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Abstract

We study the relativistic Schrodinger equation of a massive point parti-
cle in one dimension both with analytical calculations and with numerical
computations, and we find that this equation is almost consistent with Spe-
cial Relativity, with a problem of small amplitude leaking from outside the
past light cone. We find a paradox and a mathematical conjecture related to
the relativistic propagator. We find a conjecture about how the relativistic
path integrals maybe work, which maybe solves the problems.

Let’s start by focusing on a question that if we define a function f : R —

C according to the formula
; 2
f(iL’) — eza\/l—i-z ’

where a € R is some constant, then what formula could be used to describe
its Fourier transform

f&) = /f(a:)e_’fxd;c = /eia\/me—i&cdw?

It turns out that this problem is related to the time evolution of relativistic
quantum mechanical wave functions, so this is a significant problem, and it
would make sense to spend some time on the purely mathematical side of
the question too. If one tries to come up with a formula for an antiderivative
that could be used to evaluate the integral, one will find the task to be too
difficult. However, it is possible to see from the integral expression that
the integral is divergent. So one possible answer to the question is that the
Fourier transform doesn’t exist, because the integral that is supposed to
define it doesn’t converge. There exist reasons to believe that this is not the
best possible answer. Figures 1 and 2 show what happens, if we replace the
integration domain | — oo, oo with a cut domain [— R, R], and then compute
estimates of the Fourier integral with a computer.

I propose a conjecture that for |a| 2 1 the Fourier transform f(g) can
reasonably be described by a formula

i 12 3 (1— &) 4.
f(&) _ {extreme oscillation + \/%em 1= 4ln(1 a2)+ , if |¢] < a,

extreme oscillation + fast convergence to zero, if [£| > a.
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Figure 1: Estimates of the Fourier transform f(€) with a coefficient value a = 2.
The red graph is Re(f(€)), and the green graph is Im(f(¢)). It looks like that
these graphs are sums of two components. One component doesn’t depend on R,
and is not divergent, and the other component does depend on R, and is divergent.

Here we use the choices 1 = \1/ﬂ if a > 0, and \/> _i if a < 0.

a
Many readers will probably want some clarification on what is meant by

“extreme oscillation” here. An example of extreme oscillation could be
the quantity e>%. If we vary the value of ¢ slowly and continuously, the
quantity e will rotate around the origin of the complex plane with an
infinite angular speed, so that is extreme oscillation. The key property
of extreme oscillation here is that if we integrate this kind of extremely
oscillating quantity over any interval, the result will always be zero. So
by extreme oscillation we mean such oscillation where there is an equal
amount of positive and negative values on both the real and the imaginary
axes. Also, if an extremely oscillating quantity is multiplied pointwisely
with some ordinary function, and then the product is integrated over some
interval, that will produce zero too.
Suppose we define a bump function b, as

1 .
balz) = { 2oz (008 (3) +1), izl <o,

0, if |z| > am,

where o > 0 is some small constant. This b, is differentiable, and it ap-
proaches the delta function in the limit o — 0. What happens, if we compute
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Figure 2: Estimates of the Fourier transform f(£) with a coefficient value a =
8m. There seems to be a relation that the amplitude of the divergent component
approaches zero as the coefficient a grows. The divergent component will likely
still exist even for large a though.

the convolution of f and by,

E4am

Fe0)© = [ F)g=(cos ((57) +1)ar?

a

If the conjecture is true, the result should be

i _ia 7£77n _e .
(F5ba)(©) ~ { S =i (o) e <a,
0, if €] > a,

because the convolution should make the extremely oscillating component
vanish.

What happens, if we substitute the Fourier transform integral into the
definition of the convolution, and change the order of integrals? We get a



result

tam oo
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This quantity can be interpreted to be a Fourier transform of a pointwise
product of eiV1+e® and a new attenuation factor. The points = 0 and
T = :l:é do not make the integral diverge, because the poles cancel with the
zeros of the sine function. In the limits * — 00 we have an approximation

2 1 1 2 1
i 1:—T3+O<7>-
x m—i—a T - ‘T x

We see that now we have an integral that converges in an ordinary way,
although we still don’t have a formula for an antiderivative. Since this
attenuated integrand converges to the zero in the limits * — 400 with a nice
asymptotic rate, it is possible to write a computer program that estimates
this integral with a finite sum. It would be interesting to see whether the
conjecture would appear to be true or false in a light of such computation,
so let’s have a look at it.

If we substitute e %% = cos(éx) —isin(£z) into the integral, the contribu-
tion from the antisymmetric term —isin({x) vanishes, since it is multiplied
pointwisely by something symmetric. After —isin(€x) has been removed,
the whole integrand is symmetric, so we can replace the domain | — 0o, oo
with a domain [0, 00[. Then the integral that we want to compute is

(f % ba)(€) = 7ei“\/1+7cos(§x)sm(am(2 N l)dgc.
0

arm T x+ é =
We see that f % by is symmetric, meaning that (f % by )(—¢) = (f %ba) (), s0
there will be no need to compute values for negative &.

We have to decide what values of a to use in our computation. The quan-
tities f(£) and (f * ba)(€) remain unchanged if we take complex conjugates
of them and replace a with —a, so there will be no need to compute esti-
mates with negative a. When a > 0, according to the conjecture ( fx ba) (&)
will rotate around the origin roughly g- times when ¢ traverses from 0 to



a, so it would make sense to adjust a in a such way that it produces some
small number of rotations that can be inspected by eye. Let’s use values
a = 27, 8w, 187 and 327. However, although the conjecture dealt with the
domain |a| 2 1, it will be interesting to see what happens with smaller a
too, so let’s use a value a = { too.

We have to decide that for what values of & we compute the quantity
( f ba)(§). We want to inspect whether the conjecture appears to be true or
not, so it makes sense to use the interval 0 < & < 2a. This means that for the
values a = {5, 2m, 87, 187 and 327 we’ll be using the intervals 0 < § < %r,
0<E<4Am, 0<E<16m, 0<¢<36mand 0 < ¢ < 64m.

We are going to replace the integration domain [0, co[ with [0, R], and
we’ll have to decide a value for the parameter R. Let’s say that we want 4

o0

decimals right in our computation. We can use the formula [ z—ly,dx = ﬁ
to estimate how much error will come from the cut of the integfation domain.
So if we want 4 decimals right, it looks like that the relation 1074 ~ Wlm

should hold. We can solve R to be R =~ %oﬁg ~ 56.4a"2. We'll get the

values of R later when we decide the values for a.

We are going to estimate the integrand with its values on N points, and
we’ll have to decide a value for the parameter N. It turns out that this
decision must be made together with the decision of the value for a. How
much resolution do we need to get an approximation of the integral? The
factors cos(2%x), cos(4mz), cos(16mz), cos(36mx) and cos(647z) for the five
values of a are the fastest oscillating factors in the integrand, so we can
simplify the question by asking that how much resolution do we need to
get hypothetical integrals of only these factors right. It is known that if

a function is integrated over a domain [ra,rg] by using three points and

_ 5
Simpson’s summation rule, there can be an error %sup] f®(u)|. This
u

implies that if we choose some odd value for N, and integrate a function
over an interval [0, R] by using the N points and Simpson’s summation rule,
there can be an error %sgp] F®(u)|. So if we want 4 decimals right,

GBVR°  (m)'RS (16m) RS @B6m'R® o

. . . ) —4
it looks like that relations 107 ~ S8~ “gdNT > “isonT @ 1s0N3

(64m)* R h ; ; : -4
TsoNT~ S ould hold. These relations can be written in the forms 107 =~
15 15

4.94-10°N~4a~%, 1074 ~ 7.91-10"°N~4a~%, 1074 ~ 2.02- 103N 4a~ 7,
1074 ~ 5.19 - 104N"4a~% and 1074 ~ 5.18 - 10 N~4a~%. We see that
there is a relation that smaller o will regquire larger N. 8Let’s solve « Oélt
of these relations. We get a =~ 819.6N‘ﬁ, a = 969N~ 15, a &= 203N~ 15,
a~ 313N~ 1 and a ~ 425N~ 15. Let’s say that we want to use a value
N = 10% + 1, because this number of terms can be handled nicely by an
ordinary personal computer multiple times in a loop over the values of &.

This choice implies that we get o =~ 0.0124, 0.0611, 0.128, 0.197 and 0.268.




These are nice values for «, and will not blur our graphs unnecessarily.

These values of a imply that the integration domains will be given by
the values R = 40800, 3730, 1230, 645 and 407.

We should check whether it looks like that we could be substituting too
large numbers into the trigonometric functions. Double floats have roughly
15 decimals of accuracy. We are going to be substituting double values below
the magnitude of 10° into the trigonometric functions, so there will still be
10 working decimals on the right side of the decimal dot, and it looks like
that we are going to be getting the 4 wanted decimals right.

After these preparations everything is ready for the computation. I wrote
a program that estimated the quantity ( f * by, ) (§) using Simpson’s summa-
tion rule with these parameter values, and the results are shown in Figures
3, 4 and 5.

Figure 3: Both the numerically computed ( f o bo)(§) and the quantity
\/%em@_%ln (1—%) mentioned in the conjecture, with constant values a =
or and 8r. The red graph is Re((f * by)(€)), the green graph is Im((f *
bo)(€)), the purple graph is Re(ﬁemmiln (152)), and the cyan graph

. 2 2
is Im(, / %ewv =i (152)> On left we see how the purple graph follows the

red one closely, and the cyan graph follows the green one closely. On right the
purple and the cyan graphs initially get hidden under the red and the green, but
become visible close to the limit a — 8.
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Figure 4: Same thing as in Figure 3 but with larger constant values a = 187 and
327. The red and the green graphs don’t diverge as £ — a in the same way as the
purple and the cyan.

Inspection of Figures 3 and 4 supports the hypothesis that the conjec-
ture is probably true. In the region £ < a the computed quantity (f *by)(&)

i J1-E2 3 (1-&
follows closely the quantity y/2%e"™ =54 (1-5) mentioned in the con-
jecture, and then converges to zero as £ passes onto the right side of the point
a.

With value a = 27 the imaginary part of (f * b,)(§) seems to converge
to zero rather slowly on the right side of the point £ = a. There seems to be
a relation that the convergence to zero on the right side of the point & = a
is relatively faster for larger a.

The formula in the conjecture can be derived as follows: We define a

function
g(z) = iaV/1+ 22 — i&x.

We calculate its derivatives
1axr

(2) = —— e — i€,
9@ = A ¢
1a
9"(x) = ———,
(1+22)2
3iax
g”/([E) — _7§7
(1+22)3



. We ask that does there exist = such that ¢’(xz) = 07 The answer is that
if |¢| < |al, then yes, and the z is

If [€] > |a|, then no = € R exists such that ¢’(x) = 0. The values of ¢ and
its derivatives at this location are

2
T aZ
1 23
g”<§ ) = ia(l §2>27
a [1_¢& a
a?
2
mi(§ 1 _ . 13
(a §2> _315( 2) ’
T a?
So in the region z ~ % L o We can approximate g(x) with the series
=02

We can then use the Gaussian integral formula to calculate the approxima-
tion

£ = / tavlte® =il gy o gtV 1T 52/ =2 g

_[2mi ia /1_£<1_7> 3

Some people might feel that this approximation is nonsense. The original
integral is divergent, but after the approximation we get something conver-
gent, so there could be no way this approximation would be working. Those
who have spent some time with the conjecture studied above can see this
differently. The divergent integral apparently has two components: One is
extremely oscillating, and the other one is an ordinary function. The Gaus-
sian integral approximation is most apparently producing an approximation
of the ordinary component.
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Figure 5: The graphs of Re((f % b,)(§)) and Im((f * b,)(£)) with a smaller value

_
a= 15

This Gaussian approximation seems to become accurate only in the re-
gion |a| > 1. This raises a new question that what happens when |a| < 17
At the time of writing this article I don’t know what kind of analytical for-
mulas could be used to approximate the Fourier integral for |a| < 1, but

I did compute numerically an estimate of (f * by)(§) with the small value

a = {5, and the result is shown in Figure 5. Based on the graphs in Figure

5 it seems that approximations

Re((f#ba)(€) ~ (3§ —a) + 6(¢+a))  and
Im((f %0a)(€)) o (€ —a) = &' +a)

become accurate in the limit a — 0. Here ¢’ means the derivative of Dirac

A

delta function. So in some sense Re((f * by)(§)) does not directly form a
delta function at the origin & = 0 in the limit a — 0, but instead first at
the locations ¢ = +a. These two delta functions then merge into one delta
function at the origin in the limit @ — 0. Similarly Im((f % ba)(€)) does not
uniformly converge directly to zero, but instead it forms two derivatives of

delta functions at the locations £ = 4+a. These derivatives of delta functions
then cancel in the limit a — 0.

Let’s continue onto the topic of theoretical physics. Suppose we want to
quantize a one dimensional system described by a Hamiltonian

H(z,p) = /(mc?)? 4 p?.



Here € R is a spatial coordinate on which the Hamiltonian does not
depend on, and p € R is the canonical momentum. In this model the
canonical momentum is equal to the physical momentum. The parameter
m > 0 describes the mass of a point particle, and ¢ is the speed of light.
The Schrodinger equation of this system should look like

ihdp(t,x) = v/ (mc2)2 — 2h292)(t, ).

This equation can be called the relativistic Schrodinger equation of a massive
point particle in one dimension. There is a problem that it is not obvious
how this kind of Hamiltonian operator should be interpreted. Some people
believe that we could apply the Taylor series

1 (1) (2K = 3)
\/1+z:1+22—|—k22 ok z

where z € C, and obtain a series representation

h2 (26 —3)1 Rk

. 2 2 2k
V(me)? - R0} = me* — Qmax a Z k! - 2k mzk_lczk_an '
k=2

The problem with this attempt is that the Taylor series converges only for
|z| < 1. This means that if we want to substitute some operator in the
place of z, it would be desirable that the operator belonged to some normed
algebra and had a norm less than 1. The differential operator 9, is an
unbounded operator, so it is nowhere near having the needed norm.

An approach that seems to produce sensical ouput is that we first pos-
tulate that the effect of this operator on plane waves is given by the formula

V(me?)? — 02h28§e%m = /(mc?)? + 02p2e%px,

and then also postulate that this operator is linear. It follows that the effect
of the operator will be uniquely determined on any wave function that can
be written as a linear combination of these plane waves. Let’s define a
Fourier transform with a such convention that () and ¥ (p) are related
according to the formulas

i) = [ i@ ad v = oo [ e

We can then solve that the effect of the operator /(mc?)? — c2h202 on a
wave function 1 (z) is

Vme? — R0 i (x)

o0 o0
1

= 5 V(m62)2+02p26%pz< / e*%pmllﬁ(as')d:c')dp.
v

— 00 — 00

10



Operators defined in this way are called pseudo-differential operators.

We can interpret the operator \/(mc2)2 — ¢2h292 in a such way that it
is just a spatial representation of some abstract operator. Then the Fourier
space representation of the same abstract operator is simply the multiplica-
tion operator

b My, (MY)(p) = V/(me2)? + 2p2(p).
The Schrodinger equation in the Fourier space is
ihdyb(t,p) = V/(me?)? + 2p2(t, p).

If some initial value @ZAJ(O, p) is fixed, the solution to the Schrédinger equation
for t > 0 is given by the formula

Bt,p) = e FVIEHER ] (g py.

Suppose some initial value 1 (0, x) is fixed in the spatial representation. How
could we write a solution (¢, z) to the Schrodinger equation for ¢ > 07 One
answer is obtained by first calculating the Fourier transform @@(0, p) of the
initial value 9(0, z), then writing the time evolution @(t, p) in Fourier space,
and then for any fixed ¢ > 0 calculate (¢, z) as the inverse Fourier transform
of ¢(t,p). This means that we get a solution formula

o0 oo
viha) = Tlh e_%\/mﬁpx( / e~ 177 4(0, x')dm’) dp.
T
S s
If we change the order of the integrals, we get a solution formula
o0
d}(ta :E) = / P(t, T — -T/)l/}(O’ $,)d$/’
— 0o
where
o0
P(t,z — 35,) = i e_%\/me%p(x—m’)dp‘
’ 2mh
—0o0

The quantity P(t,x — 2’) can be called the propagator of the relativistic
Schrédinger equation of a massive point particle in one dimension. This
is a very interesting time evolution formula, because from here we can see
that ¢ (¢, z) can be considered to have been formed as a linear combination
of the past values (0, 2z") where 2/ € R. The values P(t,z — 2’) are the
propagation amplitudes that tell how to weight the past values (0, z’).

11



One relevant question is that does the relativistic Schrodinger equation
keep the value of the quantity

7 (¢, 2)[*do

unchanged as t grows. The operator /(mc?)2 — ¢2h202 is an example of a

Hermitian operator H, and with any Hermitian operator H we can always
calculate that

WOl0) = @O e M (0) = (WO0)(0)),
=id
so the answer to the question is yes. Whether there exists a formula for a
probability density current or not is another matter that we omit in this
article though.

There is a problem that the integral that defines the propagation am-
plitudes diverges. This maybe means that we should not have changed
the order of the integrals. However, this doesn’t necessarily mean that the
propagator would be nonsense; we just have to interpret it somehow. One
possible interpretation is that we first define a regularized propagator

R
P(t,x —2',R) = % e_%‘/me%p(x_x/)dp,
-R
and then define the time evolution of the wave function with a formula
00
P(t,x) = lim P(t,z — ', R)y(0,2")dx’.

R—o00
—00

Another option is that we first define a regularized propagator

oo

1
) = o

—00

_ep2 it 221 0292 4 !
P(t,o — 2 ¢ e P e~ 7w V(M) ety o pple—a’) g,

where € > 0, and then define the time evolution of the wave function with
a formula

Y(t,z) = lim [ P(t,x —2',e)y(0,2")dz’.
e—0
Actually it could be that even
Y(t,z) = / lim P(t,z — 2/, )9 (0,2")dx’
e—0

12



works with this regularization. So the divergent integral in the propagator
formula can be interpreted to be a symbol that means something like this.
Anyway, we should recognize the fact that the relation “P(t,z —2') € C” is
not really true as such.

By calculating with delta functions we can see that the propagator has
the following two interesting properties:

PO,z —2') = §(z —2') (1)
and
[o¢]
/ Plto — tp, 5 — ) P(ts — tn, o' —2")da' = Pl —taz—3"). (2)

These are obviously very important properties. Equation (1) means that
when we use the propagator to generate a solution (¢, x) for t > 0 out of
some initial value ¥ (0, ), the generated solution will have the right initial
value, meaning:

%g% Y(t,z) = (0, ).

The property described by Equation (1) can be called the initial value prop-
erty of the propagator. If the propagator did not have this initial value
property, it would maybe be generating some solutions to the Schrodiger
equation, but not the wanted ones.

Equation (2) means that if we have three time values to < tg < tc and
some initial value ¥ (ta, z), it will make no difference whether we first use the
propagator to generate v (tg, z) out of 1(ta,z), and then generate ¥ (tc, x)
out of ¥ (i, z), or we use the propagator to generate ¥ (tc,z) directly out
of ¢(ta,x). The property described by Equation (2) can be called the as-
sociativity property of the propagator. If the propagator did not have this
associativity property, the generated time evolution would depend on how
the time axis would get sliced. There does not exist a one correct slicing of
the time axis, so we wouldn’t have a well defined time evolution.

If one attempts to study relativistic quantum mechanics from main-
stream sources, one will learn about relativistic propagators that do not
have the properties (1) and (2). We can wonder that what’s the meaning of
those type of propagators.

One relevant question is that is the relativistic Schrodinger equation
Lorentz invariant? The answer is yes; if we assume that the wave function
is pointwisely scalar. Since this result is not well known, we can prove
it here. If we let ¢(¢,x) be some solution to the relativistic Schrédinger
equation, we can write it in a form

o0

1 i i oA
w(ta .CE) — % ef%w/(mc2)2+c2p26ﬁpxw(07p)dp'

—00

13



One way of seeing that this is a solution to the relativistic Schrodinger
equation is that if we multiply the expression with the operator
ihdy — /(mc?)?2 — c2h202, and change the order of the operators and the
integral, then the integrand vanishes.

Suppose we define new coordinates ¢ and T so that they are related to ¢
and z according to the relation

c\ cosh(n)  —sinh(n) ct

T )  \ —sinh(n) cosh(n) x )’
where 1 € R is some rapidity. There will be another wave function ) that
describes the same abstract object as 1, but in the new coordinate set. This
means that the relation ¥ (¢,7) = ¢(t,z) holds. Now the question that we

want to answer is that does 1) satisfy the relativistic Schrédinger equation
too. The values of ¥ (¢, %) come from the formula

o0

%(E f) _ L 67% (cosh(n)ersinh(n)%E) \/m
’ 27h
e%p( sinh(r])chrcosh(n)E) 1&(0, p) dp
U]
2mh

—0o0

ok (—sinh(n)Ly/ (m62)2+02p2+cosh(n)p)fd](07p)dp — ...

At this point we have to do some intermediate calculations before we can
see where the calculation of 1(¢,Z) goes to. We can check that a derivative
formula

1
Dp< — sinh(n)=+/(mc?)? + ?p? + Cosh(n)p)
c
cp
(mc?)? + 2p?

= —sinh(n) + cosh(n)

is true. Since the relations |sinh(n)| < cosh(n) and |ep| < \/(mc?)? + ¢2p?
are true, we see that the derivative quantity is always positive. The Taylor
series of the square root can be used to show that there are also the limits

1
lim (—sinh(n)f\/(m02)2+c2p2 + cosh(n)p) = +o0.
c

p—+too

These facts mean that we can define a new integration variable p in a such
way that the relation

1
p = —sinh(n)=+/(mc?)2 + ¢?p? + cosh(n)p
c

14



holds. Now if p traverses through the interval | — oo, 00|, also p traverses
through the interval | — oo, oo[ monotonously. The reason for why we are
interested in this change of variable is that this p quantity is what gets
multiplied by Z in the exponent in the calculation of ¥(f,7). We can solve
p out of the relation and get

1
p = sinh(n)g (mc2)2 + c¢2p? + cosh(n)p.
We can then calculate that
(mc®)? + ¢*p® = (cosh(n))*(me®)? + ((cosh(n))* + (sinh(n))?)c*p”
+ 2cosh(n) sinh(n)cpy/ (me?)? + c2p?
2

= (sinh(n)cp + cosh(n)y/(me?)? + 2p?)”.

The second equation can be difficult to discover, but once it has been seen,
checking it is straightforward. The quantity that gets multiplied by ¢ in the
exponent can then be calculated to be

cosh(n)v/(mc2)2 + ¢2p? — sinh(n)ep = 1/ (mc2)? + c2p?.
We can also solve a similar formula
cosh(n)y/(mc?)2 + c2p? + sinh(n)cp = /(mc?)? + c2p?,

where the p and p are the other way around. The Jacobian related to the
change of variable can be written in the form
cp
(mc?)2 + c2p?
cosh(n)y/(me?)? + ¢2p* +sinh(n)cp  /(mc?)? + c2p?
(mc2)2 + 2p? B V(me2)? + 2p2.

We can put these pieces together, and complete the calculation of ¥ (%, T):

= sinh(n)

+ cosh(n)

SiiS

T . N2 L 2(p(7))2
. e—%\/mﬁp%(o,p@)\/m‘/’) + < p(p) dp.

"~ 2rh (mc2)2 + ¢2p?

—00

This expression has the property that if we multiply it with the operator
ihd; — /(mc?)?2 — c2h202, and change the order of the operators and the
integral, then the integrand vanishes. So when we transform a scalar solution
of the relativistic Schrodinger equation with a Lorentz boost, it remains as
a solution of the relativistic Schrodinger equation. This means that we can
say that the relativistic Schrodinger equation is Lorentz invariant.

15



There is also another way of seeing that the relativistic Schrodinger equa-
tion is Lorentz invariant, which is slightly more intuitive, although less rigor-
ous: One fact is that a solution of the relativistic Schrodinger equation is also
a solution of Klein-Gordon equation, and another fact is that Klein-Gordon
equation is Lorentz invariant, since it can be written in the covariant form
c?h20,0Mp + (mc?)? = 0. These two facts do not yet directly imply that
the relativistic Schrodinger equation would be Lorentz invariant. It turns
out that solutions of Klein-Gordon equation can be written as linear combi-
nations of solutions of the two equations ihdyp) = ++/(mc?)2 — c2h202.
We probably believe it when we get informed that the solutions of the
two equations iR = £4/(mc2)? — c2h202¢) don’t mix in Lorentz boosts.
From there we can see that solutions of the relativistic Schrodinger equation
must remain as solutions of the relativistic Schrodinger equation in Lorentz
boosts.

Some people believe that they could prove that the relativistic Schrodin-
ger equation would not be Lorentz invariant with a reasoning like this: “If an
equation looks like 0,,0"¢ = 0 or 0,F"” = J¥, then it is Lorentz invariant.
When we write y/(mc?)? — ¢2h202 using the Taylor series, we see that the
relativistic Schrédinger equation does not look like 9,0"¢ = 0 or 9, F" =
JY. Therefore the relativistic Schrodinger equation is not Lorentz invariant.”
There are two problems with this argument: Firstly, we are not supposed
to use the Taylor series to describe the pseudo-differential operator, and
secondly, there is a major logical blunder. It is true that if an equation looks
like 0,011 = 0 or 9, F* = J¥, then it is Lorentz invariant. However, this
does not mean that if an equation does not look like 8,,0"¢ = 0 or 9, F" =
JV, then it would not be Lorentz invariant. It could be that an equation is
Lorentz invariant for some other reason. As we just learned above, this is
what happens with the relativistic Schrodinger equation. We can say that
the relativistic Schrodinger equation is not Lorentz covariant, though; that
is true. There is no reason to assume that relevant time evolution equations
in general should have a covariant form.

There is a one big problem with the relativistic Schrédinger equation. It
is that if this equation is supposed to be consistent with Special Relativity,
then why does it look like that (¢, x) can be written as a linear combination
of ¥(0,2"), where 2/ traverses through the whole space R, and not as a linear
combination of 1 (0, 2") where |z —2'| < ¢t? If somebody has an opinion that
the relativistic Schrédinger equation is not acceptable, because according to
it 1(t, ) depends on values ¥(0, ') outside the past light cone |z — 2’| < ¢t,
we can consider that to be a legitimate opinion. It is true that it is a
little strange that ¢ (t, ) seems to be not uniquely determined by the values
(0, 2') inside the light cone |z — 2’| < ¢t only. Those who have studied the
conjecture discussed above have some understanding of what is going on.
The divergent integral that defines the propagator P(t,x — z') is the same
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Figure 6: The big question is that when (¢, ) is written as a linear combination
of the past values ¢(0, "), on which past values does it really depend. On (0, z’)
where 2’ € R, or on ¢(0,2’) where x — ¢t < 2/ <z + ct?

divergent integral that defines the Fourier transform f that was the subject
of the conjecture. The propagator can be written in the form

P(t,o—2') =

me A<mc(:n - x’)) tmc?

27rhf " where a = — N

We now know from the behaviour of this conjectured and numerically stud-
ied quantity that when it is used as an integration kernel, the main contri-
bution comes from the region

me(x — ') tmc?

<
h - h
and outside this region the contribution vanishes very fast. So the contra-
diction with Special Relativity is not extreme and blatant.

We should recognize that this is overall a difficult subject, and we should
try to not jump to quick conclusions. If we decide, after the myths about the
relativistic Schrodinger equation have been debunked, that let’s get serious
about the question that is there a problem with Special Relativity or not, the
full truth seems to be that yes there is a problem in combining the relativistic
Schrodinger equation and Special Relativity. The ordinary component of
f (&) does not go to zero immediately when £ continuously passes from the
region |£| < |a| to the region || > |a|, but only very fast. The problem
in combining the relativistic Schrodinger equation and Special Relativity is
not as extreme and blatant as some people believe, but the problem does
exist. We can say that the relativistic Schrodinger equation implies some
small amplitude leaking from outside the past light cone.

The facts that we have now learned produce a new paradox: If it is
true that the relativistic Schrodinger equation is not consistent with Special

= |z — 2| < e,
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Relativity because of the small amplitude leaking from outside the light cone,
then how is it possible that solutions of the relativistic Schrédinger equation
are also solutions of Klein-Gordon equation, and Klein-Gordon equation is
fully consistent with Special Relativity? Are these solutions simultaneously
not consistent and consistent with Special Relativity? One thing that maybe
is relevant for a solution to this paradox is that if we want to construct an
initial value 9,4 (0,2’) in the region |z — 2’| < ct inside the light cone for a
solution of Klein-Gordon equation, for the purpose of generating a solution
to the relativistic Schrodinger equation, it could be that for that it is not
sufficient to know an initial value ¢ (0,2’) in the region |z — 2/| < ct inside
the light cone. It seems that we need to know the values (0, 2’) in the
region |z — a'| > ct outside the light cone, to construct the initial value
0y)(0,2') in the region |z — 2’| < ct inside the light cone. This need arises
from the non-local nature of pseudo-differential operators. I'm not sure if
this fully solves the paradox though; it still feels like depending on how you
look at it.

At the time of writing this article mainstream physicists believe that
the relativistic Schrédinger equation has already been rejected as a wrong
equation for relativistic quantum mechanics. We could ask the mainstream
people that if the relativistic Schrodinger equation is wrong, then what
equation is the right one? The mainstream people have not been able to
answer this question, and there seems to be a concensus that the question
should be avoided. A typical way to distract the discussion from this topic
is to point out that modern relativistic quantum theories are multiparticle
theories. That claim is true, but shouldn’t we have some way of handling
the spatial representations of the wave functions in the multiparticle theories
too?

Let’s continue onto the topic of path integrals. Dirac and Feynman
discovered that if we postulate the time evolution of a wave function
1 : R xR — C in one dimension to come from a relation

Pt + At,x) /ei%tL(gg’m)@b(t,x')dw',

where At > 0 is some small time increment, and where we use the non-
relativistic Lagrangian

1
L(z, i) = §m:‘c2

of a free point particle with a mass m > 0, then this implies that the wave
function satisfies the Schrodinger equation

h2
iho)(t, )