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Abstract

Let X be a differentiable manifold. Let D ′(X) be the space of cur-
rents, and S∞(X) the Abelian group freely generated by C∞ cells, i.e.
the maps from polyhedrons to X can be extended defferentiablelly to a
neighborhoods of the polyhedrons. In this paper, we define a bilinear map

S∞(X)× S∞(X) → D ′(X)
(σ1, σ2) → [σ1 ∧ σ2]

(0.1)

such that
1) the support of [σ1 ∧ σ2] is contained in the set-intersection of the

supports of σ1, σ2;
2) if σ1, σ2 are closed, [σ1 ∧ σ2] is also closed and its cohomology class

is the cup-product of the cohomology classes of σ1, σ2.

We call the current [σ1 ∧ σ2] the supportive intersection of σ1, σ2.
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1 Introduction

Let X be a differentiable manifold. Consider two types of intersections based
on singular chains: 1) cup-product of the cohomology ring; 2) set-intersection
of the supports of chains. While the cup-product is more structure-oriented,
the set-intersection is entirely object-oriented and requires nothing more than
a set. As the relation between these two extremes is rather obscured, we would
like to raise a question:

To what extent, is the cup-product related to the set-intersection ?

To answer the question, in this paper we are going to set-up the tool, the
supportive intersection. Specifically, we’ll construct a bilinear map as the inter-
section,

S∞(X)× S∞(X) → D ′(X)
(σ1, σ2) → [σ1 ∧ σ2]

(1.1)

such that

Condition 1.1. the support of [σ1 ∧ σ2] is contained in the set-intersection of
the supports of σ1, σ2;

Condition 1.2. if σ1, σ2 are closed, [σ1 ∧ σ2] is also closed and its cohomology
class is the cup-product of the cohomology classes of σ1, σ2.

The idea of the construction is based on de Rham’s work on currents. Origi-
nally in order to understand the homology of the complex of currents, de Rham
constructed, for an arbitrary current T , the regularization RϵT that is a family
of C∞ forms for a real number ϵ > 0, weakly converging to T as ϵ→ 0. Among
many other properties, the regularization in particular satisfies that

1) the support of RϵT is contained in any given neighborhood of the support
of T provided ϵ is sufficiently small;

2) there exists another operator Aϵ on currents such that

RϵT − T = bAϵT +AϵbT (1.2)

where b is the boundary operator on currents.

So if we can define the intersection as the weak limit of the currents

σ1 ∧Rϵ(σ2)

for ϵ→ 0, Condition 1.1 and Condition 1.2 are immediate consequences of these
two properties. This is our assertion of the main theorem.

Theorem 1.3. (Main theorem) Let σ1, σ2 be two singular chains in S∞(X).
The following currents,

σ1 ∧Rϵ(σ2), (1.3)

as ϵ → 0, converge weakly to a current. Furthermore, the weak limit of (1.3)
denoted by [σ1 ∧ σ2] satisfies Condition 1.2 and Condition 1.3.
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As the conditions 1.2, 1.3 follow easily from the properties of de Rham’s
regularization, only remaining difficulty is the convergence of (1.3) which is the
main focus of this paper. But the conventional convergence in any piecewise
Euclidean structure will fail. So the central point of our technique is to interpret
the convergence of (1.3) as the convergence of Lebesgue measures. Then by using
the standard theorem, the Portemanteau theorem, we obtain the convergence
whose limit is interpreted by Lebesgue measures.

The paper is organized as follows. In Section 2, we review the de Rham’s
regularization and give a further description of its kernel. In Section 3, we show
the convergence of (1.3). In section 4, we verify that the convergence of (1.3)
has the properties for the supportive intersection

2 De Rham’s Regularization

• De Rham’s construction

We start with de Rham’s regularization in [1], but with our own interpreta-
tion. *

Definition 2.1. Let X be a differentiable manifold. Let ϵ be a small positive
number. Linear operators Rϵ and Aϵ:

D ′(X) → D ′(X)

are called the regulator and homotopy operator respectively if for T ∈ D ′(X)
they satisfy

(1) a homotopy formula

RϵT − T = bAϵT +AϵbT. (2.1)

where b is the boundary operator.
(2) supp(RϵT ), supp(AϵT ) are contained in any given neighborhood of

supp(T ) provided ϵ is sufficiently small.
(3) RϵT is C∞;
(4) AϵT is Cr, provided T is Cr;
(5) Rϵϕ,Aϵϕ are bounded, provided that a smooth differential form ϕ varies

in a bounded set and ϵ is bounded above;
(6)

lim
ϵ→0

RϵT = T, lim
ϵ→0

AϵT = 0

in the weak topology of D ′(X).

*All mistakes belong to us.
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Theorem 2.2. (G. de Rham) The operators Rϵ, Aϵ exist.

Proof. In the following, we’ll review the construction but omit the verification
whose detail is given in §15, [1]. There are three steps in de Rham’s original
construction.

Step 1: Local construction. Use bump functions to construct an operator in
X = Rm to regularize the current.

Step 2: Preparation for the extension to global. Apply step 1 to construct
an operator that regularizes the current at the interior points of a
bounded domain B in the chart, but remains to be the identity
outside.

Step 3: From local to global. Assume X is covered by countable many such
domains Bi that are locally finite. Then take the infinite composition
to extend the local operators to the global operator,

Rϵ, Aϵ (2.2)

Step 1: Let X = Rm be the Euclidean space of dimension m with the
standard linear structure. Let x1, · · · , xm be its standard coordinates, and
vectors and points in Rm will be denoted by the bold letters.

Let f(x) ∈ C∞
c (Rm) satisfy∫

x∈Rm

f(x)dµ = 1, (2.3)

where µ is the Lebesgue measure, dµ is the volume form

dx1 ∧ · · · ∧ dxm.

Let
ϑ1(x) = f(x)dµ, ϑϵ(x) = ϑ1(

x

ϵ
)

be the m-forms on Rm.

The construction is based on the general form of a map sy(x) as follows. Let

sy(x)

be C∞ maps parametrized by y ∈ Rm,

Rm → Rm

x → sy(x)

such that all partial derivatives of the components with respect to the variables
of x are continuous functions in (x,y). Let ϕ be a test form on Rm.
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Let T be a homogeneous current of degree p on Rm. Then de Rham defined
operators Rϵ, Aϵ of currents by the functional

RϵT [ϕ] = T

[∫
y∈Rm ϑϵ(y) ∧ ϕ

(
sy(x)

)]
,

AϵT [ϕ] = T

[∫
y∈Rm ϑϵ(y) ∧

∫ t=1

t=0
ϕ
(
sty(x)

)] (2.4)

where ϕ is a test form, and T is evaluated at the forms of x variables. We shall
note that

(1) the continuity assumption about sy(x) guarantees the existence of
the first of (2.4),

(2)
∫ t=1

t=0
ϕ
(
sty(x)

)
is the fibre integral along the t variable. So{

dim(Rϵ(T )) = dim(T ),

dim(Aϵ(T )) = dim(T )− 1.

If furthermore the map

Rm × Rm → Rm × Rm

(x,y) → (x, sy(x))

is a diffeomorphism, we denote the inverse map by

(y,x) →
(
y, g(x,y)

)
( we switch the letters x and y) to obtain a C∞ form

RϵT = Ty

[
ϑϵ
(
g(x,y)

)]
(2.5)

where Ty is the evaluation of T at the form in y variables.

Next we use the specific map

sy(x) = x+ y, (2.6)

where the + is from the standard linear structure of Rm. Then

RϵT = Ty

[
ϑϵ
(
x− y

)]
(2.7)

Then all properties in Definition 2.1 are satisfied. We refer the proof to [1].

Note: The local construction in this step is well known (see [2]). Next we’ll
see the global extension which is the main focus of this paper.

Step 2: Choose the unit ball B ⊂ Rm diffeomorphic to Rm. Let h be the
specific diffeomorphism

Rm → B,
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defined on p66, [1]. Then we define the new C∞ map

sy(x) =

{
hsBy h

−1(x) for x ∈ B
x for x /∈ B

(2.8)

where sBy is the specific map (2.6) as in Step 1 for B ≃ Rm. We would like
to point out that sy(x) satisfies assumption. Then we can define the operators
RB

ϵ , A
B
ϵ depending on B in the same way (with a test form ϕ):

RB
ϵ T [ϕ] = T

[∫
y∈Rm ϑϵ(y) ∧ ϕ

(
sy(x)

)]
,

AB
ϵ T [ϕ] = T

[∫
y∈Rm ϑϵ(y) ∧

∫ t=1

t=0
ϕ
(
sty(x)

)]
.

(2.9)

Then the operators RB
ϵ , A

B
ϵ will satisfy

(a) properties (1), (4), (5) and (6) in Definition 2.1.
(b) RB

ϵ (T ) is C
∞ in B, RB

ϵ (T ) = T in the complement of B;
We refer the verification to [1].

Step 3: Cover the X with countable many, locally finite open sets Bi. Now
we regard each Bi as a subset of B in step 2. Let a neighborhood Ui of Bi. Let
hi be a diffeomorphism

Ui → Rm

∪ ∪
Bi → B.

Let gi ≥ 0 be a function on X, which is 1 on Bi and supported in Ui. Let
T ′ = giT and T ′′ = T − T ′. Then we let

Ri
ϵT = h−1

i ◦RB
ϵ ◦ hi(T ′) + T ′′

Ai
ϵT = h−1

i ◦AB
ϵ ◦ hi(T ′).

Finally we extend it from local to global by taking the composition,

R
(N)
ϵ = R1

ϵ ◦ · · · ◦RN
ϵ ,

A
(N)
ϵ = R1

ϵ ◦ · · · ◦RN−1
ϵ ◦AN

ϵ .
(2.10)

Then the limits
Rϵ := lim

N→∞
R(N)

ϵ

Aϵ :=

∞∑
N=1

A(N)
ϵ

exist and satisfy all properties in Definition 2.1. We refer the verification to [1].
�

�In [1], for each open set Ui there is a different positive ϵi. We used the same number ϵ
for all Ui.
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Definition 2.3. (de Rham’s regularization, uniformed de Rham data)
(a) We call Rϵ in Theorem 2.2 the de Rham’s regulator, the regularization

the de Rham’s regularization.
(b) We define the de Rham data to be all items in the construction of

de Rham’s regularization.
(c) The de Rham data is uniformed if the linear structure determined by the

coordinates of Bi+1 is the same as that determined by the coordinates of
Bi for all i.

RemarkAccording to the definition, uniformed and non-uniformed de Rham
data always exist. However, they can’t be chosen canonically. Hence the sup-
portive intersection that will be defined later is not canonical.

• C∞ Kernel of the de Rham’s regulator

G. de Rham further showed in chapter III, §17, [1],

Corollary 2.4. De Rham’s operator Rϵ constructed in Theorem 2.2 is a regu-
larizing operator that has an associated C∞ form ϱϵ(x,y) on X ×X, called the
C∞ kernel of Rϵ, i.e for any current T ,

RϵT = Ty
[
ϱϵ(x,y)

]
.

where the current’s evaluation Ty of T on y-form is defined as in Theorem 9,
[1] through a double form.

Remark The general definition of kernels is attached in the Appendix in
which de Rham shows a general operator from currents to forms has a smooth
kernel. In particular, the de Rham’s regularization has a smooth kernel. In
the following, we’ll go further to show this kernel has a particular type of local
property that allows the convergence of (1.3).

Definition 2.5. (local blow-up family of forms)
Let ωϵ for ϵ > 0 be smooth forms of degree p on an Euclidean space Rn.

If there are a decomposition Rn ≃ Rp × Rn−p with the orthogonal projection
π : Rn → Rp, and a smooth form ω1(x) on Rp with a compact support such that

ωϵ = π∗(ω1(
x

ϵ
)) where x is the coordinate of Rp, then ωϵ is called a blow-up

family of ω1(x).

Remark The blow-up family is well-known in a special case where p = n (
for instance, see [2]).
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Theorem 2.6. Let X be a differentiable manifold of degree m. Let ϱϵ be the
C∞ kernel of the de Rham’s regulator Rϵ with an uniformed de Rham data.
Then around each point, there is a chart U such that ϱϵ|U is a local blow-up.

Proof. We’ll show the blow-up structure comes from a fibre integral. Let q ∈ X,
and Uq be a small neighborhood of q. Also we may assume q does not belong
to the boundary of each ball Bi in the de Rham data (because the collection of
those points has Lebesgue measure 0). Consider the kernel ϱϵ of the de Rham’s
regulator

Rϵ = R1
ϵ ◦ · · · ◦RN

ϵ (2.11)

restricted to Uq × Uq, where N is finite. Each operator Ri
ϵ, i = 1, · · · , N regu-

larizes inside an Euclidean ball Bi. Since R
i
ϵ remains to be the identity outside

of Bi, we may only consider the regularization inside of Bi. We denote those
balls by B1, B2, · · · , Bn. Let’s denote the coordinates for each Bi by the letter
xi, and the second copy of Bi by yi (as in (2.7)). Then according to de Rham’s
construction the smooth kernel of each Ri

ϵ is the pullback form

ϑi1(
xi

ϵ
−yi

ϵ
). (2.12)

Since the de Rham data is uniformed, the linear structures on all Bi are the
same. Then local expression for the composition of Ri

ϵ is just the fibre integral.
Precisely, the kernel ϱϵ of Rϵ inside B1 ∩ · · · ∩ Bn is the m-form that can be
calculated by the fibre integral

ϱϵ(x1,yn) =∫
(x2,··· ,xn)∈

∏
n−1 Rm

ϑ11(
x1

ϵ
− x2

ϵ
) ∧ ϑ21

x2

ϵ
− x3

ϵ
) ∧ · · ·

∧ ϑn−1
1 (

xn−1

ϵ
− xn

ϵ
) ∧ ϑn1 (

xn

ϵ
− yn

ϵ
) (2.13)

where ϑi1(
xi

ϵ
− xi+1

ϵ
) is regarded as the pullback of the kernel of each Ri

ϵ (see

2.12) to the product space
∏

n+1 Rm. So the kernel ϱϵ is a m-form on the
product Rm×Rm where x1,yn are the coordinates for the first and second factor
respectively. Precisely, the smooth m-form with a compact support, ϱ1(x1,yn)
is defined by the fibre integral∫

(x2,··· ,xn)∈
∏

n−1 Rm

ϑ11(x1 − x2) ∧ ϑ11(x2 − x3) ∧ · · ·

ϑn−1
1 (xn−1 − xn) ∧ ϑn1 (xn − yn). (2.14)

Then the blow-up ϱϵ(x1,yn) is just the blow-up of the compactly supported
form ϱ1(x) with the pullback map

Rm × Rm → Rm

(x1,yn) → x = x1 − yn.
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Example 2.7. Let X = Rm have the standard coordinates x. Let µ be the
Lebesgue measure of Rm. Let f(x) be a C∞ function of Rm with compact
support in a ball of the origin such that∫

Rm

f(x)dµ = 1.

So (Rm, f) is the de Rham data of X. For a positive number ϵ, the kernel ϱϵ of
the de Rham’s regulator is just the blow-up

s∗
(

1

ϵm
f(

x

ϵ
)dµ

)
.

where dµ is the volume form and s is the map sending (x1,y1) ∈ Rm × Rm to
x1 − y1 ∈ Rm.

3 Convergence of the regularization

Now we step back to focus on the particular types of currents: C∞ regular
chains, i.e the chains in S∞(X). Notice that the convergence (1.3) only concerns
the local Euclidean space. So we focus on an Euclidean space.

In general, we denote the Lebesgue measure on an Euclidean space Rl by
µw where w is the standard coordinate or a point. We abuse the notation to
denote the volume form with the maximal degree in the coordinates and the
volume element in the Lebesgue integral by the same expression dµw. In the
context, the current of the integration over a set σ is also denoted by σ.

Lemma 3.1. Let Πm+r be an m+ r dimensional polyhedron in R2m. Let ωϵ be
a blow-up family of forms of degree m in R2m. Then the currents

Πm+r ∧ ωϵ (3.1)

converge weakly to a functional as ϵ→ 0.

Proof. We may assume ω1 = w1(x)dµx where w1 is a smooth function with a
compact support in Rm and x is the coordinate of Rm. So we may also assume
Πm+r lies in Rm×Rr ⊂ R2m for some subspace Rr (otherwise Πm+r∧ωϵ is zero).
We denote the coordinate of Rr by z. Then let the test form on R2m restricted
to an form expressed as ϕ = ψ(x, z)dµz where ψ(x, z) is a smooth function on
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Rm+r with a compact support. Also we denote the scalar multiplication map
on the first factor

(x, z) → (ϵx, z)

by Dϵ. Then we compute(
Πm+r ∧ ωϵ(w)

)
[ϕ] (3.2)

=

∫
Πm+r

ω1(
x

ϵ
) ∧ ϕ(x, z) (3.3)

(change variables : (
x

ϵ
, z) ⇒ (x, z) (3.4)

=

∫
Dϵ−1 (Πm+r)

w1(x) ∧ ψ(ϵx, z)dµ(x,z) (3.5)

Recall dµ(x,z) is the volume element for the Lebesgue integral in the Euclidean
space Rm × Rr. Next we have two steps.

Step 1. In the integral (3.5), since ω1 and ψ are supported in a bounded set,
the point (x, z) in the integral lies in the bounded set. Then, ψ(ϵx, z) uniformly
converges to ψ(0, z) for all such points (x, z) in the bounded set. Then the
difference∣∣∣∣∫

Dϵ−1 (Πm+r)

w1(x) ∧ ψ(ϵx, z)dµ(x,z) −
∫
Dϵ−1 (Πm+r)

w1(x) ∧ ψ(0, z)dµ(x,z)

∣∣∣∣
is less than any number, provided ϵ is sufficiently small.

Step 2. Hence it suffices to consider the Lebesgue integral∫
Dϵ−1 (Πm+r)

w1(x) ∧ ψ(0, z)dµ(x,0). (3.6)

The convergence of it as ϵ → 0 will be implied by the weak convergence of the
measures obtained as the restricted Lebesgue measures to the set Dϵ−1(Πm+r).
Let’s work with measures. Let R be a ray starting in the space. Since Πm+r is
a convex set, the intersection

R∩Πm+r

is an interval on the ray. Hence

Dϵ−1(R∩Πm+r) ⊂ D(ϵ′)−1(R∩Πm+r), for ϵ′ < ϵ

Now taking the union of all rays, we obtain

Dϵ−1(Πm+r) ⊂ D(ϵ′)−1(Πm+r), for ϵ′ < ϵ. (3.7)

Taking the union ∪ϵ∈(0,1]

(
Dϵ−1(Πm+r)

)
, we obtain the measurable set

D0 := lim
ϵ→0

Dϵ−1(Πm+r).
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We denote the Lebesgue measure restricted to the set

(
Dϵ−1(Πm+r)

)
by µϵ,

to D0 by µ0. Then (3.7) implies the measure µϵ converges to the measure µ0

set-wisely. By the Portemanteau theorem (Theorem 13.16, [3]), the set-wise
convergence implies the weak convergence of measures. Hence (3.5) converges.

Next proposition goes further to address a C∞ cell, i.e. a cell whose differ-
ential map can be extended defferentially to a neighborhood of the polyhedron.

Lemma 3.2. Let c ∈ S∞(R2m), Let ωϵ be a blow-up of degree m as in Lemma
3.1. Then currents, c ∧ ωϵ converge weakly to a functional as ϵ→ 0.

Proof. By the linearlity of c, it suffices to deal with the case when c is a single
cell. So assume

c : Πm+r → R2m (3.8)

can be extended to an diffeomorphism-to-image in a neighborhood of Πm+r.
Let c ∧ ωϵ be the functional

ϕ
↓∫

c
ωϵ ∧ ϕ

(3.9)

where ϕ is a test form of the degree r, and c represents the image c(Πm+r).
Similarly as in Lemma 3.1, we may assume the smooth form ω1 in Rm ⊂ R2m

is written as ω1 = w1(x)dµx for some volume form in coordinate x of Rm of
degree m. Let Πm+r ⊂ Rm × Rr where Rr is a different Euclidean space. We
denote their coordinates by u,v. Then∫

c

ωϵ ∧ ϕ =

∫
Πm+r

ϵ−mw1(ϵ
−1x(u,v)))ψ(u,v)dµ(u,v) (3.10)

where ψ(u,v) is some smooth function with a compact support induced from
the test form ϕ and coordinate’s change. Substitute u by ϵu to have

(3.10) =

∫
Dϵ−1 (Πm+r)

w1(ϵ
−1x(ϵu,v))ψ(ϵu,v)dµ(u,v). (3.11)

Since Πm+r is bounded, the variable v in the integral is bounded. On the other
hand, if we view ϵ−1x(ϵu,v) as a diffeomorphic map

u ∈ Rm → x ∈ Rm

parametrized by v, it sends a bounded set to a bounded set uniformly with
respect of all v. The converse also sends a bounded set to a bounded set
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uniformly. Then there is a bounded set K ⊂ Rm × Rr independent of ϵ such
that

(3.11) =

∫
Dϵ−1 (Πm+r)∩K

w1(ϵ
−1x(ϵu,v))ψ(ϵu,v)dµ(u,v). (3.12)

Since u is bounded in Rm, we apply the chain rule to lim
ϵ→0

ϵ−1x(ϵu,v). We then

obtain that the limit converges uniformly for all u,v to Bv(u) where Bv is a

constant Jacobian
∂x(u,v)

∂u
|u=0. Then

(3.12) = lim
ϵ→0

∫
Dϵ−1 (Πm+r)

w1(ϵ
−1w(ϵu,v))ψ(ϵu,v)dµ(u,v)

= lim
ϵ→0

∫
Dϵ−1 (Πm+r)

w1(Bv(u))ψ(0,v)dµ(u,v)

= lim
ϵ→0

∫
Πm+r

ω′
ϵ ∧ ψ(0,v)dµv

= (Πm+r ∧ ω′
ϵ)

[
ψ(0,v)dµv

]
(3.13)

where ω′
ϵ is the blow-up of the differential form w1(Bv(u))dµu. Then the con-

vergence follows from Lemma 3.1. We complete the proof.

The following example is a well-known local regularization in cohomology
theory (see [3]).

Example 3.3. Let c have the dimension 2m and contain the origin, and blow-
up forms ωϵ have the top degree 2m. Then c∧ωϵ converge weakly to a constant
multiple of the delta function at the origin.

Proposition 3.4. Let X be a manifold of dimension m. For chains σ1, σ2 in
S∞(X) such that dim(σ1) + dim(σ2) ≥ m, the exterior product

σ1 ∧Rϵ(σ2)

weakly converges to a current as ϵ → 0, where the de Rham data for the regu-
larization is uniformed.

Proof. (1) Let ϕ be a test form. Then

(
σ1 ∧Rϵ(σ2)

)
[ϕ] =

∫
σ1

Rϵσ2 ∧ ϕ =

∫
σ1×σ2

ϱϵ(x,y) ∧ ϕ(y), (3.14)
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where x,y are the local coordinates for the first and second X in X ×X. By
Theorem 2.6, the kernel ϱϵ(x,y) of Rϵ is a local blow-up whose local structure
consists of locally finite open covering subsets U of X and a subspace

V ≃ Rm ⊂ U × U

such that
ϱϵ(x,y)|U×U = ϱ1(

x

ϵ
,
y

ϵ
)|U×U = π∗(θ(

v

ϵ
)), (3.15)

where π : U × U → V is a C∞ map to V ≃ Rm, θ is a C∞ m-form on V and v
is the point in V . By a partition of unity it suffices to focus on one open set U .
Precisely it suffices to show the convergence of the real numbers∫

σ1|U×σ2|U
π∗(θ(

v

ϵ
)) ∧ ϕ (3.16)

where σ1|U ×σ2|U is the restriction to U ×U ≃ R2m. Notice that π∗(θ(
v

ϵ
)) is a

blow-up and σ1|U ×σ2|U is a regular chain of dimension m+ r. Then according
to Lemma 3.2, the convergence follows. We complete the proof.

(2) Let ϕ be an element of a subset of D(X) bounded to any orders. Applying
a partition of unity, we may address it on the sufficiently small local chart U
only. By observing the local expression (3.12), we obtain that∫

σ1

Rϵ(σ2) ∧ ϕ

is bounded by a multiple of ||ϕ||∞. Hence globally,

lim
ϵ→0

∫
σ1

Rϵσ2 ∧ ϕ

is bounded for ϕ in the bounded set. This shows the weak limit

lim
ϵ→0

(
σ1 ∧Rϵ(σ2)

)
is a continuous functional, thus a current.

4 The supportive intersection

Definition 4.1. Let σ1, σ2 be two chains in S∞(X) where X is a differentiable
manifold equipped with an uniformed de Rham data. We define

[σ1 ∧ σ2]



4 THE SUPPORTIVE INTERSECTION 14

to be the weak limit
lim
ϵ→0

(
σ1 ∧Rϵσ2

)
where Rϵσ2 is the de Rham’s regularization associated to the given de Rham
data.

Remark The notation does not specify the de Rham data which plays an
important role in the determination of the supportive intersection. Because of
this role, the supportive intersection is not invariant of any structures, but its
existence is a C∞ invariant.

Property 4.2.
Let X a differentiable manifold of dimension m equipped with an uniformed

de Rham data. For chains σ1, σ2 in S∞(X), the intersection [σ1 ∧ σ2] satisfies:

(1) (Supportivity)

supp([σ1 ∧ σ2]) ⊂ supp(σ1) ∩ supp(σ2). (4.1)

(2) (Closedness) The intersection current [σ1 ∧ σ2] is closed if σ1, σ2 are.

(3) (Cohomologicity) According to the de Rham’s theory in [1], the homol-
ogy of the complex of currents coincides with the singular cohomology
with real coefficients. Hence we use ⟨σ⟩ to denote the singular cohomology
class represented by a closed current σ, and ⌣ the cup-product. If σ1, σ2
are closed, then in singular cohomology

⟨[σ1 ∧ σ2]⟩ = ⟨σ1⟩⌣ ⟨σ2⟩ (4.2)

(4) (Leibniz rule) If deg(σ1) = p, then the differential map of chains follows
Leibniz rule,

d[σ1 ∧ σ2] = [dσ1 ∧ σ2] + (−1)p[σ1 ∧ dσ2], (4.3)

where the differential map d is the operator (−1)p+1b for the boundary
operator b acting on chains of the codimension p.

Proof. (1) Suppose
a /∈ supp(σ1) ∩ supp(σ2).

Then a must be either outside of supp(σ1) or outside of supp(σ2). Let’s assume
first it is not in supp(σ2). Since the support of a currents is closed, we choose
a small neighborhood Ua of a in X, but disjoint from supp(σ2). Let ϕ be a
C∞-form of X with compact support in Ua. According to Definition 2.1, when
ϵ is small enough Rϵ(σ2) is zero in Ua. Hence

[σ1 ∧ σ2][ϕ] = 0. (4.4)
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Hence a /∈ supp([σ1 ∧ σ2]). If a ̸∈ supp(σ1), Ua can be chosen disjoint with
supp(σ1). Then since ϕ ∈ D(Ua) is a C∞-form of X with compact support in
Ua disjoint with supp(σ1), the restriction of ϕ to σ1 is zero. Hence

[σ1 ∧ σ2][ϕ] = 0.

Then a /∈ supp([σ1 ∧ σ2]). Thus

a /∈ supp(σ1) ∩ supp(σ2)

will always imply
a /∈ supp([σ1 ∧ σ2]).

This completes the proof.

(2) Let ϕ be a test form. By the definition

b[σ1 ∧ σ2][ϕ]
= lim

ϵ→0
σ1[Rϵσ2 ∧ dϕ]

= ± lim
ϵ→0

σ1[dRϵσ2 ∧ ϕ]

= ± lim
ϵ→0

σ1[bRϵσ2 ∧ ϕ]

(4.5)

According to the homotopy formula (2.1)

bRϵσ2 − bσ2 = bbAϵσ2 − bAϵbσ2 (4.6)

Because σ2 is closed,
bRϵσ2 = 0.

So [σ1 ∧ σ2] is closed.

(3) Let ϕ be a closed C∞ form of degree deg(σ1)+deg(σ2), and has compact
support. Denote the cohomology class by ⟨·⟩. The intersection number,

deg

(〈
[σ1 ∧ σ2]

〉
⌣ ⟨ϕ⟩

)
(4.7)

is a well-defined real number that is equal to

lim
ϵ→0

σ1[Rϵ(σ2) ∧ ϕ]. (4.8)

By the definition in §20, [1], (4.7) is the de Rham’s symbol(
σ1 ∧ (σ2 ∧ ϕ)

)
[1].
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which by de Rham is the intersection number

deg

((
⟨σ1⟩⌣ ⟨σ2⟩

)
⌣ ⟨ϕ⟩

)
. (4.9)

The formulas (4.7) and (4.9) yield〈
[σ1 ∧ σ2]

〉
= ⟨σ1⟩⌣ ⟨σ2⟩.

(4) (Leibniz Rule) Let ϕ ∈ D(X ) be a test form. Let

deg(T1) = p, deg(T2) = q.

Then

b[σ1 ∧ σ2](ϕ)

= lim
ϵ→0

∫
σ1

Rϵσ2 ∧ dϕ

( Leibniz Rule for C∞ forms )

= lim
ϵ→0

∫
σ1

(−1)qd(Rϵσ2 ∧ ϕ) + (−1)q+1dRϵσ2 ∧ ϕ

= lim
ϵ→0

(−1)q
∫
bσ1

Rϵσ2 ∧ ϕ+ lim
ϵ→0

(−1)q+1

∫
σ1

dRϵσ2 ∧ ϕ

lim
ϵ→0

(−1)q
∫
bσ1

Rϵσ2 ∧ ϕ+ lim
ϵ→0

(−1)q+1

∫
σ1

Rϵ(dσ2) ∧ ϕ

= (−1)q[bσ1 ∧ σ2][ϕ] + (−1)q+1[σ1 ∧ dσ2][ϕ]

Hence

b[σ1 ∧ σ2] = (−1)q[bσ1 ∧ σ2] + (−1)q+1[σ1 ∧ dσ2]. (4.10)

After change the sign, we found (4.10) is the same as (4.3).

Example 4.3. Let X = R2, and U the de Rham data consisting of single chart
R2 with the bump function function f satisfying∫

R2

f(x1, x2)dx1 ∧ dx2 = 1 (4.11)

where x1, x2 are coordinates of R2. Let σ be a piece of the parabola

x1 = x22 (4.12)
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containing the origin 0. Since σ has dimension 1, [σ∧σ] exists as a 0-dimensional
current. Let ϕ(x) be a test function. Denote the coordinates for the second copy
of R2 by y1, y2. Then the regularization is the fibre integral (integration along
the y1, y2)

Rϵ(σ) =
1

ϵ2

∫
(y1,y2)∈σ

f(
x1 − y1

ϵ
,
x2 − y2

ϵ
)(dx1 − dy1) ∧ (dx2 − dy2) (4.13)

which is a C∞ 1-form in variables x1, x2. Then we calculate∫
[σ∧σ]

ϕ

∥

lim
ϵ→0

1

ϵ2

∫
(x1,x2)∈σ

∫
(y1,y2)∈σ

f(
x1 − y1

ϵ
,
x2 − y2

ϵ
)ϕ(x1, x2)(dx1 − dy1) ∧ (dx2 − dy2)

(4.14)
Then the functional

ϕ
↓

lim
ϵ→0

1

ϵ2

∫
(x2,y2)∈I×I

f(
x22 − y22

ϵ
,
x2 − y2

ϵ
)ϕ(x22, x2)(2y2 − 2x2)dx2 ∧ dy2

(4.15)

is the current [σ ∧ σ] of degree 0, where ϕ is a test function on R2 and I is the
given interval. According to Lemma 3.2, the limit in (4.13) exists and is equal
to a Lebesgue integral over a measurable set.

Remark This example also shows the intersection [• ∧ •] depends on de
Rham data U .

Example 4.4. We give multiple cases where the supportive intersections are
independent of de Rham data. All of them are known as Kronecker index in [1].
Let X = R2. Let U be the de Rham data consisting of the single chart R2 with
the convolution function f satisfying∫

R2

f(x1, x2)dx1 ∧ dx2 = 1 (4.16)

where x1, x2 are the coordinates of R2.

Case 1: Let σ1 be a line through the origin 0 and σ2 is another line segment
through the origin. Then

[σ1 ∧ σ2] = δ0

if the order of “∧” matches to the orientation of R2, where δ0 is the delta-
function at the point 0.
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Case 2: Continuing from the setting in case 1, let σ2 be the line x1 = 0. Let
σ1 be a piece of parabola

x1 = x22, x2 ∈ (−1, 1). (4.17)

Denote the second copy of R2 for the de Rham’s regularization by (y1, y2). The
regularization is the fibre integral along y2,

Rϵ(σ2) =
1

ϵ2

∫
y2∈R

f(
x1
ϵ
,
x2
ϵ

− y2
ϵ
)dy2 ∧ dx1. (4.18)

To calculate [σ1 ∧σ2], let ϕ(x) be a test function supported in a neighborhood of
the origin. Then∫

[σ1∧σ2]

ϕ

= lim
ϵ→0

1

ϵ2

∫
x1∈σ1

∫
y2∈R

f(
x1
ϵ
,
x2
ϵ

− y2
ϵ
)ϕ(x1, x2)dy2 ∧ dx1.

(4.19)

Let

f1(x1) =

∫
y2∈R

f(x1,−y2)dy2.

Now we continue to have ∫
[σ1∧σ2]

ϕ

∥

lim
ϵ→0

1

ϵ

∫
(x1,x2)∈T1

f1(
x1
ϵ
)ϕ(x1, x2)dx1

∥

ϕ(0)

(∫ 0

+∞ f1(x1)dx+
∫ +∞
0

f1(x1)dx1

)
= 0,

(4.20)

So
[σ1 ∧ σ2] = 0.

Case 3: Continuing from the setting in case 2, let σ2 be the line x1 = 0. Let
σ1 be a piece of the cubic curve

x1 = x32, x2 ∈ (−1, 1). (4.21)

The same calculation in case 2 shows if order of σ1, σ2 is concordant with the
orientation of R2, then

[σ1 ∧ σ2] = δ0 (4.22)

where δ0 is the δ-function at the origin.

Appendix
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A Kernel

In [1] G. de Rham defined the notion of “regularizing operator” which includes
the de Rham’s regulator Rϵ. Let X,Y be two manifolds. Let T ∈ D ′(X × Y ).
Then T derives an operator

Λ;D(X) → D ′(Y ) (A.1)

We call T the kernel of Λ. Conversely given a homomorphism Λ, there is a
kernel T on X × Y . Notice

D(X), E (Y )
∩ ∩

E ′(X), D ′(Y )
(A.2)

where E (•) is the set of C∞ forms, and ′ is the topological dual.

Definition A.1. If operator Λ has an extension

Λ : E ′(X) → E (Y ) (A.3)

we say Λ is regularizing.

Theorem A.2. (G. de Rham)
Λ is regularizing if and only if the kernel T is a C∞ form on X × Y . In

particular Rϵ is regularizing.
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