulse, 
and h is Planck’s constant h divided by 2. If a high energy probe collides with a free particle 
wavefunction, the probe will either pass through the wavefunction or it will collapse the 
wavefunction to a size given by Eq. (1). In this case, the relevant impulse is the full momentum 
that the probe imparts to the wavefunction. 

In our interpretation there are no issues involving what is or is not the 'environment', what is or is 
not being 'measured', nor who or what an 'observer' is: collapse occurs whenever an impulse affects 
a wavefunction. In situations where a tightly localized collapse of a free entity is required in some 
regions but not in others (such as the two-slit experiment) the collapse either occurs to a single 
small region dx where such a collapse is required, or to the entire region where no tightly localized 
collapse is required. 

For bound quantum states it is possible for the impulse to either cause a transition to another bound 
state, or to eject the quantum out of its bound state and into a free state. If the quantum is 
transitioned to another bound state, the size of the quantum becomes that of the new bound state. 
If the quantum becomes freed, the relevant impulse dp used in Eq. (1) is the momentum excess 
above and beyond what it takes to free the entity from its binding. If we barely have enough energy 
in our probe to free the entity, the entity will have relatively low spreads of energy and momentum 
after the impulse. This will lead to a larger entity size than if the entire impulse had been transferred 
to an equivalent free entity. 

For the case of mirrors, an individual photon can interact with many electrons and be reflected. 
The relevant impulse at each photon/electron interaction involves only a very small fraction of the 
photon’s total momentum, and Eq. (1) is applied using that small momentum fraction at each 
participating electron/photon interaction. Since Eq. (1) describes a collapse size that is inversely 
proportional to the relevant impulse, this results in a very large size (dx) for the collapse in this 
case. Indeed, the collapse can occur over the entire mirror surface. Similarly, photons interacting 
with lenses involve many electrons rather than one. In that case, the impulse involved in the lensing 
action is again spread over so many electrons that the collapse can occur over the entire lens. 

In every situation Eq. (1) applies. Here we are interpreting Heisenberg’s[6] uncertainty principle 
not only as a limitation on our ability to observe, but also as a fundamental attribute of quantum 
entities. Each entity has a spatial spread and a momentum spread, and those spreads change 
whenever the entity’s wavefunction collapses due to an impulse event. 

Our impulse-initiated-collapse interpretation enables an understanding of the physics of quantum 
collapse experiments, and it is consistent with our assertion setting aside the dogma of wave-
particle-duality. Instead, we propose that there are no point-like particles in nature at all. There are 
only finite-sized bodies undergoing wave-like motions. Sometimes these entities are quite spatially 
extensive, and other times they are well localized, but they are never points. This approach avoids 
the infinity problems associated with point-like particles.  
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3. A Physical Model of Light. Importantly, our proposal involves an assertion that we set relativity 
aside and return to the concept of an aether. And with an underlying model of light as of a wave 
upon the aether, we can now understand what is happening in the quantum collapse of a photon. 
Prior to collapsing at a wall, a photon consists of undulating aether over a large volume. The 
volume can for now be envisioned as being bounded by a rectangular box. One face of the 
bounding box is a large area parallel to the wall. Once the wavefunction collapses, the bounding 
box has a much smaller area parallel to the wall. Our model of the collapse process is hence one 
where a small undulation within a large box goes to zero in most of the large box, except for the 
region of a small box wherein the undulation becomes larger. 

Notice that our description of a photon is now contemplating what is going on inside of the 
quantum: we are doing a subquantum analysis. This is possible because of our fundamental axiom 
in Ref. 5 which states that a partially observable reality exists. While we can’t make observations 
within the subquantum, we nonetheless can postulate that it is real, and we are free to analyze it. 
This is different from the presently prevailing view that we can’t do such an analysis, and it is one 
of the aspects needed to improve our understanding of quantum mechanics.  

Next, we will advance beyond our simplistic model of a photon as undulations within a box and 
consider a model of a photon as a gaussian wave-packet. That gaussian will have a standard 
deviation of X in configuration space. Taking the Fourier transform results in a view of the photon 
as being a wave-packet in the conjugate wave-number space, showing that the photon is made up 
of classical sinusoidal aetherial oscillations over a range of wave-numbers. As is well-known, the 
Fourier transform of a gaussian is itself a gaussian, and with an appropriate choice of convention 
it has a standard deviation K such that XK = 1/2. It is also well-known that the gaussian case 
presents a lower limit for XK and hence more generally: 

 XK ≥ 1/2 (the Fourier Uncertainty Principle)  (2) 

We will now bring in two empirical equations governing light: 

 E = h (the Planck relation[7])  (3) 

 p = hk (the de Broglie relation[8]) (4) 

In Eqs. (3) and (4)  is 2f, f is the frequency, k is the angular wave vector (k has magnitude 
2/),  is the wavelength, p is the momentum, and E is the energy. Taking the magnitudes of p 
and k, the de Brogle relation is p = hk and hence P = hK. Substituting K = P/h leaves Eq. (2) 
as XP ≥ h/2, which is Heisenberg’s uncertainty principle[6], equivalent to Eq. (1). Hence, a 
model of the underlying subquantum reality of the photon as a wave-packet leads directly to 
Heisenberg’s uncertainty principle. 

It is already widely known that the Fourier uncertainty principle leads to Heisenberg’s. Not 
presently appreciated are the realizations that: 1) we can indeed do a subquantum analysis; 2) the 
photon component waves continue to obey Maxwell’s equations within the subquantum realm; 3) 
faster-than-light collapse is possible; and 4) there is no wave/particle duality, only collapsing wave-
packets. These realizations allow for an improved understanding of the quantum mechanics of 
light, as the photon subquantum can be understood as being governed by Maxwell’s Equations for 
each component frequency making up a wave-packet, while the collapse of the wave-packet 
envelope is governed by Eq. (1) in every situation. 
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4. Planck/de Broglie Matter-Waves. With a physical model now allowing an understanding of 
the quantum mechanics of light, we turn next to consideration of matter-waves. Matter is different 
than light. Here we’ll use the term matter to mean anything that: 1) is extrinsic to the aether; and 
2) has a rest mass. We will temporarily assume that Eqs. (3) and (4), the Planck and de Broglie 
relations, will also apply to matter-waves and we’ll assume that an underlying matter-wave exists: 

  = exp[i(k.x–t)] (5) 

In Eq. (5)  is a displacement of the matter, i is the square root of minus one, x is the three-
dimensional spatial coordinate vector and t is the time. It is our assumption of an underlying wave, 
expressed in Eq. (5), that introduces our underlying physical model. Taking derivatives of Eq. (5): 

 ∂/∂x = ikx   ,   ∂/∂y = iky   ,   ∂/∂z = ikz (6) 

and  

 ∂/∂t = –i (7) 

Differentiating Eqs. (6): ∂2/∂x2 = –kx
2, ∂2/∂y2 = –ky

2, and ∂2/∂z2 = –kz
2; which can be 

combined to form 

 ∇2 = –k2 (8) 

Eq. (8) uses the usual nomenclature for the Laplacian, ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. We now take 
the dot product of Eq. (4) with itself, and rearranging leaves k2 = p2/h2 while rearranging Eq. (3) 
leaves  = E/h, and substituting these values into equations (7) and (8) leaves ∂/∂t = –iE/h and 
∇2 = –p2/h2, respectively, which can be rearranged as: 

 E = ih(∂/∂t)/  (9) 

 p2 = – h2∇2/ (10) 

Now recall the low energy expression for energy:  

 E = p2/2m + V (11) 

In Eq. (11) m is the entity’s mass and V is the potential energy. Next, we substitute expressions (9) 
and (10) into Eq. (11): 

 ih(∂/∂t)/ = – h2∇2/2m + V (12) 

And now we multiply through by : 

 ih(∂/∂t) = – h2∇2/2m + V (13) 

Eq. (13) is recognized as Schrödinger’s Equation[9]. 

 

5. Problems with Planck/de Broglie Matter-Waves. With Schrödinger’s Equation now derived, 
we can again turn to the issue of an underlying subquantum reality, this time for matter-waves. 
We’ll see that an underlying model based on Eqs. (3), (4), (5) and (13) has a couple of significant 
problems. 

Recall Eq. (5) which defines the matter-wave,  = exp[i(k.x–t)]. For one dimension, we can 
manipulate this to  = exp[i(kx–t)] = exp[ik(x–t/k)] = exp[ik(x–wt)]. In the last expression we 
see that w = /k, where w is the matter-wave phase velocity. Above we found  = E/h and k2 = 
p2/h2 and taking the square root of the latter we get w = /k = E/p. With c the speed of light, v the 
matter velocity,  = [1 – v2/c2]-1/2, E = mc2 and p = mv, we see that w = E/p = mc2/mv = c2/v. 
Now, v can certainly be zero, and this leads to an infinite phase velocity in that case. Within the 
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status quo, singularities are accepted, but under our realist approach the phase velocity is a physical 
attribute and singularities are unacceptable. 

A second problem becomes apparent if we arrange an electron beam to have a low momentum 
spread and pass it through two slits. Doing so will lead to a two-slit interference pattern similar to 
that obtained in Young's two slit experiment for light. Presently, the wavelength of the electrons 
is theorized to be that given by the de Broglie condition,  = h/p, where p is the momentum of the 
electrons as determined from any reference frame. (The de Broglie condition follows from Eq. 
(4).) Under the standard simple analysis, we expect the interference fringes to be spaced by z/d 
where d is the separation distance between the two slits and z is the distance between the slitted 
wall and the downstream wall. This expectation agrees with observations when we are at rest with 
respect to the walls. But if we observe that very same experiment from a spaceship moving along 
with the electrons, the electron velocity will be zero. From that frame the momentum p is zero and 
by the de Broglie relation  is infinite, the fringe spacing is calculated to be infinite, and we expect 
no interference pattern. Yet it is the same experiment, just viewed by different observers, so this 
is a second problem with real matter-waves based on Eqs. (3), (4), (5) and (13). 

Notice that we retain the term “frame of reference” even though we are using an absolute theory. 
We are keeping the Lorentzian physical length contraction and time dilation and we interpret the 
Lorentz transformation equations just as Lorentz did: observers moving through the aether arrive 
at a “fictitious” coordinate system due to their faulty instruments. Each “fictitious” coordinate 
system is a frame of reference, and the Lorentz transformation between such coordinate systems 
is the same as what relativity gives us. 

Note that the paradox for matter-waves in a two slit experiment does not exist for light. In the case 
for light, consider first the lab frame with a distance between the walls of z0, a separation of the 
slits of d, and an original light wavelength of 0. In the lab we calculate and observe interference 
fringes to be spaced by z00/d. Next, consider a second observer moving toward the light. In that 
frame, the two walls will be moving in the direction the light, the distance between the walls will 
be length contracted, and the light will be blue-shifted. From the moving frame, the time T2 it takes 
for light to get from the slitted-wall to the second wall is 

 T2 = (z0/ + vT2)/c  (14) 

In Eq. (14) the second wall moves a distance vT2 during the transit time T2, and so the total transit 
distance is vT2 plus the distance between the walls, which is z0/ because of the length contraction 
of the moving apparatus. The total distance the light travels between the walls is z2 = cT2. From 
Eq. (14) we find T2(c – v) = z0/ so T2 = z0/[(c – v)]. Hence we get z2 = cT2 = cz0/[(c – v)] = 
z0/[(1 – v/c)]. The blue shifted light is Doppler shifted to a wavelength of 2 = (1 – v/c)0. The 
fringe separation is z22/d = {z0/[(1 – v/c)]}(1 – v/c)0/d = z00/d. We see that the second problem 
that we found for matter-waves does not occur for light. 

 

6. A Realist Modeling of Matter-Waves. Note that Eqs. (3) and (4) are empirical equations. Since 
we are running into difficulty in understanding we will now propose alternatives. Instead of de 
Broglie’s Eq. (4) we will now propose the following fundamental relationship for matter-waves: 

 pS = hkS  (15) 

Eq. (15) proposes that the wavenumber of the matter-wave is determined by its source: kS is the 
wavenumber and pS is the matter momentum where each is evaluated from a frame of reference 
moving along with the matter-wave source. We will define the matter-wave source velocity as the 
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velocity of the center of mass of the entities involved in the wavefunction collapse. Ignoring the 
small recoil: for electrons leaving a neutron in beta decay, the source is the neutron; for electrons 
leaving a metal cathode, the source is the cathode; for the two-slit experiment, the source for the 
matter-waves is the apparatus. Upon each wavefunction collapse a new source velocity is 
established based on the center of momentum of the interacting entities involved.  

Since S = 2/kS, where kS is the magnitude of kS, Eq. (15) results in S becoming infinite when 
pS goes to zero, but an infinite S is not a physical problem. We assert that any physical entity can 
be described as a wave-packet which can be decomposed into a Fourier integral of fixed-
wavelength waves, and this does involve a case where S is infinite, but this case is merely a 
constant displacement within the integrand. Since both a wave-packet and its Fourier transform 
rapidly approach zero far from the wave-packet center we have no problem with a physical infinity 
here. 

Next, instead of Planck’s Eq. (3) we will now propose the following fundamental relationship for 
matter-waves: 

 S = hSc/vS (16) 

In Eq. (16) S is the angular frequency of the matter-wave, vS is the matter velocity as observed in 
the source frame, S = [1 – vS

2/c2]-1/2, pS = SmvS, and S is the matter energy evaluated in the 
source frame, S = Smc2. Taking the magnitude and rearranging Eq. (15), kS = pS/h = SmvS/h. 
And rearranging Eq. (16), S = vSShc = vSSmc/h. Hence the phase velocity of matter-waves in 
the source frame is  

 wS = S/kS = [vSSmc/h]/[SmvS/h] = c.  (17) 

Note that even though the phase velocity of matter-waves is now found to be the speed of light, 
there is no issue with matter moving at the speed of light. During a half period, the matter will 
move a distance 2A from crest to trough, where A is the amplitude of the wave. Meanwhile, the 
wave will move a distance /2 during the half period. Hence the velocity of the matter will be 
[2A/(/2)]c = 4Ac/. Provided 4A << , the matter velocity in the direction perpendicular to the 
matter motion will be much less than the speed of light. 

Also note that Eq. (15), pS = hkS, leads to vS going to zero when kS goes to zero, and with Eq. (17), 
S/kS = c, we have S = ckS and hence S also goes to zero when kS goes to zero and there is no 
problem with an infinity in Eq. (16) when vS goes to zero. 

Our proposed modifications of the de Broglie and Planck equations address both matter-wave 
problems discussed in section 5 above. We no longer have infinite phase velocities; matter-waves 
always travel at the finite speed of light. And we can now understand the two-slit matter-wave 
experiment in any reference frame. In the source frame we do so by the usual analysis. And now, 
since the phase velocity of the matter-wave moves at the speed of light, we have the same Doppler 
shift for matter-waves that we have for light. The calculation of the fringe separation from a 
moving frame is the same as that discussed at the end of section 5 for light. Also, notice that our 
proposed modifications of the de Broglie and Planck equations can be applied to light as well as 
to matter-waves. For light, vS = c, and in that case Eq. (16) becomes S = hSc/vS = hS, and we 
can identify a source frame for light just as we do for matter-waves. 

Next, we wish to obtain an understandable physical model for the underlying matter-waves. Let 
us now again assume an underlying wave and use a modified version of Eq. (5): 

 S = exp[i(kS.xS–StS)] (18) 
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In Eq. (18) the S subscript designates quantities evaluated in the source frame. We differentiate 
Eq. (18) to achieve: ∂S/∂t = –iSS, or S = i(∂S/∂t)/S, and ∇2S = –kS

2S. We can use kS
2 = 

pS
2/h2, this time achieved from Eq. (15). From Eq. (16) we also have S = hcSvS, which leads to 

 pS
2 = – h2∇2S/S (19) 

 S = ihc(∂S/∂t)SvS (20) 

We’ll now use the low energy form of the energy, ES = pS
2/2m + VS and then substitute in Eqs. 

(19) and (20): 

 ihc(∂S/∂t)SvS = –h2∇2S/2mS + VS (21) 

And we now multiply through by S: 

 ihc(∂S/∂t)vS = – h2∇2S/2m + VS (22) 

Eq. (22) is no longer Schrödinger’s Equation, as we have an extra factor of c/vS multiplying the 
term on the left-hand side and we use variables with respect to the source frame. We can next 
derive the more exact version of Eq. (22) by using the general energy expression: 

 ES = [pS
2c2 + m2c4]1/2 + VS (23) 

Next, we substitute expressions (19) and (20) into Eq. (23): 

 ihc(∂S/∂t)SvS = [–h2c2∇2S/S + m2c4]1/2 + VS (24) 

Eqs. (22) and (24) are the new quantum mechanical formulas for our realist quantum mechanics. 

While the factor vS appears in the denominator in Eqs. (20), (21), (22), and (24) this does not lead 
to an infinity when vS becomes zero. In each case, ∂S/∂t appears in the numerator and when vS 
vanishes S becomes a constant so ∂S/∂t also vanishes. (Both kS and S go to zero as vS goes to 

zero, so S = exp[i(kS.xS–StS)] becomes a constant when vS goes to zero.)  

For the case of time-independent potentials,  can be decomposed into temporal and spatial 
functions: 

  S(r,t) = (r)(t) (25) 

Substituting Eq. (25) into Eq. (21) yields: 

 ihc(∂/∂t)/vS = –h2∇2/2m + VS (26) 

We now set each side of Eq. (26) to a separation constant EN leaving: 

 EN = ihc(∂/∂t)/vS (27) 

 EN = –h2∇2/2m + VS (28) 

Using Eq. (16), S = hSc/vS, and assigning EN = ES, Eq. (27) becomes ihc(∂/∂t)/vS = hcS/vS 
or i(∂/∂t)/ = S, and this can be solved by inspection:  

 (t) = 0 exp[–iSt] (29) 

Eqs. (28) and (29) are the usual equations derived from the Schrödinger Equation that we use to 
solve problems for infinite square wells, simple harmonic oscillators, and the hydrogen atom.  

For the general case, we can substitute Eq. (25) into Eq. (24) to obtain: 

 ihc(∂/∂t)/vS = [–h2c2∇2/ + m2c4]1/2 + VS (30) 

We can set each side of Eq. (30) to a separation constant EN. Since the left-hand side of Eq. (30) is 
the same as the left-hand side of Eq. (26) we again arrive at Eqs. (27) and (29) for the time 
dependent equation. For the spatially dependent equation we obtain: 
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 EN = [–h2c2∇2/ + m2c4]1/2 + VS (31) 

We now bring VS over to the left side and square both sides, leaving – h2c2∇2/ + m2c4 = [En – 
VS]2, which, after we expand the square, move the mass term to the other side, and multiply through 
by  leaves: 

 – h2c2∇2 = [En
2 – 2EnVS + VS

2 – m2c4] (32) 

In a 2017 paper[10] we derived Eqs. (29) and (32) starting from the traditional Planck and de 
Broglie relations. Note that our proposed changes to the Planck and de Broglie relations only affect 
the wave phase velocity, the equations involving time-dependent potentials, and the temporal 
equations resulting from time-independent potentials. The spatial equations resulting from time-
independent potentials are left unchanged. 

And now let us now examine the underlying subquantum reality for matter-waves. We propose 
that free matter entities will exist as a wave-packet, and each Fourier component of the wave-

packet will obey Eq. (18), S = exp[i(kS.xS–StS)]. Eq. (17) relates that the matter-waves move at 
the speed of light c = S/kS. Yet the velocity of matter propagation is vS < c. Therefore the matter-
waves move upon the matter and not at the same speed as the matter. The displacement S is 
perpendicular to the direction of the matter propagation. 

A matter wave-packet consists of waves, where each wave is expressed by Eq. (18). The Fourier 
transform of a wave-packet in configuration space again results in the Fourier uncertainty principle 
of Eq, (2), XK ≥ 1/2, just as we had for light. And with Eq. (15), pS = hkS, we again arrive at the 
Heisenberg uncertainty principle, XP ≥ h/2, just as we did for light. However, unlike light which 
always moves at speed c, each solution to Eq. (18) will be associated with matter propagating at 
different velocities as we have SmvS = pS = hkS. Each matter entity will have a momentum spread 
P and a matter-wave-packet will be dispersive.  

Matter-waves and aetherial oscillations both travel at the speed of light c = [TA/mA]1/2 where TA is 
the aetherial tension per unit area and mA is the aetherial mass density. (See Ref. 5.) Since TA and 
mA are aetherial quantities unrelated to the matter quantities, we conclude that each matter-wave 
is coupled to an aetherial oscillation, and it is the properties of the aether that determine the speed 
of the matter-waves. 

When an impulse occurs, we propose that a wave motion is initiated on the matter, with the wave 
moving in the direction of the impulse, and then that wave reflects from the end of the matter and 
the matter acquires a standing wave. The wavelength of the matter wave in the source frame is 
specified through Eq. (15), pS = hkS. The matter will always have the wave motion determined 
from the last time it experienced an impulse. When it gets a new impulse, it acquires new values 
for vS, pS, kS and S. So not only does the impulse reset the spatial and momentum spreads of the 
matter entity through Eq. (1), but it also gives the matter entity new momentum and wave 
characteristics. 

In bound states, the solution for S is given by Eqs. (25), (28) and (29) for the low velocity cases 
and Eqs. (25), (32) and (29) generally. Eq. (29) reveals a standing wave within bound states, which 
breaks down into counter-propagating waves traveling at speed c just as we’ve seen for free states. 
(Eqs. (15), (16), (17) and (18) are the foundation for further equations, so the matter waves travel 
at speed c within bound states just as they do in free states.) 

We now have a physical model for the underlying subquantum reality of matter. In the appropriate 
frame, matter-waves consist of standing waves for both bound and free entities. Matter-waves, 
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moving at speed c, are waves upon the matter while the matter itself moves at speed vS in the 
source frame. And free physical matter entities contain a wave-packet of matter-waves. 

7. Summary and Conclusion. Here we have proposed three significant changes to quantum 
mechanical thinking. The first and most radical change is to set relativity aside. Once that is done, 
observations of faster-than-light quantum collapse can be understood, and wave/particle duality 
can be set aside in favor of waving entities that always have a finite size. Our second change is to 
modify the de Broglie relationship such that the momentum and wave number used in the 
expression p = hk are determined with respect to the source of the wave; we set pS = hkS. And our 
third change is to modify the original Planck relationship  = h to a new form: S = hcSvS. Our 
changes result in matter-waves that move at the speed of light, allowing us to avoid infinite and 
superluminal matter-wave phase velocities, and we can understand the electron two slit experiment 
from any moving frame. 

Once our changes were made, we developed new quantum mechanical expressions based on a 
proposed underlying subquantum reality that avoids infinities while also enabling an 
understanding of the foundations for the Heisenberg uncertainty principle. This returns physics to 
a physical modeling, enabling understanding. We found that only the time-dependent aspects of 
Schrodinger’s equation change due to our approach; the spatial Schrodinger’s equation for time-
independent potentials remains unchanged. Since no experimental observations exist concerning 
the frequency of matter-waves our new approach is consistent with all present observations. 

Yet despite the suggested improvements described herein, we must admit that we do not yet fully 
understand quantum mechanics. Several questions remain concerning the nature of the 
subquantum. How does quantum collapse occur? Are there new forces to discover concerning the 
collapse? Is quantum collapse instantaneous or merely superluminal? QED provides an excellent 
match to experimental data; can QED somehow be reinterpreted to be consistent with a realist non-
point-like theory? Could doing so eliminate the infinity problems within QED? Or is there an 
alternative to QED that can be just as successful? These are significant questions that remain for 
future research. 

Another question for future research involves quantum collapse to regions where no impulse is 
required, such as the slits of the two-slit experiment. Is the source velocity used in Eqs. (15), (16) 
and (18) now the velocity of the slitted-wall? Or is it the velocity of the prior source, since no 
impulse was applied to the portion of the wavefunction that passes through the slits? This question 
can in principle be answered experimentally, but at this point it remains open. 

Of course, questions will always remain. Physics is an endeavor wherein we continually probe for 
an ever deeper understanding. Yet at each step of this journey, we should aim to resolve any 
outright contradictions and paradoxes. By setting relativity aside for an absolute aetherial theory, 
and by modifying the de Broglie and Planck equations, we can eliminate present contradictions 
and paradoxes. This gets us significantly closer to our goal of understanding quantum mechanics. 
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