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Abstract In 1915 Einstein adopted a new coordinate condition for his GR gravity theory, namely that the metric
tensor’s determinant always equals -1, its Minkowskian zero-gravity value. In his landmark November 18, 1915
paper, Einstein showed that applying this coordinate condition to the approximate calculation of the metric of a
static point mass (the sun) results in agreement with the previously unaccounted-for part of Mercury’s perihelion
shift, and doubles the deflection of light by the sun’s gravity from his previous calculation which didn’t use this
coordinate condition; a 1919 solar-eclipse expedition verified the doubled deflection. In January, 1916 Schwarzschild
published the exact version of Einstein’s new static point-mass metric; as expected, it slightly lengthens circular-orbit
periods. In May 1916 Droste published a much simpler metric which violates the Einstein equation at an empty-space
radius and fails to lengthen circular-orbit periods. In 1922 Friedmann tried fixing the metric’s time-time component
to unity, making it Galilean covariant instead of Lorentz covariant, and eliminating gravitational time dilation. We
replace Friedmann’s metric condition by Einstein’s in the Oppenheimer-Snyder model; the resulting gravitational
time dilation accommodates both the acceleration of the universe’s expansion and its early inflation.

1. The details of Einstein’s Lorentzian GR gravity theory and Friedmann’s Galilean regression

The central entity of Einstein’s gravity theory is the dimensionless Riemann space-time metric tensor g,,, (),
whose physical role is that of a multicomponent gravitational potential which, via a stationary-action princi-
ple, determines a test-particle’s gravitational trajectory in that gravitational potential. The action involving
the metric tensor g, (x) that is relevant to the determination of a test particle’s gravitational trajectory is,

—mc [ ds = —mc [ /g (x) dzt dz¥, (1.1a)

where m is the test particle’s rest mass. The path of stationary action is also clearly the path of stationary
length [ ds, namely the geodesic of the Riemannian geometry. We take note of the fact that when g, ()
becomes the metric of special relativity 7, wherein gravity is absent, the action —mec [ ds reduces to,

—me [ /N dat dz¥ = —me [ /(cdt)? — |dx|? = f(—mc%/l — |>'</c\2)dt, (1.1b)

where we recognize that —mc?\/1 — |%/c|? is the Lagrangian of the relativistic free particle. When |X| < ¢,
it reduces to —mc? + %m|5{|2, where %m|5<|2 of course is the Lagrangian of the nonrelativistic free particle.

Riemannian geometry originally was concerned with interesting extensions of the concept of space (e.g.,
curved surfaces in various dimensions), whereas gravity’s arena of course is four-dimensional space-time. In
particular, when g, () becomes special relativity’s n,, wherein gravity is absent,

ds = \/Nu doi da¥ = \/(cdt)? — [dx[?> = ¢\/1 — [X/c[?dt = cdr, (1.2a)

where dr = (/1 —[x/c|>dt) is special relativity’s Lorentz-invariant differential time. When gravity is
present, we extend the Eq. (1.2a) relation ds = cdr to accommodate the gravitational metric tensor g,.(z),

ds = \/guw(z) dai dav = cdr, so, c=ds/dr = /g (x)(dzt/dT) (dz¥ [dT), (1.2b)

and we furthermore assume transformation properties of g, (x) which are consistent with the invariance of
dt under general transformations of the space-time coordinates x*. We postpone the presentation of the
details of those transformations until after we obtain a test particle’s gravitational equation of motion.

The equation of motion for a test particle’s gravitational trajectory which connects two fixed space-time
points (and likewise the equation for the geodesic of the Riemannian geometry which connects those two
points) is obtained by setting to zero the first-order variation of the length [ ds of that trajectory with
respect to an infinitesimal change dz* of the trajectory 2 between those two fixed points. Thus,

0=26[ds=10[+\/guw(@)datde” =6 [(\/g(x) (dxr/dr) (dz¥ [dT)) dT =
f<\/gl“,(m’\ + 0x?) (d(x+ + dxm) /dT) (d(x” + 0¥ /dT) — \/gw(x) (dxr/dT) (dx”/dT))dT. (1.3a)

Through first order in the infinitesimal change dx* of the trajectory z* between the two points we have that,
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g,“,(x’\ + 822) (d(z* + dzM) /d7) (d(z¥ + d2v)/dT) ~ v () (da* /dT) (dx” [dT)+
(8gw,/8:13)‘) (62*) (dxt /d7) (dx¥ /dT) + Guv () (d(dzH)/dT) (dx” /dT) + g (x) (dxt /dT) (d(6x¥)/dT). (1.3b)

In light of the result obtained in Eq. (1.3b), we see that the integrand of the last integral of Eq. (1.3a) is of
the form (v/a + € — y/a), where € is infinitesimal. Evaluation of (v/a + € — y/a) to first order in € yields,

(Va+e—a)=va(y/1+ (e/a) —1) = Va(l+ 3(e/a) — 1) = ¢/ \/a. (1.3¢)

For the integrand of the last integral of Eq. (1.3a) we have, in the language of Eq. (1.3¢), given Eq. (1.3b),
a = gu(z) (dzt/dr) (dz” /dr) and € = (Dg,, /0xz ) (62 (dat /dT) (dz /dT)+

Guw () (d(0zH)/dT) (dx” [dT) + g () (dxt/dT) (d(6x")/dT). (1.3d)

From Eq. (1.2b), /g, () (dz#/dr) (dz /dT) = ¢, and from Eq. (1.3c), (va + € — ya) = 2¢/\/a. We next
combine these two facts with Eqgs. (1.3d) and (1.3b) to present Eq. (1.3a) as

0=2¢[ds=3(1/c) f((agw/ax)‘) (0™ (dz* /dT) (dz¥ /dT)

+ga () (d(62?)/dT) (da” /dT) + gun () (dz*/dT) (d(5$>‘)/d7'))d7'. (1.3¢)

Since the two endpoints of the trajectory are fized, the infinitesimal change 6z in the trajectory vanishes
at those two endpoints, which makes the needed integrations by parts in Eq. (1.3e) straightforward. Bearing
in mind that g,,(x) = g,.(x), these integrations by parts cause Eq. (1.3e) to read,

0=05[ds=1L(1/c) f((agw 02 (datdr) (dz” | dr)
—~2gau(w) (a7 /dr2) = 2(dga, () /d) (d fdr) )6 dr. (1.36)
Since (dgay(x)/dr) = (9gau/d2*) (da* /dr) Eq. (1.3£) becomes,
0 =06 [ ds = (1/¢) [ ((5(09,/02") — (9gr,/02)) (da /dr) (da” [dT) = gau(w) (Pt dr?) )sardr. (1.3g)

Since, except from the two fixed endpoints of the trajectory, the trajectory’s infinitesimal change dz*
essentially arbitrary, we can conclude from Eq. (1.3g) that,

Opu() (d2z JdT?) + %((89,\,1/830”) + (Ogxry/0xt) — (09,“,/830’\)) (dz*/dT) (dz¥ /dT) = 0. (1.3h)

If the metric tensor gy, () happens to have a matriz inverse g™ N(z) at every space-time point x such that
9" () gau(z) = 65, then Eq. (1.3h) can be expressed in the form,

d?x" /dr? + T%, (dzt /dT) (dx /dT) = 0, (1.31)

where,

Tr, & 10 (@) ((0gru/02%) + (Dgan/0) — (g /022)), (1.3)

is called the affine connection. A crucial difference between the Eq. (1.3h) test-particle gravitational equation
of motion versus the test-particle gravitational equation of motion of Egs. (1.3i) and (1.3j) is that only the
latter adheres to the Lorentz-covariant extension of Newton’s Second Law for that test particle, which is,

md?z®/dr? = F~. (1.3k)

Only when the metric tensor’s matriz inverse g"*(x) erists everywhere in space-time, so that the test-
particle’s gravitational equation of motion is that given by Eqgs. (1.3i) and (1.3j), do we have that,

Fr=—-mTY}, (dz/dr) (dz¥ /dT), (1.31)

but if the metric tensor’s matriz inverse g"*(x) fails to exist everywhere in space-time, so that only Eq. (1.3h)
holds for the test-particle’s motion, the Eq. (1.3k) Lorentzian dynamical requirement is violated.

Einstein’s 1915 coordinate condition det(g,,(x)) = —1, which he used to calculate the previously
unaccounted-for part of Mercury’s perihelion shift, manifestly guarantees the existence of the metric ten-
sor’s matriz inverse g"*(x), but it has since been almost completely forgotten; it isn’t mentioned anywhere
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in Steven Weinberg’s 657-page 1972 tome Gravitation and Cosmology: Principles and Applications of the

General Theory of Relativity. Weinberg favors the harmonic coordinate equations g””Ffw = 0, which prima
facie assume the existence of the metric tensor’s inverse g* (x) without guaranteeing it, whereas Einstein’s
coordinate condition det(g,.(z)) = —1 clearly guarantees the existence of the metric’s inverse g'"(x).

The issue of the existence of the metric tensor’s inverse ¢"*(x) goes far beyond the test-particle’s
gravitational equation of motion’s adherence to the Lorentz-covariant extension of Newton’s Second Law:
the systematic construction of entities which keep their form under gemeral transformations of space-time
coordinates uses the affine connection I';,, = 19" () ((0grn/0z") + (0gr /0x") — (89, /027)) of Eq. (1.3))
as a fundamental building block, and it is of course apparent that the existence of the affine connection is
completely dependent on the existence of the metric tensor’s inverse g"*(z).

Before we turn to the details of general transformations of space-time coordinates, we point out the
conditions under which the test-particle gravitational equation of motion of Egs. (1.31) and (1.3;) is consistent
with Newtonian gravity, and, after that, we establish that two clocks at rest at two different points of a
gravitational field will usually tick at two different rates, which is called gravitational time dilation.

We now show that when the metric tensor g, (x) is static (independent of time), has components which
differ by much less than unity from those of the special-relativistic metric tensor 7,,, and the test particle’s
speed is much less than ¢, then the test particle’s behavior is consistent with Newtonian gravity.

We note that (dz#/dr) = (dt/dr)(dx*/dt) = (dt/dT)(c, X) = ¢ (dt/dT)(1, (%/c)), which when |%x| < ¢
is almost equal to ¢ (dt/dr)(1, 0) = c¢(dt/d7)d}y. This approximate result for (dz*/dr) implies that when
|x| < ¢, the Eq. (1.31) dynamical equation for a test particle in a gravitational field, namely,

Pz [dr? + T4, (z) (dat /dr) (da¥ /dT) = 0, (1.4a)

is well approximated by,
d%x® [dr? + A(dt/dT)? Ty (z) = 0. (1.4b)

We next insert into I'(, as it is given by Eq. (1.3j), the metric tensor g, (x) = . +hu (z), where hy,, (x)
s assumed to be static, and contributions to I'§y which are second-order or higher in h,, are discarded,

Lho(z) = 19" (@) ((Ohao/0°) + (Ohao/02°) — (Ohoo/02?)) ~ — 10" (Ohgo/Ox™), (1.4c)
which, upon insertion into Eq. (1.4b), yields,
d?z" Jdr? = L 2 (dt/dT)*n"* (Ohoo /D). (1.4d)
Since hoo(x) is static, we call it hog(x), and since (Ohgo/0x°) = 0, the k = 0 component of Eq. (1.4d) is,
d?(ct)/dr? =0, (1.4e)
which implies that,
dt/dr is a constant. (1.4f)
The k =1, 2 and 3 components of Eq. (1.4d) yield the three-vector equation,
(d*x/dr?)/(dt/dr)? = —Vx(3 ¢ hoo (%)), (1.4g)
which, because d?x/dr? = (d?x/dt?)(dt/dr)? + (dx/dt)(d*t/dr?) and dt/dT is a constant, implies that,
d?x/dt* = =V (% ¢ hoo(x)). (1.4h)

The corresponding Newtonian gravitational acceleration equation of course is,
d*x/dt? = -V (%), (1.4i)

where a typical example of such a Newtonian-gravity potential ¢(x) is —GM/|x|, which is produced by a
static point mass M at x = 0. Comparison of Eq. (1.4h) with Eq. (1.4i) shows that,

hoo(x) = 2 ¢(x)/c?. (1.4j)
Thus, in the Newtonian limit, where |hoo(x)| < 1, Eq. (1.4j) implies that,
goo(x) & goo(x) = oo + hoo(x) = 1+ 2¢(x)/c?, where [¢(x)| < $c2. (1.4k)
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We next explore gravitational time dilation. The ratio of the invariant differential time dr = ds/c =
(v 9y () da dx”)/c to the differential time (dz°/c) recorded by a clock embedded in a test particle that is
moving arbitrarily in the gravitational field described by g, () is,

(dr)/(dx®/c) = (cdT)/ = /9w (z) (dz# /dx) (dz” /dxO) . (1.5a)

When the test particle with its embedded clock is at rest with respect to the observer,
(dz*/dz®) = 6l, so Eq. (1.5a) reduces to (cdr)/(dz®) = \/goo(z) . (1.5b)

We now use Eq. (1.5b) to work out the ratio dzi/dz3 of the two differential times dx%/c and dx3/c recorded
by two clocks at rest with respect to the observer present at two different space-time points x1 and xs,

(cdr)/(dz?) = \/goo(x1) and (cdr)/(dz9) = \/goo(x2) together yield,

da}/dx = ((cdr)/(dz§)) /((cdr)/(dz])) = \/goo(22)/goo (1) - (1.5¢)
Eq. (1.5¢) implies that,
[(the tick rate of the clock at @2)/(the tick rate of the clock at x1)] = \/goo(z2)/goo(z1) - (1.5d)

In the Newtonian limit, goo(z) is static and very close to unity, i.e., goo(x) = goo(x) ~ 1 + 2¢(x)/c? where
|p(x)| < §¢? according to Eq. (1.4k). Therefore, in the Newtonian limit Eq. (1.5d) yields that,

[(the tick rate of the clock at x2)/(the tick rate of the clock at x1)] & /(1 + 2¢(x2)/c?) /(1 + 2¢(x1)/c?)

~ 1= (2(00x1) — 0x2)) /) =~ [1 = ((6(x1) = 6(x2)) /2)] (L.5¢)

which has been verified using super-accurate atomic clocks by, for example, placing one clock 33 cm above
another on a wall for a day or so. Eq. (1.5e) gives that the tick rate of the clock below divided by that of the
clock above equals [1 — (g(Ah)/c?)], where g = 9.8 m/s?, Ah = 0.33 m and ¢ = 3 x 103 m/s, so the tick rate
of the clock below is slower by the factor (1 — 3.6 x 10717) than that of the clock above, which implies that
the clock below loses about 3 picoseconds per 24-hour day relative to the clock above. In this experiment
the positions of the two atomic clocks are subsequently swapped as a check for systematic errors.

Since GPS satellites are vastly more than 33 ¢cm above the earth’s surface, there is a far greater gravity-
caused difference between an atomic clock’s tick rate on the earth’s surface and its tick rate in a GPS satellite.
(There is as well a smaller special-relativistic speed effect on the tick rate of an atomic clock in a fast-moving
GPS satellite when that clock is viewed from the earth; GPS satellites aren’t truly geostationary.)

Atomic clocks and satellites didn’t exist in 1922, the year that Alexandre Friedmann tried fizing goo(z)
to unity, and was thrilled by how that made it feasible to analytically solve the FEinstein equation in some
cases. In due course it was realized that the analytic solutions of the Finstein equation in those particular
cases correspond to purely Newtonian gravity.

It is patently obvious from Eq. (1.5d) that fizing goo(x) to unity eliminates gravitational time dilation,
which in the present era of atomic clocks and satellites sheds an extremely unfavorable light on the practice
of fizring goo(x) to unity that Friedmann so “successfully” initiated in 1922. That fixing goo(x) to unity
eliminates gravitational time dilation supports the hypothesis that it enforces Galilean covariance. That all
known analytic solutions of the Finstein equation which result from fixing goo(x) to unity correspond to purely
Newtonian gravity further supports that hypothesis. Another pointer to the effect of fixing goo(x) to unity is
the Eq. (1.4k) Newtonian-limit result that goo(x) ~ 1 + 2 ¢(x)/c?, which is only consistent with goo(x) = 1
when ¢ — oo, which enforces Galilean covariance. We furthermore find in Steven Weinberg’s 1972 tome
in Section 4.1 on pages 92-93 the following statement which is motivated by a 1928 mathematical-journal
article by K. O. Friedrichs, “In particular, general covariance does not imply Lorentz invariance—there are
generally covariant theories of gravitation that allow the construction of inertial frames at any point in a
gravitational field, but that satisfy Galilean relativity rather than special relativity in these frames.” In this
regard we note that fixing goo(x) to unity clearly isn’t compatible with Lorentz covariance of g, (x), but is
compatible with the Galilean covariance of g, (x). It is an astonishing omission on the part of Weinberg’s
tome that it fails to point out that Friedmann’s fizing of goo(x) to unity eliminates gravitational time dilation,
despite the fact that Weinberg’s Eq. (3.5.3) on page 80 is the same as Eq. (1.5d) above.
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It s also usually asserted that an energy-momentum source which is spatially maximally symmetric
(spherically symmetric and homogeneous) compels its associated metric to be of the Robertson-Walker form,

(ds)? = (cdt)® — (R(t))? [(1 — kr2)_1(dr)2 + 7"2((d9)2 + (sin@ d¢)2)], (1.6a)

which prima facie is extremely implausible. Since any metric of this Robertson-Walker form has goo(z) equal
to unity everywhere, it describes Galilean-covariant gravity. How can Galilean-covariant gravity conceivably
be compelled by the spherical symmetry and homogeneity of its energy-momentum source?

In fact, at the beginning of Subsection (C) of Section 13.5 on page 403 of his tome, Steven Weinberg
only obtains from the spatially maximal symmetry of the source the more general metric form,

(ds)? = (T'(t))*(cdt)®> = (S())?[(1 — kr?)~*(dr)? + r*((d)* + (sin 6 d¢)?)], (1.6b)

which doesn’t necessarily describe Galilean-covariant gravity. But this Eq. (1.6b) metric form in Weinberg’s
tome doesn’t reflect the infinite number of ways that its general coordinate transformations can differ from
itself. One mustn’t forget, as Weinberg unaccountably did, that every general coordinate transformation of
a metric solution of an Einstein equation is also a metric solution of that equation. Therefore the only
assertion which can be made concerning the metric form given by Eq. (1.6b) with regard to metric solutions
of Einstein equations whose energy-momentum source is spatially maximally symmetric is that there exist
metric solutions of Finstein equations whose energy-momentum source is spatially mazimally symmetric that
have the metric form given by Eq. (1.6b), but it absolutely cannot be asserted that all metric solutions of
Einstein equations whose energy-momentum source is spatially maximally symmetric have the metric form
given by Eq. (1.6b). In fact, we next show that there ezists a general coordinate transformation of the metric
form given by Eq. (1.6b) which satisfies Einstein’s coordinate condition det(g,, (x)) = —1.

To impose det(g,, (x)) = —1 on a general coordinate transformation of the Eq. (1.6b) metric form, we
put T'(t) to (S(t))~3 and transform its radius variable from r to p, which transforms that metric form to,

(ds)? = (S(t)) " (cdt)® — (S(1))[(1 = k(r(p)*) " (dr(p)/dp)*(dp)* + (r(p)/p)?p* ((d)* + (sin 0 dg))]. (1.6¢)

Einstein’s coordinate condition det(g,.,(z)) = —1 will be satisfied by the Eq. (1.6¢c) metric form if the factor
(1= Kk(r(p))?)"*(dr(p)/dp)? in its second term is made equal to (r(p)/p)~*, which reduces Eq. (1.6¢) to,

(ds)? = (S(£))"%(cdt)® — (S(t))*[(r(p)/p)~*(dp)* + (r(p)/p)*p* ((d0)* + (sin O d)?)], (1.6d)

which clearly satisfies Einstein’s coordinate condition det(g,. (z)) = —1.

To solve the differential equation (1 — k(r(p))?)~'(dr(p)/dp)* = (r(p)/p)~*, we note that equating
the square roots of its two sides produces the differential equation (1 — kr?)~%(dr/dp) = (p?/r?). This
is equivalent to the integrable differential equality (1 — kr2)_% r2dr = p*dp, which, together with the

specification r(p = 0) = 0, yields OT(p) (1= k(")) 2(")2 dr’ = p/3.

We now define the following k-indexed functions of r: Vi(r) = Jo (1 — k(r')?)"2(r")2dr’. Since, as
we see at the end of the foregoing paragraph, Vi (r(p)) = p®/3, it follows that r(p) = (Vi) ~*(p®/3), where
(Vi,)~! denotes the inverse function of the k-indexed function Vi, which is defined in the foregoing sentence.
With the solution r(p) = (Vi)™ (p®/3) of the differential equation (1—k(r(p))?)~ (dr(p)/dp)* = (r(p)/p)~*
thus in hand, we present the Eq. (1.6d) metric form as,

(ds)? = (S(t))~C(cdt)® — (S(1)*[(Ur(p))~*(dp)? + (Ur(p))*p?((d0)? + (sin 0 d)?) ], (1.6e)

where Ui(p) = (Vi) " (p%/3) /p and Vi(r) = [5 (1 — k(r')?)"%(r")2dr'. The Eq. (1.6e) metric form satisfies
the Einstein coordinate condition det(g,, (z)) = —1, and for the appropriate function S(t) it also satisfies the
Einstein equation for a spatially mazimally-symmetric source because it is a general coordinate transformation
of the Eq. (1.6b) metric form which satisfies the Einstein equation for a spatially mazimally-symmetric source.

Inattention to the fact that every general coordinate transformation of a metric solution of an Einstein
equation is also a metric solution of that equation has resulted in physically-inappropriate clinging to the
Galilean-covariant Eq. (1.6a) Robertson- Walker metric form that, in the throes of a Big Bang (or of gravi-
tational collapse), sends subsets of its maximally-symmetric zero-pressure perfect-fluid source to arbitrarily
high speeds in gross violation of relativity’s speed limit ¢. Relativistic upgrade of goo(x) = 1 Galilean-covariant
Friedmann/Lemaitre/Tolman/Robertson-Walker /Oppenheimer-Snyder metrics is nearly a century overdue.
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It is important to realize that, in the most general case, Einstein’s coordinate condition det(g,, (z)) = —1
adds four further equations to the six independent equations which comprise the Einstein equation. These
four further equations are a bit similar to the four harmonic coordinate equations g“”l“f;,j = 0 favored by
Weinberg, which have been briefly discussed in the next paragraph after Eq. (1.31). However the four equations

which immediately follow from det(g,.(x)) = —1 are of course,
ddet(g,(z))/0z* = 0. (1.7a)
But for any matrix M(x) which shares the property of g..(x) that det(M(x)) < 0 everywhere,
ddet(M(z))/0x* = det(M (z)) Tr(M " (z) (OM (z)/dz?)). (1.7b)

To obtain the Eq. (1.7b) result, we first take note of the fact that,
dlIn[— det(M (z))]/0z* = (9(— det(M (z)))/0z) /(- det(M (x))), so,
d(det(M (x)))/0x* = det(M (x)) (8 In[— det(M (z))]/dz?). (1.7¢)
With the Eq. (1.7¢) result in hand, we alternatively work out OIn[— det(M (z))]/0z> as an € — 0 limit,
d1n[— det(M (z))] /02> 20 (1/€){In[— det (M (z) + €(OM (x)/0z*))] — In[— det(M (z))]} =

(1/€)In[det(M(z) + e(OM (z)/0x*)) / det(M(z))] = (1/e) In[det (I + e M~ (z)(OM (z)/0z))] =

(1/€) In[1 + e Tr(M~*(x) (OM () /02>))] 2° Tr (M~ () (0M (z)/9>)), (1.7d)
which inserted into Eq. (1.7¢) yields Eq. (1.7b). Putting M (z) to g,.(x) in Eq. (1.7b) produces,
0 det(g,u () /02> = det(g () (97 (2) (Dgars/0)). (1.7¢)
Eq. (1.3j) tells us that, I'};, = 39"(x) ((8gan/02*) + (9gar/0x") — (Dgur/0x)), which implies that,
T = 29" (2) ((99ar/02*) + (9gar/02") = (09:2/027)) = 5 (97 (@) (0gan/02™)), (L.76)

since $9"%(x)((0gar/0z") — (0gxr/0x™)) = 0 because ((0gar/0z") — (0gxr/0x™)) is antisymmetric and

1l _ka

59"“(x) is symmetric under interchange of a and x. Eqgs. (1.7a), (1.7e) and (1.7f) together imply that,

0 = O det(guu () /02 = det(g (1)) (9 (2) (g 02)) = 2 let(gpu () Ty, (1.78)
so Einstein’s coordinate condition det(g,, (z)) = —1 implies the four equations,
e, =0, (1.7h)

which, as mentioned above Eq. (1.7a), are a bit similar to the four harmonic coordinate equations g“”Ffw = 0.

We also noted above Eq. (1.7a) that, in the most general case, a bona fide coordinate condition must
add four further equations to the six independent equations which comprise the Einstein equation in order
to determine the ten independent components of the metric tensor. Both the four harmonic equations
g"*T%, = 0 and the four equations I'*, = 0 of Eq. (1.7h) that follow from Einstein’s coordinate condition

det(guy (x)) = —1 fulfill that requirement, and both are compatible with Lorentz covariance of the metric
tensor g, (x). However, as was noted in the next paragraph after Eq. (1.31), Einstein’s coordinate condition
det(guy (x)) = —1 guarantees the existence of the matriz inverse g"”(x) of the metric tensor g, (x), which

isn’t the case for the four harmonic equations g’“Tf;V = 0, notwithstanding that their very definition requires
the existence of the metric’s matriz inverse. In Eqgs. (1.3h) through (1.31) we also saw that the existence of the
metric’s matrix inverse g"¥ () is crucial to the existence of the affine connection I'}l,, an entity which makes
the geodesic gravitational equation of motion for a test particle consistent with the relativistic extension of
Newton’s Second Law. Moreover, we will shortly see that the affine connection I'}j, is a fundamental building
block for the construction of equations which keep their form under general coordinate transformations. In a
nutshell, there would seem to be no simple alternative to Einstein’s coordinate condition det(g,,(z)) = —1
that fulfills two essential requirements of gravity theory: 1) four further Lorentz-covariant equations in the
most general case and 2) guaranteed existence of the metric tensor’s matriz inverse gh¥(x). Certainly the
simplest way to fulfill these two requirements is to assert that det(g,, (z)) = k, where k is a nonzero constant;
the fact that k = —1 is then determined by the crucial special case g, (T) = 1.
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We once again note that Friedmann’s condition goo(x) = 1 eliminates gravitational time dilation and is
incompatible with Lorentz covariance of the metric tensor g, (), but is compatible with Galilean covariance of
the metric tensor. Indeed the condition ggg(z) = 1 effectively sends ¢ to infinity, and in high-symmetry cases
usually reduces the Einstein equation to its Newtonian-gravity counterpart. In the two decades following
Friedmann’s 1922 opening of the ggo(x) = 1 Pandora’s box, the imposition of goo(z) = 1 on metrics was
pursued or advocated by G. Lemaitre, R. C. Tolman, H. P. Robertson, A. G. Walker, J. R. Oppenheheimer
and H. Snyder with little understanding of the crucial fact that imposing goo(x) = 1 on the metric forces
Galilean-covariant gravity on the model treated. However the choice of notation can obscure the Galilean-
gravity nature of the result, as occurs in the Oppenheimer-Snyder model when the density instead of the
radius of the sphere of zero-pressure uniform-density perfect fluid is chosen as the time-dependent variable.
In the absence of a pointless desire to pursue Galilean-gravity calculations in the context of a metric tensor,
fixing goo() to unity is to be shunned. Instead, making det(g,. (x)) equal to —1, as Einstein did in November,
1915 to obtain the previously unexplained part of Mercury’s perihelion shift as well as the correct deflection
of light rays by the sun’s gravity, is absolutely necessary in relativistic gravity theory because 1) it guarantees
that both the metric tensor’s matriz inverse g""(x) and affine connection I'%, exist and are well-defined, 2)
it is fully compatible with Lorentz covariance of the metric tensor g, (x) and 3) in the most general case
it implies the four additional equations I'fy = 0 which complement the siz independent components of the
FEinstein equation to determine the ten components of the metric tensor g,,,(x). When the energy-momentum
source is spatially maximally symmetric, the Eq. (1.6e) metric form, which both satisfies Einstein’s coordinate
condition det(g,, (x)) = —1 and as well the Einstein equation for the metric tensor of such a source, applies,
with the proviso that its function S(t) is determined by the details of each such spatially mazimally-symmetric
source. For example, if the energy-momentum source is a sphere of uniform-density perfect fluid of nonzero
pressure, S(t) depends on that perfect fluid’s equation of state that relates its pressure to its density. The
Eq. (1.6a) goo(x) = 1 Robertson-Walker metric form is definitely to be shunned unless one pointlessly desires
to carry out a Galilean-gravity calculation in the context of a metric tensor. When the energy-momentum
source is a sphere of uniform-density perfect fluid of zero pressure, application of the Birkhoff theorem offers
a far simpler route to the solution than does head-on application of the Eq. (1.6e) metric form, but it is
crucial that the static point-mass metric used to apply the Birkhoff theorem be the one which actually satisfies
the empty-space Einstein equation and the coordinate condition det(g,.,(x)) = —1 everywhere except at the
location of the static point mass itself, i.e., the static point-mass metric used must be the almost unknown
correct one which Karl Schwarzschild published on January 13, 1916.

We now present important basics of the construction of equations which keep their form under general
coordinate transformations. The interested reader can find a multitude of extremely worthwhile facts and
derivations which are omitted here in chapters 4 through 7 and chapter 12 of Steven Weinberg’s 1972 657-page
tome Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity.

General coordinate transformations map the four space-time coordinates z* one-to-one and onto four
other space-time coordinates y*(z), the mapping y®(x) being multiply times continuously differentiable.
Consequences include the existence of the inverse mapping x*(y) with the same properties, and, from the
chain rule of the calculus, the familiar basic partial-derivative matrix identities,

oy* oz _ 9y* _ sa ozt Ay __ 9z* _ spu
oz> dyP T oyP T 5ﬁ and dyY Oxzv — Ox¥ 51" (1'83')

Also from the calculus chain rule, general coordinate transformations from dz* to dy® have the form,

dy® = 9 dat, (1.8b)
a contravariant (upper index) vector transformation, as is its inverse transformation from dy® to dz",

da¥ = g%dya. (1.8¢)
To obtain Eq. (1.8¢) we contract gyiz into both sides of Eq. (1.8b) and then apply Eq. (1.8a),

e dy® = 52 S dwt = 5 dat = da”. (1.8d)

Below Eq. (1.2b) we noted that the general coordinate transformation properties of the metric tensor
9uv (@) must be consistent with the invariance of dr(x) = (\/gu(x)dat dz¥ /c). In light of Eq. (1.8c¢),

7



(cdr(2))* = g () dat da¥ = gy (2) Gomdy® Gozdy” = { Gz oz gun (x) } dy™ dy”. (1.8¢)

Therefore, provided that the general coordinate transformation of the metric tensor is taken to be,

gaﬂ(y) = %%guu(x)v (18f)

then, from Eqgs. (1.8f) and (1.8e),
(cdr(2))* = g (@) dat da¥ = gap(y) dy* dy® = (cdr(y))?, (1.8g)

so dr(x) = dr(y), i.e., dr is invariant under general coordinate transformations. Eq. (1.8f) shows that the
metric tensor transforms as a covariant (lower index) second-rank tensor, which is “upside down” from the
Eq. (1.8b) contravariant (upper index) transformation dy® = ggi dz* of the vector dxt.

If the metric tensor g, (z) has a matriz inverse (which it will if it satisfies Einstein’s coordinate condition
det(gu.(x)) = —1), then a coordinate transformation of this metric tensor’s matrix inverse is equal to the
matriz inverse of this metric tensor’s corresponding coordinate transformation. As a consequence, the matrix
inverse of a metric tensor transforms as a contravariant (upper index) second-rank tensor, which is “right
side up” relative to the Eq. (1.8b) contravariant (upper index) transformation of the vector dz*.

In detail, if a metric tensor g, (x) has the matriz inverse g**(z) (which it will if it satisfies Einstein’s
coordinate condition det(g,, (z)) = —1), then g, (v)g"*(z) = (52‘, a relation whose coordinate transformation
must correspondingly be gas(y)g?7 (y) = 6. We next insert gos(y), as it is given by Eq. (1.8f) above, into
the equation gas(y)g?7(y) = 62 to obtain,

e s g (2)g™ (y) = 63, (1.8h)
It is now more convenient to write Eq. (1.8h) as,
ozt ok
ayia gul/(m> ﬁ gﬂ'y(y) = 0.
oy~

We contract 3% into both sides of the above equation and apply Eq. (1.8a), which produces,

GER

v 8 2l
g (@) 525 977 (y) = Gix-
We next contract g"*(z) into both sides of the above equation and apply g**(x)gx, (z) = §#, which produces,
ozt oy”
505 97 (y) = 9"M@) 5ix-
We finally contract gii into both sides of the above equation and apply Eq. (1.8a), which produces,

oy™ oy~
97 (y) = $L 9" (@) 54,

which it is now more convenient to write as,

Y™ ay” .
9 (y) = 5% 5% 9" (2). (1.81)

From Egs. (1.8f) and (1.8i) we clearly see that under general coordinate transformations the metric tensor
g (x) transforms as a covariant second-rank tensor, whereas the matrix inverse g"”(z) of the metric tensor
transforms as a contravariant second-rank tensor. The contraction of the metric tensor g,.(z) with a
contravariant upper index of any tensor lowers that index to one which transforms covariantly under general
coordinate transformations. Likewise, the contraction of the matrix inverse g"”(z) of the metric tensor with
a covariant lower index of any tensor raises that index to one which transforms contravariantly.

We have so far considered upper and lower indexed entities whose upper indices transform contravariantly
under general coordinate transformations in the manner of dz* in Eq. (1.8b) and of ¢"¥(z) in Eq. (1.8i)), and
whose lower indices transform covariantly under those transformations in the manner of g, (z) in Eq. (1.8f).
Such upper and lower indexed entities are termed tensors under general coordinate transformations, or are
simply termed tensors for short. However, partial derivatives of almost all tensors under general coordinate
transformations fail to transform as tensors under general coordinate transformations. The upper and lower
indexed affine connection I‘fw(a?) of Eq. (1.3j), which involves partial derivatives of the metric tensor, fails
to transform as a tensor, but it is possible to merge partial differentiation with the affine connection in such
a way that the result of applying the merged operation to a tensor is itself a tensor.

8



We next work out the general coordinate transformation of the non-tensor affine connection I';, (x) of
Eq. (1.3j), which is a lengthy exercise. We begin by working out the general coordinate transformation of
99, () /02> via the Eq. (1.8f) general coordinate transformation of the covariant tensor g, (),

09a8(y) _ _8 | dzH dz” 9zt 9x¥ 9z 9guv (x) _9%zh dzt _§%*z¥ :
oyT T Oy7 |9y 8yﬁg’“’( 7)) = dy™ 9yP dy7  daA + g (2) By oy> ayﬂ +8’g DyToyP (1.8))
which illustrates how partial differentiation can turn a covariant tensor into a mon-temsor. If only the

first term of the final expression in Eq. (1.8)) were present, g, (x)/ 02> would be a covariant third-rank

tensor. We next use Eq. (1.8j) to combine terms of the general coordinate transformation of the entity
(Ogru(2)/02") + (Ogu(x) /D) — (Dguw () /D),

99ya 09~8(2 99a dz* dz¥ dz> Oguv %zt ozt _9%z”

T+ - 0 = G i M a0 [5G B+ B ol

ozt oz” 81 9guv () 9%z"  9z” ozt 9%z”
+8y’7 dyP O x> + Juv (.23) Ay~ oy doyP + Oy Oy 9yP
_ dx* 9x¥ 9z Aguv(z) (z) 9%zt 4+ ozt 8%z”
dy™ OyP dy7 Oz Guv Dy oy dyﬁ dy™ oy oyP
_ 9z" 9z 9z [ Ogau(x) Agav () o 99, (x) ozt 9%z”
= By= 9y Oy ( F i i P b ) +290(%) 55 o,
_ 9z 9" 9a” (99xu(x) | Agrn(z)  Bguu(a) dzt %"
= By7 Oy 9yP ( e e P b ) T2 dy7 Guv (@ )ayaayﬂ (1.8k)

We are now in a position to obtain the general coordinate transformation of the Eq. (1.3j) affine connection
I, (z) = 59" (x) ((Ogan(x)/02") + (Dgav(x) /) — (8guy(x)/d2)) by combining the general coordinate
transformation result for (Ogx,(2)/0x") + (Ogr, (x)/0x") — (Oguy (x)/0x*) given by Eq. (1.8k) with that for
g"” (z) given by Eq. (1.8i), which for this particular purpose it is much more convenient to restate as,

97 ) = B ()5

o7 (1.81)
Combining Eq. (1.81) with the Eq. (1.8k) result yields for the general coordinate transformation of I'},, (z

9
61;19

75(y) = 297 (y )(qu(y) I agw(y) 89(;;351/)) =
%%wm%%%%ﬂﬁﬁf%ﬁﬁ%%+wvmgﬁwuﬁ@=
%gzmg g;z g;ﬁ (agggu(r 6%;;536) ng(z)) + amng ( )g/W( )dgja;ﬁ —

P 2 10\ (o) (252 + e _ s} | B0 Fe
Ou B Beipn (1) + 5L e (1.8m)
where we used gzz gzi = &) as well as gzv gzv ok, which are aspects of Eq. (1.8a), and we also used

9" () g (v) = 67
connection I'®
dy°  9%z¥

dxv Oy~ 9dyP

second term

If only the first term of the final expression in Eq. (1.8m) were present, the affine
hv () would be a “mixed” contravariant/covariant third-rank tensor, but the presence of the

makes it a non-tensor. A slightly different (but equivalent) form of the general

coordinate transformation of the affine connection turns out to be important. Taking the partial derivative

with respect to y? of the identity

oy
dz¥ Oy~

9y” _0%z¥
Ozv dy*oyP

oz”

= 02 produces the further identity,

o 82$V ox? ax)\ 82 ya

T 9y 9yP dzvoz>

(1.8n)

so a form equivalent to Eq. (1.8m) of the general coordinate transformation of the affine connection is,

Fgﬁ(y) =

Although the partial derivative

oy’ dzM dx” 9z” dz>  9%y”

dxr dy™ dyP — pv () — oy dyP amuaxx (1.80)
ov, . .
76‘196) of a covariant vector V,,(z) doesn’t transform as a covariant

second-rank tensor, we now show that that partial derivative minus the affine connection’s particular con-
traction I‘f;u (x)Va(x) with that covariant vector V,,(x) does transform as a covariant second-rank tensor. The

general coordinate transformation of the covariant vector V,(z) of course is V,(y) =

%Vu(a@), S0,
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WValy) _ 8 |8zt __ dz* dz¥ V(=) 8%zH __ dz* dz¥ OV (=) 8%z”
o7 = o7 0w Ve(®)| = Gy 07 ow T aysoyr Ve(®) = 5ys o7 ot aymayr Ve(®)- (18p)

The double-lower-index partial derivative 6‘5‘; E,z) fails to transform as a covariant second-rank tensor due to

the bad term %Vu(m) in Eq. (1.8p). However we now use the Eq. (1.8m) transformation of the affine

connection I'} () to calculate the transformation of the pv double-lower-index contraction T (2)Vi(x),
nv nv
oy I3 v oy 2, v K
TLs(u)Valy) = |95 52 25T, (0) + 35 5255 | [ 520 Valw)]| =
" v oy K 2, v oy K 1% v 2, v
0208, () [ 35 355 V(@) | + 5250 |35 G55 Val@)] = B 25T, (0)VA() + s Vi), (1.8q)

Upon equating the difference of the initial expressions in Eqs. (1.8p) and (1.8q) to the difference of their

final expressions, the bad terms %Vy(x) in each of their final expressions cancel, producing the result,

OV o oY OV, (x xH Oz P 9x? | OV, (x
L) — T2, )V () = G G 20 — 32205002 () Vi) = 20 925 | 25 — T, @a(@)],  (181)

which shows that the entity V.., (z) = [%(f) — T, (2)Va(x)] transforms as a covariant second-rank tensor

even though the partial derivative % doesn’t. The entity V)., (x) is called the covariant derivative with
respect to x¥ of the covariant vector V,(x), and, like ordinary differentiation, covariant differentiation of
V,.(z) is a homogeneously linear operation on V,,(z). When the metric tensor g, (x) reduces to 7,,,, the affine
connection qu(x) reduces to zero, and covariant differentiation reduces to ordinary partial differentiation.
The extension of covariant differentiation to covariant tensors of higher rank is achieved by,

et [Ty, ...y, ()
Tty () = [MTM — 21 Fﬁku(x)T/nmuk_l)\ Bht1 (x)},

as is readily verified by calculations that are highly analogous to those of Egs. (1.8p) through (1.8r).

The general coordinate transformation of a contravariant vector V¥ (z) is V*(y) = gZZ VH(zx), and its
Ve (

Tﬁy) has mized indez, so Eq. (1.8p) for the a8 double-lower-index 3‘3;/&}) is replaced by,

partial derivative

Vi (y) _ 8 (LT AT _ Oy® dz¥ OV (x) (927;0‘ oz¥ Yy 1 _ 0y™ gz¥ OVH(x) oz” 627;& A
oyf T OyPf | dxm 14 (Jf) Ozt 9yP  dzv + Ozv dxt Oyb 14 (.73) Ozt 9yP  dzxv + OyB Oz dz> 14 (.13)
V() fails to transform as a mized tensor due to the bad term Maz7ZJOEV)‘(90) which has three factors
oy¥ OyP dxvox™ ’

instead of the two factors of the Eq. (1.8p) bad term. The contraction T'", (x)V*(z) has mized index, and
the three factors of the above bad term suggests using Eq. (1.80) for I'Y 5(y) in place of Eq. (1.8m),

3a:u3>\ 31/8)\3204 oy
5 WV() = |35 55 55T (0) - 35 95 5200 | |55V (@) =

oy* da” x> 9y az” _0%y* | 8ga> 0y” _ Oy 9z A dz” _0%y* 17A
oo 0;‘3 Iy () ﬁ Do V“(x)} B ﬁ@x”%w’\ [% o Vﬁ(fc)] = Gon a;jﬁ Iy (@)VA(z) - aZﬂ garo V(@)
Upon equating the sum of the initial expressions of the two foregoing equality chains to the sum of their

v 2«
final expressions, the bad terms :l:% agv%ﬁ VA (z) of their final expressions cancel, producing the result,

ove a 9y 9z¥ OVH(x 9y” dz” y* gz~ | OVH
Tt + T, )V ) = 55 G 25 & S BT @V @) = S5 55 | PR + T V@),

OVH (x)

which shows that the entity V., (z) = (S5 + T\ (@)V ()] transforms as a mized second-rank tensor

even though the partial derivative % doesn’t. The entity V*,, () is the covariant derivative with respect
to ¥ of the contravariant vector V*(x). The extension of covariant differentiation to contravariant tensors
of higher rank is achieved by,

THL k() dof [7871“18;:" (z) + 22:1 F’l/‘f\(z)TM“'qu A Bkt1fn (z)],

as is readily verified by calculations that are highly analogous to those of the three preceding equality chains.
The extension of covariant differentiation to mized tensors is correspondingly achieved, e.g.,

def OTHL,_, M4 (z)
T'ulﬁm,usml;y(x) = ?;3

LA @) T o (@) = Ty (2)TH 0™ (2) = T (@) TH0 3 (@) + TR (2) THY o™ ().

12014 12214
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We next study the general coordinate transformation behavior of the geodesic equation for a test particle
moving under the influence of the metric tensor (multicomponent gravitational potential) g, (x). The
Eq. (1.3h) form of the geodesic equation,

a2z 1( 99xru 9gru 99uv \ dz* dx¥ __
gAu(x)W + 5( oxV + dzh x> dr dr — 0’
is of course equivalent to the functional-derivative equation,

5fds/§x’\(7') =

from which it was obtained, where,

ds = \/guv(z) dzt dzv = ( G (2(7)) G de” ) dr,

is clearly invariant under general coordinate transformations. Since dz*(7) transforms as a contravariant
vector under general coordinate transformations, the above Eq. (1.3h) representation of the geodesic equation
transforms as a covariant vector equation under general coordinate transformations. If the matrix inverse
g"*(z) of the metric tensor exists everywhere (which is ensured by Einstein’s coordinate condition det(g,,) =
—1), contracting this contravariant second rank tensor g"*(z) into the above Eq. (1.3h) covariant vector form
of the geodesic equation produces its Eq. (1.31) standard contravariant vector form,

dz"” K dz* dz¥ _
dr2 +FIM/(I) dr dr O’

where,

def %) gy Oguv
Tile) = 30 @) (o + 5 - ),
is the affine connection. (This Eq. (1.31) standard form of the geodesic equation is compatible with the rela-
tivistic version of Newton’s Second Law.) The interesting point is that the characteristics of the variational
principle 5f ds/(s:c)‘(T) = 0 from which the geodesic equation was obtained permit us to immediately grasp

its general coordinate transformation properties. However, we now as well give the tedious customary proof
that the above Eq. (1.31) standard form of the geodesic equation is a contravariant vector equation,

dr2 T dr|Ozxzr dr | T Ozt dr? dz"dx™ dr dr ~ OxF drZ dxv oz dr dr

d*y? _ d |0y dz* | _ 9y° d>z"” + 9%y dz* dz _ 9y° d*z” + _9%*y7  dz” dz
630"
d?z"”

ooz isn’t a contravariant vector because of the bad term O%y” _dz” de* e pext apply Eq. (1.80),

Az x> dr dr °

INg ( )dya dy® _ [ 8y 9zt 9z” Fn ( ) 9z’ 9z 9%y’ oy dx* ay? dzv ] _
a8\Y)dr ar = | Bz= dy> dyP dy> OyP Oxzv oz dzs drt ozv dr |

SO

oy’ Iw ( ) |:8x" dy~ dz“} {Bz" ay° dm”} _ 8%y° {81” oy~ dm‘} [890)‘ ayP dm“] —

ozt Oy~ Ozs dr OyP dzv drt Oz Oz> | Oy™ Ozs dt OyB dzv dr
oy’ re ( )dz“ dz¥ 9%y dz¥ da?
Oxr — pv dr dr Oz¥dz> dr dr °

Upon equating the sum of the initial expressz'ons of the two foregoing equality chains to the sum of their

final expressions, the bad terms iaxvgi* %% of their final expressions cancel, producing the result,

d;y; _;'_Fa'ﬂ(y)ﬁdiﬁ — 9y’ dz" + Ay’ I‘w ( ) da? dx¥ _ 0y° [d22 —I—FH ( ) dxz* dxz¥
T e ’

dr drt ozr dr2 oz dr dr ~— Oz~ dr drt

so the above Eq. (1.3i) standard form of the geodesic equation indeed transforms as a contravariant vector
equation. The Eq. (1.31) geodesic equation therefore keeps its form under general coordinate transformations.
That is true as well of the Einstein equation for the metric tensor g, (x), and the resulting arbitrariness in the
four-vector argument x* of 9 (), and therefore in g, (x) itself, makes choosing the physically appropriate
coordinate condition of crucial importance. Just as the geodesic equation follows from the variation with
respect to d2*(7) of an action which is invariant under general coordinate transformations, the Einstein
equation follows from the variation with respect to dg,. (z) of the Einstein-Hilbert action, which is likewise
invariant under general coordinate transformations (see chapter 12 of Steven Weinberg’s 657-page 1972 tome
Gravitation and Cosmology . ..). The invariant curvature scalar is the central purely gravitational part of
that invariant action. We next discuss curvature’s relation to successive covariant differentiations.
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If, on the earth’s curved surface, one starts at the equator and first travels a short distance directly
toward the north pole, followed by traveling the same short distance directly east, one ends up at a slightly
different point than if one first travels that same distance directly east, followed by traveling that distance
directly toward the north pole. Somewhat similarly, taking two covariant derivatives in succession of a tensor
gives a result that depends on the order in which the two covariant derivatives are taken. The difference
between a second covariant derivative of a tensor and its reversed-order counterpart highlights a combination
of the affine connection and its first partial derivatives that describes a metric tensor’s intrinsic curvature,
and is called the metric tensor’s Riemann-Christoffel curvature tensor. In detail,

V5w = D +10, V70— FZVVK;U = 52 [EWN + FZAVA} + T [BVU - FZAVA] - FZVVK;U =

oxv  Ozxzv | Oz Oz
fo Kk OVY Kk OV7 o K A [Or% o Tk
{Bwﬂax” + [FNU oxv + FVU Bm“] - FIWV ;J} uld [ 896"“ + r)\ﬂ vo |’

where we renamed one summed-over pair of dummy indices from X to o, and we interchanged certain of
the symmetric lower indices of affine connection symbols. Since the entity enclosed in curly brackets is
symmetric under the interchange of its u and v indices, we see that,

VR:,H;U(@") - VH%’/;M('T) = VA(x)RKAW(x%
where,

et OT%, (= 5o (z o K o K
RK}\HV(SU) d:f 5\511( ) - BF(’)A‘/;;/LS ) +F)\,u(m)rua($) - F)\V(QT)FHG(.I), (185)

is called the metric tensor’s Riemann-Christoffel curvature tensor. Two key contractions are the Ricci tensor,

def

R)\l/ (33) = Rﬁ)\m/ (x)u

and the invariant curvature scalar,

R(z) = g™ (2)Ry, (2).

In Einstein’s gravity theory, the source of gravitational curvature is energy-momentum, which supersedes
the Newtonian concept that the source of gravitational forces and potentials is mass; a key motivating
consideration is that mass isn’t conserved, but energy-momentum is. The density and flux of a physical
system’s energy-momentum is given by its energy-momentum tensor Tl“,(:c), which transforms as a tensor
under general coordinate transformations. It is symmetric in its two indices,

Ty (z) = Ty (),
and its covariant divergence vanishes,
TMV;#(I) =0,

where, as usual, indices are raised using the contravariant matrix inverse g*”(z) of the metric tensor, and
lowered using the covariant metric tensor g, (z) itself; in particular, T#,(z) = g"*(x)T\,(x). In Sections
12.2 and 12.3, on pages 360-363, Steven Weinberg’s tome gives a general definition of a physical system’s
energy-momentum tensor in terms of its action integral, together with a proof of the above two properties
of that tensor. To arrive at the definition of T#"(x), a physical system’s Lorentz-invariant action integral
is first converted to one that is invariant under general coordinate transformations by replacing occurrences
of nu, by g (x), occurrences of partial derivatives by covariant derivatives, and the occurrence of d*z by
\/—det(g,,(z)) d*z. Taking half of the functional derivative with respect to the metric tensor g, (z) of
that upgraded action integral then yields the energy-momentum tensor. In Section 12.4 on page 364 in
Eq. (12.4.2), Weinberg then goes on to give the simple gravitational scalar-curvature based action integral,

Ig = — 15 [ R(z)\/— det(gp (2)) d*z,

which when added to the type of upgraded action integral for a physical system described above yields the
Einstein equation upon first-order variation of their sum with respect to the metric tensor g, ().

We now present another approach to deriving the Einstein equation, which is set out in Section 7.1
on pages 151-154 of Steven Weinberg’s tome. The idea is that in principle we can always make a general
space-time coordinate transformation such that the local effect of any gravitational field becomes extremely

12



weak, which is known as going into free fall in that local gravitational field. The earth is freely falling in its
orbit around the sun, so we have almost no sense of the the sun’s gravitational field, but the curvature of the
sun’s gravitational field persists; no general space-time coordinate transformation can make the gravitational
curvature tensor vanish. The curvature of the sun’s gravitational field indeed exerts a seasonal effect on
the earth’s ocean tides. Since the Einstein equation relates only the curvature of the gravitational field
to its energy-momentum source, we are perfectly able to derive the Finstein equation while simultaneously
assuming that gravitational effects are extremely weak, which is ezxactly what we will now do. That we can do
this is a pointed reminder of how useless the Einstein equation, which only determines the metric’s “Einstein
curvature” for a given energy-momentum tensor, s by itself for fully determining that metric, and therefore
how crucial it is that the Einstein equation’s accompanying coordinate condition be physically appropriate.

To implement the assumption that the gravitational field produced by the energy-momentum tensor
T, () is extremely weak, we present its metric tensor g, (z) as 1., + hu (), where |h,, (2)] < 1. Thus
the Eq. (1.3i) affine connection T';, (x) becomes,

K _ 1 kA 99 dgre _ Ogur ) _ 1 k) Ohx dhy dh
FMV($> =39 (.’17) (W"H + B — ﬁ =39 (‘T) 8:70"M + an 8;)‘”
~ l KA 8h>\u + 8hA,, _ ah;u» _ l 8hhu Bh"u _ ahuu
~ 2"7 ozv Oz OxA - 2\ OxVv ok oz, )

where in the final step we used 1"* = 1, to raise and lower indices. Therefore from Eq. (1.8s),

arpy 8Ty 1 8 (06n" Oh"” Ohyx 1 9 (0h" dh" oh
K ~ J72) wr o~y 1 u A u _ 1 90 u _ 9hup )}
R #)\V(m) ~ dzv o> ™ 2 8:1:"( oz + oxk 0T, 2 Oz A\ Oz 8:1:“1/ 0T, -
1[ 8%h~y  9Phua 0°h", 4 9%hy,
2 | Ox¥ Ok OxV Oz, Bz*@:ﬂ" Bx’\aam ’

the weak-field Riemann-Christoffel curvature tensor. Therefore the weak-field Ricci tensor is,
_ pA ~ 1[ 8%°r s OPhux 8%}, _1[0%h* sy  huxn  0%hyy % hyuy
Ry (@) = R (@) = 5 [83:”390“ 970z  dwhown T azkam = 3| 00v02% ~ 02v0ws  Durdwx T Dz ozx |0

whose the third term is reexpressed to show that R,, = R,,. Therefore the weak-field curvature scalar is,

R(z) = " R, (z) ~ [ hry _ O%hy ]

OxHox, Ox, 0T\

In the weak-field limit, the energy-momentum tensor’s vanishing covariant divergence condition T%,.,(x) = 0
is of course replaced by the vanishing of its ordinary divergence, BT;I”;x) = 0. Therefore to create a self-
consistent Einstein equation in the weak-field limit, we need a second-rank curvature-related tensor E,,, ()
that is symmetric in its two indices, E,,(z) = E,,(z), and whose divergence vanishes, %ﬂ(m) =0. In
terms of such a curvature-related tensor E,, (z), the self-consistent Einstein equation would have the form
E,.(z) = KT,,(x), where the constant K is determined by Newtonian gravity when this equation’s energy-
momentum source T}, (x) is a weak static energy density. In looking for such a curvature-related E,, (z),

we next calculate the weak-field Ricci tensor’s divergence,

ORM (x) _ 1| __9%h* @%hHy 9Phu 83hH, _
OxH - Oz¥ dxH oz, Ozv dxHOx ) OxH Oz, 0x ) Bxliam*(?m)\ -

1 0| 8%\ 9%h*y 3hyy  _ Phu _10R(@) _ 1| _ 8hn,  _ _ Phu .
2 Qx¥| OzHoxy, zﬂazA OxHOx, Oxx Oz,0x 0z | ~ 2 Ox¥ Ox )0zt Iz, 0z, 0z 0z | —
LOGERG) _ 1[0 O o}t B(x))

2 OxH 0z, 0z Oz Oz, 0z Oz OxH ’

a result which implies that,
9 (R, (x) — 168 R(x)) Joar = 0,
whose strong-field counterpart clearly is,
(Rty(2) = 505 R () = 0,
which is a Bianchi identity. Therefore we have found the curvature-related tensor that we are looking for,

ENV(I) = R/w(x) - %guu(I)R(x)a
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so the Einstein equation that we are looking for has the form,
Ry (@) = 59 (2)R(z) = KTy (2).

We next obtain the value of K from this equation’s Newtonian weak-field and static energy-density case.

To do so, we assume that the only component of the energy-momentum tensor T, (x) which doesn’t
vanish is the energy density Too(x), and that it has no time dependence, which of course is necessary because
the divergence OT*,(x)/0x" must vanish. We also assume that Tyo(x) is weak enough to be compatible with
the assumed weak-field condition |h,,(x)| < 1, and that the h,,(x) also have no time dependence. These
conditions effectively enforce Newtonian gravitational physics, and we know that the Newtonian gravitational
potential ¢(x) satisfies the Newtonian gravitational-potential equation,

V2 6(x) = 4nGp(x).
Since under these conditions hoo(x) = 2 ¢(x)/c? (see Eq. (1.4j)), and the energy density Tpo(x) is effectively
the Newtonian mass density p(x) times c?, the above Newtonian potential equation can also be written,
Vi hoo(x) = (87TG/C4)T00(X). (18t)

These Newtonian conditions cause the above Einstein-equation form Ry, () — g, (2)R(x) = KT, (z) to
imply a relation very similar to Eq. (1.8t), which enables evaluation of the constant K. Under these condi-
tions, this Einstein-equation form becomes Ry, (x) — 21, R(x) = KT,,,(x). Only four of the components of
this Einstein-equation form are needed to obtain the relation similar to Eq. (1.8t); they are,

RO()(X) — %R(X) = KTO()(X), (1811)

and

R;;(x) + 3R(x) =0 for j=1,2and 3, (1.8v)
but we also need the relations of Roo(x), Rjj(x) and R(x) to hoo(x). Since R(x) = n"" R, (x) = Roo(x) —
Z;)?:l R;j(x), Eq. (1.8v) yields that R(x) = Roo(x) + SR(x), so R(x) = —2Rgo(x), which inserted into
Eq. (1.8u) yields that 2Roo(x) = KTpo(x). Next we use the weak-field version of the Ricci tensor,

1[ 820> h &h, huy
Rw(x) = 3| 9zvoan — 0:1,’”5% - 89:“69?; + 3@8% )
in conjunction with the fact that hap(x) is independent of time to obtain the result Roo(x) = —3V2 hoo(x),
that, on being inserted into the above result that 2Rgo(x) = KTy (x), yields —V2 hgo(x) = KTpo(x), which
on comparison with Eq. (1.8t) yields that K = —(87G/c*). Insertion of this value of K into the above
Einstein-equation form yields the Einstein equation,
By (&) = 3910 (@) R(@) = ~(87G /) Ty (@) (1.8w)

There is far less to the Einstein equation than meets the eye because the Einstein curvature-related
tensor E,, () = Ry () — g (x)R(x) doesn’t determine the metric tensor g,,(x); the Einstein equation
doesn’t even determine a test particle’s trajectory. In fact, with the additional requirement that goo(x) = 1
everywhere, which is fully compatible with the Einstein equation and was stipulated with delight by A.
Friedmann, G. Lemaitre, R. C. Tolman, H. P. Robertson, A. G. Walker, J. R. Oppenheimer and H. Snyder,
but which is incompatible with Lorentz covariance of g, (x) (it is fully compatible with Galilean covariance
of guu () and totally eliminates gravitational time dilation, sending c to infinity, the Finstein equation yields
Galilean-covariant gravitational physics, including Galilean-covariant gravitational test-particle trajectories.
The pointlessness of confecting Galilean-covariant gravitational physics from the FEinstein equation and the
Lorentz-covariance incompatible requirement that goo(z) = 1 everywhere is obvious. It is equally obvious that
the physical appropriateness of the coordinate condition which accompanies the Einstein equation is of crucial
importance. Einstein’s coordinate condition det(g,. (x)) = —1 is the simplest possible coordinate condition
which (1) guarantees the existence of the inverse g°?(x) of the metric tensor g,, (), and thereby guarantees
the existence of the affine connection '}, (2) is compatible with Lorentz covariance of the metric tensor
guv(x) and (3) in the most general case implies the four additional equations FZ)\ = 0 that supplement the
six independent components of the Einstein equation to fully determine the metric tensor’s ten components.
These three properties of Einstein’s coordinate condition are unmatched by any coordinate condition found
in Weinberg’s tome; Weinberg favors the harmonic coordinate condition g“”I‘f;V = 0, which uses the matriz

inverse g®(x) of the metric tensor g, (), but fails to guarantee its existence.
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Einstein’s coordinate condition also remarkably reverts the form of the electrodynamics equation,

Py = dmj¥ /e, (1.9a)
in the presence of gravitation to its form in the absence of gravitation. We verify this by writing out in detail
the covariant divergence of F*¥| bearing in mind its antisymmetry, F*” = —F"#

vy, = 882 4 Th P 4 T, FH, (1.9b)

where, from Einstein’s coordinate condition, FZ/\ =0 (see Eq. (1.7h)). In addition, I‘ZAF“)‘ = 0 because I}
is symmetric under the interchange of the indices p and \, whereas F** is antisymmetric under that index
interchange. Thus Eq. (1.9a) becomes,

OF” — 4mj¥ /e, (1.9¢)

Ozt

the form this electrodynamics equation has in the absence of gravitation. Einstein’s coordinate condition
likewise reverts the form of the vanishing of the current density’s divergence jV,

3’ =0, (1.9d)
in the presence of gravitation to its form in the absence of gravitation. The covariant divergence of j is,
3w = % + T, (1.9¢)
where, from Einstein’s coordinate condition, I'V, =0 (see Eq. (1.7h)). Thus Eq. (1.9d) becomes,
97 =0, (1.9f)

the form this equation of the vanishing of the current density’s divergence has in the absence of gravitation.
The remaining cyclic electrodynamics equation, Fiog.y + Fgy;a + Fha;p = 0, automatically has the same
form in the presence of gravitation as in gravitation’s absence because Fé\tﬁ = Fga and F\, = —F,,

Fopy + Fyia + Fyap =

OF.

OF, 8 N
et — T Fag — FéwFak} + [ ho = T Py — F?aFBA] + [ﬁ — TP — FiﬁFﬂ} =
oF, oF, OF. o
ot Faa RrEa [FéVFAB + F:\/aFBA] - [FZ\MFW‘ + F')Y\BF)\Q} - [FEQFM + F?\XBFW\] =
OF, OF5, | OF q
agmﬁ + Bx[i‘ + Bap (1.9g)

so the remaining electrodynamics equation Fog.y + Fgyia + Fra;p = 0 automatically has the form,

O0F .z OFp OF,0
ox”Y + axo? + awﬂlﬁ _07 (].gh)

that it has in the absence of gravitation.
Although Finstein’s coordinate condition ensures that the zero-gravity electrodynamics equations,

QFHY _ 47‘_],”/0 and 88F;fyﬂ + 88};117 + aalzrﬁa — O7 (191)

hold even in the presence of gravitation, nevertheless Fog = gaugs, F*" in the presence of gravitation, so it
is impossible in the presence of gravitation to obtain the particular wave-type electromagnetic equation,

Fap _ 9js _ 9ja
oxY 0z (471'/6) dx> ~ 9xB |’

which holds in the absence of gravitation; gravitation affects the propagation of electromagnetic waves.
Einstein applied the coordinate condition det(g,, (z)) = —1 to the deflection of light by the sun’s gravity for
the first time on November 18, 1915, and he thereupon for the first time obtained the correct deflection.

Finally, in the presence of both gravitation and an electromagnetic field, the trajectory of a test particle
of mass m and charge e is governed by the equation of motion,

m (G5 +T5 4540 ) = (e/c)FiA %2, where F*y = gr, F™. (1.9))

It would sorely strain physical credibility for the motion of such a test particle to violate Lorentz covariance,

or for I'f, to fail to exist. Einstein’s coordinate condition det(g,, () = —1 neatly quashes those concerns.
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We have mentioned that the space-time differential volume d*z, which is a Lorentz invariant, isn’t
a general coordinate transformation invariant; its transformation produces the well-known factor of the
absolute value of the determinant of the transformation’s Jacobian matrix,

dty = |det (9y™ /OxH) ‘d4x. (1.9k)
We know that g, (z) transforms as a covariant second-rank tensor,
Jap (y) = gy%%guu (l‘), (191)
80, since the determinant of a product of matrices is equal to the product of their determinants,
det (gaﬁ (y)) = (det (63#‘/83;0‘) )2 det (gW(x)) . (1.9m)
Applying that same product rule to the identity,
S G = ot (1.9n)
yields,
det (dz#/9y™) = 1/ det(dy*/0x"), (1.90)
which implies that the Eq. (1.9m) transformation relation can alternatively be written,
det(gas(y)) = det(guw(x)) /(det(dy*/0z™) ), (1.9p)

Combining Eq. (1.9p) with Eq. (1.9k) yields the transformation relation for \/— det(g,., (z)) d*z,

V= det(gap(y)) d'y = /= det(g, (2)) d'a. (1.9q)

Thus \/— det(g,. (z))d*z is a coordinate transformation invariant which, in the absence of gravitation (when
9 (T) = ), reduces to d*z. Therefore Einstein’s coordinate condition det(g,,(z)) = —1 reverts the
coordinate transformation invariant \/— det(g,,, (x)) d*z to the form d*z it has in the absence of gravitation.

We have now seen that Einstein’s coordinate condition det(g,.,(z)) = —1 reverts some key relativistic
entities, such as the electrodynamics equation F*¥,, = 4mj”/c and the invariant differential space-time
volume /— det (g, (z))d*x to the forms OF* |0zt = 4j¥ /¢ and d*x they have in the absence of gravitation.
Not a single one of the coordinate conditions to be found in Weinberg’s tome, including Weinberg’s favored
harmonic coordinate condition, effects such reversions. Clearly Einstein’s coordinate condition det(g,, (z)) =
—1 infuses the nebulous Einstein equation, Ry, (x) — 39, (x)R(x) = —(87G/c*) T, (), with a relativistic
specificity no other coordinate condition comes even close to matching. The Einstein equation itself is devoid
of relativistic specificity, as is quite overwhelmingly demonstrated by the addition to it of the Lorentz-
covariance incompatible condition goo(z) = 1 prized by Friedmann, Lemaitre, Tolman, Robertson, Walker,
Oppenheimer and Snyder, which totally eliminates gravitational time dilation, sends c to infinity, and causes
the Einstein equation to yield Galilean-covariant gravitational physics. Steven Weinberg, due to his reading
of a 1928 article by the mathematician K. O. Friedrichs, had some understanding of the nebulousness inherent
in the Einstein equation by itself, an understanding not specific enough to adequately serve Weinberg as a
theoretical physicist. On pages 92-93 of Section 4.1 in his tome Weinberg writes, “...there are generally
covariant theories of gravitation that allow the construction of inertial frames at any point in a gravitational
field, but that satisfy Galilean relativity rather than special relativity in these frames.”

By November 18, 1915 Einstein had sufficiently progressed with his nascent relativistic gravity theory
that he was able to accurately calculate the part of Mercury’s perihelion shift which wasn’t accounted
for by that planet’s gravitational interaction with the other planets. A key factor in FEinstein’s success
was his introduction of the coordinate condition det(g,,(x)) = —1; Einstein’s previous attempts which
didn’t use that coordinate condition had produced too small a perihelion shift. Einstein also found that the
coordinate condition det(gu,(x)) = —1 doubled the deflection of light rays by the sun’s gravity compared to
his previous calculation which didn’t use that coordinate condition—this doubled deflection was verified by a
1919 solar eclipse expedition. An English translation of Einstein’s November 18, 1915 paper is given within
the November 21, 2021 preprint “Einstein and the Perihelion Motion of Mercury” by Michel Janssen and
Jirgen Renn (arXiv:2111.11238v1 [physics.hist-ph] 22 Nov 2021). In his November 18, 1915 paper, Einstein
calculated and used a second-order approzimation to Ui, (x) produced by a static point mass, provided that
det(g,,(x)) = —1, but by January 13, 1916 Karl Schwarzschild had worked out the exact metric g, (x)
produced by a static point mass, provided that det(g,,(x)) = —1.
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2. Schwarzschild’s 1916 metric versus the unphysical “Schwarzschild metric” in textbooks

The metric of a static point source must, of course, be time-independent and spherically symmetric, so
Schwarzschild took that metric to have the form,

(cdr)? = F(r)(cdt)? — G(r)(dr)? — H(r) 7"2((dt9)2 + (sin@ d¢)2), (2.1a)
on which the Einstein coordinate condition det(g,,. (r)) = —1 imposes the requirement,

H(r) =1/\/Fr)Gr), (2.1b)

S0,

(cdr)? = F(r)(cdt)? — G(r)(dr)* — (1/y/F(r)G(r)) r*((d9)? + (sin 6 d¢)?). (2.1¢)

The Newtonian gravitational potential ¢(r) produced by a point mass M located at r = 0 is of course,

¢(r) =—GM/r. (2.1d)
Consequently, in light of Egs. (1.4k) and (2.1d),
F(r) = goo(r) ~ 1+ 2¢(r)/c®> = 1 —rg/r when r > rg, (2.1e)
where,
re = 2GM/c3, (2.1f)

is called the Schwarzschild radius. In addition, of course, G(r) — 1 as r — oo.
The metric given by Eq. (2.1c¢) and constrained by the two requirements that F(r) is asymptotic to
1—rg/r as T — oo and that G(r) — 1 as r — oo must satisfy the empty-space Finstein equation, namely,

R[U/ - %Q;U/R =0, (21g)
at every r > 0. Since g"" (R, — 1, R) = —R = 0 follows from Eq. (2.1g), Eq. (2.1g) itself is equivalent to,
Ry =0, (2.1h)

as is well known. Schwarzschild’s task was to insert the Eq. (2.1c¢) metric form into Eq. (2.1h), and then
solve it at every r > 0 for F(r) and G(r), subject to the constraints that F(r) is asymptotic to 1 —rs/r as
r — oo and that G(r) — 1 as v — co. Since Eq. (2.1h) must be satisfied at every r > 0, it is crystal clear
that F(r) and G(r) are at least twice differentiable at every r > 0. The exact solution in Schwarzschild’s
January 13, 1916 paper satisfies all of these conditions—that paper was translated into English by S. Antoci
and A. Loinger, who posted it on arXiv in 1999 (arXiv:physics/9905030v1 [physics.hist-ph] 12 May 1999).

But before we write down Schwarzschild’s January 13, 1916 exact metric solution, we jump ahead to
May 27, 1916, when J. Droste published an exact metric solution for the static point source which satisfies
the additional condition G(R) = 1/F(R). But unlike Einstein’s coordinate condition det(g,, (z)) = —1, this
additional condition G(R) = 1/F(R) is incompatible with Lorentz covariance, just as the exremely widely-
applied condition ggo(x) = 1 is incompatible with Lorentz covariance. However that Lorentz-covariance
incompatible additional condition G(R) = 1/F(R) makes Droste’s exact metric solution,

(cdr)? = (1 —rs/R)(cdt)? — (1/(1 —rs/R))(dR)* — R?((d)? + (sinf d¢)?), (2.17)

algebraically very much simpler than Schwarzschild’s January 13, 1916 exact metric solution. The famous
mathematician David Hilbert was impressed by the algebraic simplicity of the Eq. (2.11) exact metric solution
(algebraic simplicity, when it is possible, is highly prized by mathematicians), so Hilbert keenly promoted it in
1918. The upshot of Hilbert’s promotional effort is that textbooks, including Weinberg’s tome, prominently
feature J. Droste’s May 27, 1916 Eq. (2.1i) exact metric solution for the static point mass, but astoundingly
state that it was found by K. Schwarzschild. One consequence is that Schwarzschild’s physically-correct
January 13, 1916 exact metric solution has been thrust into almost complete obscurity.

The metric factor (1/(1—rs/R)) in the Eq. (2.1i) Droste metric has a severe singularity at R = 5, which
utterly contravenes the physical requirement that the metric satisfies R,, = 0 at every R > 0; this physical
requirement implies that such metric factors must be at least twice differentiable at every R > 0, as indeed is
the case for Schwarzschild’s physically-correct January 13, 1916 exact metric solution. The Eq. (2.1i) Droste
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metric in addition has a more subtle physical defect which arises from that metric’s incompatibility with
Lorentz covariance pointed out in the paragraph above Eq. (2.1i). Although relativistic gravitational and
speed time dilation has a far smaller and much less obvious effect on circular orbits than on elliptic orbits,
in principle relativistic time dilation will make a circular orbit’s period at a given radius slightly longer than
the Newtonian value, and the percent of this tiny increase in the circular orbit’s period above the Newtonian
value should grow as the orbit’s radius decreases. Eq. (8.4.25) at the top of page 188 of Weinberg’s tome
yields the period T'(R) of a circular orbit of radius R for a metric of the type of Eq. (2.1i),

T(R) = (2r/c)\/2R/(d(1 — rs/R)/dR) = 2m\/2R3/(c?rs) = 2m\/R3/(GM) since rs = 2GM/c?.  (2.1j)
The Eq. (2.1j) result for the period T(R) of a circular orbit of radius R for the Eq. (2.1i) Droste metric is
identical to the Newtonian value; there is no time dilation whatsoever. This complete absence of time dilation
for circular-orbit periods illustrates the Eq. (2.1i) Droste metric’s incompatibility with Lorentz covariance
pointed out in the paragraph above Eq. (2.1i). Schwarzschild’s physically-correct January 13, 1916 metric
solution contrariwise yields a slight increase beyond the Newtonian value in the period of a circular orbit,
and the percent of the increase in the period above the Newtonian value grows as the orbit’s radius decreases.
It is clear that the Eq. (2.1i) Droste metric (which textbooks mistakenly call the “Schwarzschild metric”),
although an exact solution of the Einstein equation, is unsuited to relativistic gravitation.

Since Schwarzschild’s January 13, 1916 metric also is an exact solution of the Einstein equation, it can be
obtained from the Eq. (2.1i) Droste metric by a transformation R(r) of the Droste metric’s radial coordinate
R. We have noted in the text below Eq. (2.1h) that it is physically necessary for the metric factors F(r)
and G(r) of the Eq. (2.1c) metric form to be at least twice differentiable at every r > 0, whereas the Droste
metric factor (1/(1 —rs/R)) has a severe singularity at R = r,. Therefore it is absolutely essential that the
transformation R(r) send the point R = rs to the point r = 0, which implies that the transformation R(r)
satisfies R(r = 0) = r,. In addition, the transformation R(r) of course must be such that the transformed
metric has the determinant value —1 in accord with Einstein’s coordinate condition det(g,, (x)) = —1. The
result of applying the transformation R(r) to the Eq. (2.1i) Droste metric is,

(cdr)? = (1—rs/R(r))(cdt)?—(1/(1—rs/R(r)))(dR(r) /dr)?(dr)?— (R(r)/r)? rQ((d9)2—|—(sin9 d¢)2), (2.1k)

a metric whose determinant value is —1 when (dR(r)/dr) = (r/R(r))?, an equation whose solution is readily
verified to be R(r) = (r® + (r¢)*)%, where 7 is an arbitrary constant with the dimension of length. We
pointed out above that R(r = 0) = r,, so the transformation we require is R(r) = (r® +r2)3. In his January
13, 1916 paper Schwarzschild presents the resulting metric in the wonderfully elegant, but very terse, form,

(cdr)® = (1 —rs/R(r))(cdt)® — (1/(1 —rs/R(r)))(dR(r))* — (R(r))?((d0)* + (sin 0 do)*), (2.10)

where R(r) = (r3 4+ 73)5. A less cryptic form of Schwarzschild’s January 13, 1916 metric is obtained by
noting that R(r) = (r®+73)3 implies that (dR(r)/dr) = (r/R(r))?, which is then substituted into Eq. (2.1k),

(cdr)? = (1—rs/R(r))(cdt)?—(1/(1—rs/R(r)))(r/R(r))*(dr)?— (R(r)/r)? rQ((dG)Q—F(sinO d(;ﬁ)Q)7 (2.1m)

where R(r) = (r>+73)%. Since 7 > 0 implies that R(r) > 75, we see that when 7 > 0 Schwarzschild’s January
13, 1916 metric is free of singularities, which we have repeatedly pointed out is physically required. The
Eq. (2.1¢) metric factors are F(r) = (1 —rs/R(r)) and G(r) = (1/(1 — rs/R(r)))(r/R(r))*. David Hilbert’s
ill-advised 1918 promotion of J. Droste’s May 27, 1916 Eq. (2.1i) metric because of its algebraic simplicity,
with insufficient scrutiny of its physical soundness, ultimately spawned monezistent “event horizons” and
“wormholes”, which have long been a pernicious distraction from sound relativistic gravitational research.
We next insert the Eq. (2.11) Schwarzschild metric form into the Eq. (2.1j) circular-orbit period formula,

T(R(r)) = (27 /c)y/2R(r)/(d(1 = rs/R(r)) /dR(r)) = 2m\/(R(r))/(GM) = 27\/(r® + 1) /(GM).  (2.1n)
Since the Newtonian-gravity circular-orbit period is T (r) = 2m/73/(GM), the ratio (T(R(r))/Tn(r)) =

1+ (rs/r)3, which, although extremely close to unity, is nevertheless always greater than unity and grows

with decreasing radius r, exactly as one would expect. Thus the circular-orbit period result of Schwarzschild’s

January 13, 1916 metric makes relativistic-gravity sense, but the purely Newtonian-gravity circular-orbit
period result of the Eq. (2.1i) Droste metric doesn’t make relativistic-gravity sense.

Finally, it is interesting to consider the speed v(r) of the circularly-orbiting test particle; v(r) of course

is the quotient of the the circular orbit’s circumference 2mr with the circular orbit’s period, which in the
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Newtonian-gravity case, and also in the Droste metric case, is 2w+/r3/(GM), so v(r) = \/GM/r in those
two cases. Therefore the circular-orbit speed v(r) goes to infinity as r goes to zero in those two cases.
For Schwarzschild’s January 13, 1916 metric, we have seen that the circular-orbit period is increased by
the factor \/1+ (rs/r)3 relative to the Newtonian circular-orbit period, so for that metric the Newtonian
circular-orbit speed \/GM/r is decreased by the factor /1 + (rs/r)3. Noting that GM = %7"502, we see that
for Schwarzschild’s January 13, 1916 metric the circular-orbit speed is,

v(r) = V(GM/r)/(1+ (rs/r)3) = e/ (rs/1) /(21 + (rs/7)%)) = ¢ \/(r/rs)? /21 + (r/r5)%)),  (2.10)

which goes to zero instead of to infinity as r goes to zero, so Schwarzschild’s January 13, 1916 metric correctly
captures the effect on a test-particle’s speed v(r) of surpassingly-strong gravitational time dilation. Since the
Eq. (2.10) circular-orbit speed v(r) also goes zero as r goes to infinity, v(r) is mazimum at an intermediate
value of r. The function u?/(1 4 u®) has a maximum at v = 23, and the value of that maximum is 2% /3.
Therefore the Eq. (2.10) circular-orbit speed v(r) reaches its mazimum at r = 231, = 1.25992 4, and the
value of that mazimum circular-orbit speed is (2% /v/6) ¢ = 0.51436 c. Thus Schwarzschild’s January 13, 1916
metric also correctly captures the fact that a relativistic test-particle’s speed never exceeds c.

These facts of relativistic gravity of course aren’t captured at all by the purely Newtonian-gravity circular-
orbit speed v(r) = /GM /r for the Eq. (2.1i) Droste metric. This discussion of circular-orbit speed reconfirms
the fact that the Eq. (2.1i) Droste metric (which is mistakenly called the “Schwarzschild metric” by text-
books) is unphysical despite its being an exact solution of the Einstein equation. A century of propagating
misunderstanding of relativistic gravitation needs to reversed forthwith by urgent replacement in textbooks
of the unphysical Eq. (2.11) Droste metric by Schwarzschild’s January 13, 1916 Eq. (2.11) metric.

Just as the circular-orbit motion of a test particle is rendered purely Newtonian by the unphysical
Eq. (2.1i) Droste metric, the radial motion of the surface of an Oppenheimer-Snyder spherical blob of zero-
pressure, uniform-density perfect fluid is rendered purely Newtonian by the unphysical Eq. (1.6a) Robertson-
Walker metric form, which features the Lorentz-covariance incompatible condition goo(x) = 1 that totally
eliminates gravitational time dilation, sends ¢ to infinity and causes the Einstein equation to yield Galilean-
covariant gravitational physics. The comprehensive cure for this issue is the replacement of the Eq. (1.6a)
Robertson-Walker metric form by the Eq. (1.6e) metric form, which is a coordinate transformation of the
Eq. (1.6a) Robertson-Walker metric form that satisfies Einstein’s coordinate condition det(g,.(z)) = —1
instead the Lorentz-covariance incompatible condition goo(x) = 1. This formidably cumbersome comprehen-
sive approach, however, isn’t needed to deal with the radial motion of the freely-falling spherical surface of
an Oppenheimer-Snyder spherical blob of zero-pressure, uniform-density perfect fluid; the Birkhoff theorem
tells us that we can proceed as if the entire conserved energy enclosed by the radially freely-falling spherical
surface of the Oppenheimer-Snyder spherical blob is concentrated in a static point mass at the blob’s center.
Therefore in the next section we develop and analyze the equation for a test particle’s freely-falling radial
motion in Schwarzschild’s January 13, 1916 Eq. (2.11) metric.

3. The equation for a test particle’s freely-falling radial motion in Schwarzschild’s 1916 metric

To obtain a test particle’s equation of freely falling radial motion in Schwarzschild’s January 13, 1916
Eq. (2.11) metric, we apply the methods of Weinberg’s Section 8.4 on pages 185-188 of his tome, so it is
convenient to adhere, in expressing Schwarzschild’s Eq. (2.11) metric, to Weinberg’s Section 8.4 notation,

(cdr)? = B(R(r))(cdt)? — A(R(r))(dR(r))? — (R(r))?((d#)* + (sin 6 dp)?), (3.1a)
where R(r) = (r® +r2)3, B(R(r)) = 1 —rs/R(r) and A(R(r)) = 1/B(R(r)). The Eq. (3.1a) metric itself

immediately yields the particular first-order equation of freely-falling motion,

1 = B(R(r))(dt/dr)? — A(R(r))((1/c)dR(r)/dT)* — (R(r))*(((1/c)df/dT)* + (sinf (1/c)d¢/dT)?). (3.1b)

Since the freely-falling test particle we consider here is an arbitrarily small part of the radially freely-falling
spherical surface of an Oppenheimer-Snyder spherical blob of zero-pressure, uniform-density perfect fluid,
this test particle’s motion of course is exclusively radial, so the Eq. (3.1b) angular frequencies df/dr and
do/dr are both equal to zero, which reduces Eq. (3.1b) to a first-order equation for freely-falling radial motion,

? = [2B(R(r)) — A(R(r))(dR(r)/dt)?] (dt/dr)?. (3.1c)
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We can’t, of course, solve Eq. (3.1¢) for the test particle’s radial trajectory r(t) until we know the value of the
factor (dt/dr)?. The Eq. (1.3) geodesic equation d*z*/dr? + Ty, (da# /dr) (de” /dT) = 0 is a second-order
equation of motion for x*(7) = (ct(1), x(7)) for a given metric g, (x). Weinberg’s Eq. (8.4.6) on his tome’s
page 185 gives the geodesic equation’s time component for the specific Eq. (3.1a) metric form,

£ gt a o 320
which can be written,
62
which in turn can be written,
d(In(dt/dr) + In(B(R(r)))) /dr =0, (3.2¢)
which implies that,
In((dt/dr)(B(R(r)))) = —C, (3.2d)
where C' is an arbitrary dimensionless constant. Eq. (3.2d) implies that,
dt/dr = 1/(KB(R(r))), (3.2¢)

where K = exp(C) is an arbitrary dimensionless positive constant. Inserting Eq. (3.2¢) into Eq. (3.1¢) yields,
(A(R(r))/(B(R(r)))?)(dR(r)/dt)* - (¢*/B(R(r))) = —c*K*. (3.3a)

The object dR(r)/dt in Eq. (3.3a) is of course equal to (dR(r)/dr)(dr/dt), and we noted immediately above
Eq. (2.1m) that dR(r)/dr = (r/R(r))?. That follows as well from R(r) = (r® + r3)3, which is given
immediately below Eq. (3.1a), as is A(R(r)) = 1/B(R(r)) and B(R(r)) = 1 — rs/R(r). Inserting all of this
into Eq. (3.3a) yields,

((r/R(r))4/(1 — 7‘5/11%(7“))3)(dr/dt)2 - (62/(1 — ’I"S/R(’/‘))) = —?K?, (3.3b)

where R(r) = (* +r2)3 and r, = (2GM/c?). We next work out the ¢ — oo asymptotic form of Eq. (3.3b).
Taking ¢ to infinity sends rs to zero and R(r) to r. However the ¢ — oo asymptotic form of the entity
—(c?*/(1 =rs/R(r))) is (—c® — (2GM/r)). Therefore the ¢ — oo asymptotic form of Eq. (3.3b) is,
(dr/dt)® — (2GM/r) = *(1 — K?). (3.3¢)
Upon multiplying Eq. (3.3c) through by %m, where m is the mass of the test particle, we obtain,
sm(dr/dt)? — (GMm/r) = 3mc*(1 — K?). (3.3d)

If we now assign the dimensionless constant K? the value [1 — (2E/(mc?))], where E is the conserved sum
of the mass-m test particle’s nonrelativistic positive radial kinetic energy with its nonrelativistic negative
gravitational potential energy, Eq. (3.3d) becomes,

im(dr/dt)? — (GMm/r) = E, (3.3¢)

which is the Newtonian equation of energy conservation for the radial motion of a test particle of mass m
whose potential energy is —(GMm/r). Thus the ¢ — oo asymptotic form of Eq. (3.3b) is, except for an
overall factor of %m, the corresponding Newtonian-gravity test-particle equation of energy conservation.

We next consider the special initial condition for Eq. (3.3¢) that dr/dt = 0 at an initial time ¢;, in which
case the conserved energy F equals —(GMm/r(t;)), so Eq. (3.3e) can be rewritten,

(dr/dt)? = (2GM/r(t;)) [(r(t;)/r(t)) — 1]. (3.3f)

Upon switching from r(t) to the dimensionless “scaled radius” R(t) = (r(t)/r(t;)) which has the property
that R(t;) =1, Eq. (3.3f) assumes the form,

(dR/dt)? = (2GM/(r(t:))*) [(1/R(t)) — 1]. (3-3g)

If r(¢;), the radially-moving test particle’s radial coordinate at the initial time ¢; when dr/dt = 0, is as
well the radius of the Oppenheimer-Snyder spherical blob at that initial time t;, then the density p(t;) of the
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Oppenheimer-Snyder spherical blob at that initial time t; is p(t;) = M/((47/3)(r(t;))?). Therefore in terms
of the Oppenheimer-Snyder spherical blob’s initial density p(t;), Eq. (3.3g) is equivalently written,

(dR/dt)? = ((87G)/3)p(t:) [(1/R(t)) — 1], (3.3h)

which is precisely Eq. (11.9.24) at the bottom of page 344 of Weinberg’s tome, the central result of a lengthy
24-step Oppenheimer-Snyder calculation using the Robertson-Walker metric form. The fact that arriving
at Eq. (3.3h), which is merely a disguised special case of the Eq. (3.3e) Newtonian-gravity equation of
energy conservation well-known to every first-year undergraduate physics student, involved 24-step heroics
lays bare the utter lack of understanding of what Friedmann’s goo(x) = 1 condition does to gravity models, an
ignorance which has persisted for over a century. Applying the Robertson-Walker metric form, which very
prominently features Friedmann’s goo(x) = 1 condition, to the high-symmetry Oppenheimer-Snyder model
compels the Einstein equation to yield purely Newtonian gravitational physics, which makes the Robertson-
Walker metric-form version of the Oppenheimer-Snyder model precisely first-year undergraduate physics.

Before we leave the simple radial-motion nonrelativistic-gravity Eq. (3.3¢) to return to its relativistic-
gravity Eq. (3.3b) counterpart, we note that Eq. (3.3e) tells us that the closer the test particle is to the
gravitational point source, the greater is its speed, and that its speed in that gravitational field has no upper
bound. In the case of relativistic gravity, however, the gravitational time dilation which accompanies strong
gravitation ultimately reduces a test particle’s speed rather than increases it, and, in any case, a relativistic
test particle’s speed must always be less than c.

We also take note of the fact that the gravitational acceleration experienced by a nonrelativistic test
particle governed by Eq. (3.3¢) is completely independent of its conserved energy E,

d(3m(dr/dt)?) /dt = d((GMm/r) + E) /dt implies,
m(dr/dt)(d*r/dt?) = —(GMm/r?)(dr/dt) which implies, d?r/dt* = —(GM/r?), (3.31)

the test particle’s second-order equation of radial motion, which is independent of its conserved energy E.
Returning now to the Eq. (3.3b) equation of relativistic radial motion appropriate to Schwarzschild’s
January 13, 1916 static point-mass metric, we rewrite it as,

(dr/dt)? = 02((R(r)/r)2(1 — TS/R(T‘)))2 [1 — K?(1 - TS/R(T))}, (3.4a)

where R(r) = (r® 4+ r3)%. Defining the dimensionless variable ¢ as ¢ = (r/r,), we note that (R(r)/r) =
((¢*+1)3/q) and (1 —r5/R(r)) = (1 — (1/(¢* + 1)3)), so Eq. (3.4a) becomes,

(dr/dt)? =(((¢ +1)3/qP(1— (1/(@+1)3))P[1 - K2(1— (1/(¢* + 1)3))]. (3.4b)

where ¢ = (r/r,). We saw from Eq. (3.3¢) that in the nonrelativistic case, as r — 0, (dr/dt)? increases
without bound; indeed in that Newtonian case the radial speed |dr/dt| is asymptotic to \/2GM/r as r — 0.
But from the Eq. (2.10) relativistic result for circular-orbit speed, we expect that in the relativistic case the
radial speed |dr/dt| instead goes to zero asymptotically as r — 0; indeed from Eq. (2.10) we expect that
|dr/dt| is asymptotic to a numerical factor times c(r/rs) as » — 0. The immense change in the r — 0
asymptotic behavior of |dr/dt| when one passes from Newtonian gravitation to relativistic gravitation is the
consequence of gravitational time dilation, which doesn’t exist in Newtonian gravitation.

To work out the asymptotic behavior of (dr/dt)? as ¢ — 0 in Eq. (3.4b), we note that as ¢ — 0,
(¢ +1)3/q ~ 1/q and (1 — (1/(¢* + 1)%))) =~ ¢°/3, so ((¢® +1)3/qP (1 — (1/(¢> + 1)3))) =~ ¢/3, which
together with Eq. (3.4b) imply that ((dr/dt)/c)? ~ (¢/3)? as ¢ — 0. Thus |dr/dt| ~ c(q/3) as ¢ — 0, so,

the test particle’s radial speed |dr/dt| is asymptotic to (¢/(3rs))r as r — 0. (3.4c)

We next verify that (dr/dt)? < c®. We first show that d(((¢> + 1)5/q)*(1 — (1/(q +1)3 )))/dq >0

when ¢ > 0. Since d(((¢> +1)5/qP (1 — (1/(¢* +1)3))) /dg = [2+q —2(¢® +1)3] /[¢*(¢® + 1)3], we must
show that 2+ ¢ > 2(¢> + 1)% when g > 0. We do so by exhibiting a chain of inequalities which are logically
equivalent to 2 + ¢ > 2(¢® + 1)%, where the final inequality in the chain is clearly valid when q > 0,

24 >2(P+1)3F = 1+(¢%/2) > (1+¢*)F <= 1+3(¢%/2) +3(¢*/2)* + (¢*/2)° > 1+ ¢°
< (1/2)¢® + (3/4)¢° + (1/8)¢” > 0 when ¢ > 0. (3.4d)
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Therefore (((¢* + 1)%/(1)2 (1-(1/(¢*+ 1)%))) is a strictly increasing function of ¢ when ¢ > 0, so when
q > 0, it is less than its ¢ — oo limit, which has the value unity. Consequently, from Eq. (3.4b), (dr/dt)? <
21— K?(1—(1/(¢® +1)%))] < c® when g > 0, because K2 > 0 and (1 — (1/(¢> + 1)) > 0 when ¢ > 0.
Thus, (dr/dt)> < ¢ when ¢ > 0, and, when ¢ = 0, Eq. (3.4c) implies that (dr/dt)? = 0, so (dr/dt)? < c?
under all circumstances. Therefore the test particle, which is an infinitesimal part of the spherical surface
of the Oppenheimer-Snyder blob of zero-pressure uniform-density perfect fluid, can never have a speed as
great as c. This result of course is an absolutely fundamental aspect of relativistic gravity theory, but it is
violated in the most extreme way conceivable during the “gravitational collapse” and “Big Bang” occurrences
which ensue when the Robertson-Walker metric form is applied to the Oppenheimer-Snyder model. During
those occurrences, the radius of the blob becomes arbitrarily small as its density becomes arbitrarily large, so
the speed of its surface necessarily becomes arbitrarily large because of the Newtonian-gravitational relation
that |dr/dt| is asymptotic to \/2GM/r as r — 0. The Einstein equation by itself has no Lorentz-covariant
specificity whatsoever; it is fully compatible with the Galilean-covariant Friedmann condition ggo(z) = 1
of the Robertson-Walker metric form that eliminates gravitational time dilation, sends ¢ to infinity and
causes the Einstein equation to yield Galilean-covariant gravity. It takes Finstein’s coordinate condition
det(guv(z)) = —1 (which is correctly built into Schwarzschild’s January 13, 1916 metric that we applied
to obtain the gravitational model of Eq. (3.4b)) to self-consistently infuse the Finstein equation with the
physically necessary Lorentz covariance.

We next investigate the radial speed |dr/dt| of the spherical surface of the Oppenheimer-Snyder blob as
r — oo. From Eq. (3.4b) we see that as ¢ — oo, (dr/dt)* — ¢*(1 — K?), so

dr/dt| = cv/1—-K? as r — oo. 3.5a
|dr/dt|

If K? > 1, Eq. (3.5a) tells us that the Oppenheimer-Snyder spherical blob is gravitationally bound, so its
surface can’t reach arbitrarily large values of r. Conversely, the closer K? is to zero, the closer the blob’s
asymptotic surface speed is to c. We have pointed out that in the nonrelativistic limit, K? can be taken to
be 1 — (2E/(mc?)), where m is the nonrelativistic test particle’s mass and E is the sum of its nonrelativistic
positive kinetic energy with its nonrelativistic negative gravitational potential energy, the test particle being
an arbitrarily small part of the Oppenheimer-Snyder blob’s spherical surface. Therefore, in the nonrelativistic
limit, cv/1 — K2 = \/ZE/m. However this nonrelativistic interpretation of the relativistic entity K2 being
equal to 1 — (2E/(mc?)) is satisfactory only if |1 — K?| < 1, as we shall now see.

Having obtained the radial speed |dr/dt| of the spherical surface of the Oppenheimer-Snyder blob as
r — oo, we next work out its radial acceleration d*r/dt*> as r — co. To do so, we rewrite Eq. (3.4b) as,

(dr/dt)* = (x(q) — K*¢(q)), (3.5b)
where,
X(@) = ((@® +1)3/q)' (1= (1/(¢® + 1)) P and &(q) = ((¢* +1)3/q) (1~ (1/(¢* + 1)3) . (3.5¢)
Differentiating both sides of Eq. (3.5b) with respect to ¢ yields,
2(dr/dt)(d*r/dt?) = *(dx(q)/dg — K*d&(q)/dq) (dg/dr)(dr/dt), (3.5d)
where,

dx(q)/dg = (4/4°) (1 = (1/(¢® + 1)3)) (1 + (¢*/2) = (1 + ¢*)3) and
dé(q)/dq = (4/¢°) (1 = (1/(¢* + 1)3) (1 + (3¢°/4) — (1 + ¢%)3). (3.5¢)
Since ¢ = (r/r) and ry = 2GM/c?, Eq. (3.5d) can be rewritten as follows,
d*r/dt* =5(2/rs)(rs/r)?a* (dx(q) /dg— K?dE(q) /da) = (GM/r?) ((¢* dx(q)/dg) — K*(¢* d€(q)/dq)).  (3.5¢)
From Eq. (3.5¢) we see that as ¢ — oo, (¢ dx(q)/dq) — 2 and (¢* d¢(q)/dq) — 3, so from Eq, (3.5f),
the radial acceleration dr/dt* of the blob’s surface is asymptotic to (GM/rz) (2 - 3K2) as r — 00, (3.5g)

which agrees with the Eq. (3.31) Newtonian-gravity acceleration —(GM/r?) only when |1 — K?| < 1. When
0< K?2< %, which makes the blob’s asymptotic surface speed ¢cv/1 — K2 well over %c, the expected negative
acceleration turns positive. Such an unezpected positive acceleration of the expansion of the universe has
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been reliably observed, and its discoverers awarded a Nobel prize. Because cosmological models, of which the
Oppenheimer-Snyder spherical blob of zero-pressure uniform-density perfect fluid is the simplest, have up to
now always been solved using the Robertson- Walker metric form, which rigidly enforces the purely Newtonian-
gravity solution, such a gross deviation from “normal” Newtonian-gravity negative acceleration seemed as
inexplicable and physically unattainable as falling upwards in the earth’s gravity would be. Nonrelativistic
Newtonian gravity fails to include gravitational time dilation, a phenomenon which, when it is strong enough,
provokes acceleration opposite to that associated with Newtonian gravity.

Unwilling to admit that the purely Newtonian-gravity cosmological solutions which the Robertson- Walker
metric form rigidly enforces are an issue which must be addressed, the gurus of gravity instead chose to
postulate a wholly ad hoc epicycle that incredibly took the form of adding a cosmological constant to the
Einstein equation, a maneuver which Einstein had emphatically characterized as “my biggest mistake”.
Adding a Ag,, term to the Einstein equation scuppers the verification that the Einstein equation reproduces
Newtonian gravity for a weak field due to a static energy density (see the long paragraph accompanying
Egs. (1.8t) through (1.8w)). Discarding the untenable Ag,, term for the second time cannot occur too soon.

We next elucidate the possible time dependences r(t) of the spherical blob’s radius r as r — 0. We first
treat Newtonian gravity, where (dr/dt)? ~ (2GM/r) as r — 0. The two possible r — 0 time dependences
follow from solutions of the two differential equations drg/dt = ++/2GM/rp and drc/dt = —\/2GM /r¢
that also satisfy rp(t) — 0 and rc(t) — 0. Therefore rp(t), drg/dt, rc(t) and dre/dt are given by,

rp(t) = ((9/2)GM(t —tg)?)s and drp/dt = ((4/3)GM/(t—tp))5 as (t—tp)— 0+, and,
re(t) = ((9/2)GM(tc —t)?)s and drc/dt = —((4/3)GM [(tc —t))5 as (tc —t) — 0+, (3.6a)

where r5(t) and drg/dt give the rg(t) — 0 “Big Bang” asymptotic time behavior as (t — tp) — 0+, where
tp is the time earlier than t when the “Big Bang” occurred, while ro(t) and dro/dt give the ro(t) — 0
“gravitational collapse” asymptotic time behavior as (tc —t) — 04, where t¢ is the time later than t when
the “gravitational collapse” will occur. Both of these time dependences accord with r — 0, but they both
as well accord with |dr/dt| — oo, which is the most extreme violation of |dr/dt| < ¢ conceivable. Moreover,
all initial conditions for this model, when solved using purely Newtonian gravity, exhibit either a past “Big
Bang” or a future “gravitational collapse” or both. In a nutshell, rigidly enforcing purely Newtonian gravity
by using the Robertson-Walker metric form for cosmological models is a disastrous physics mistake.

We now treat the relativistic-gravity version of this Oppenheimer-Snyder model, wherein (dr/dt)? ~
((¢/(3rs))r)? as r — 0 (see Eq. (3.4c)). Therefore we find solutions of the two differential equations dr/dt =
+(c/(38rs))rr and drp/dt = —(¢/(3rs))rp that also satisfy r7(¢t) — 0 and rp(t) — 0,

ri(t)=rr(0)exp(ct/(3rs)) and dry/dt=c(r;(0)/(3rs))exp(ct/(3rs)) for t<0 & r;(0) — 0, and,
rp(t)=rp(0) exp(—ct/(3rs)) and drp/dt=—c(rp(0)/(3rs)) exp(—ct/(3rs)) for t>0 & rp(0) — 0, (3.6b)

where the inflationary r(t) = r7(0)exp(ct/(3rs)) for t < 0 increases exponentially with time t, and the
deflationary rp(t) = rp(0) exp(—ct/(3rs)) for t > 0 decreases exponentially with time t. Since |dry/dt| <
c(rr(0)/(3rs)) and r7(0) — 0, |dry/dt| < ¢, and since |drp/dt| < ¢(rp(0)/(3rs)) and rp(0) — 0, |drp/dt| < c.

We also note that both the inflationary and the deflationary r — 0 asymptotic forms ri(t) and rp(t)
manifest entirely positive acceleration. This is a prime example of the fact that gravitational time dilation,
when it is strong enough, provokes acceleration opposite to that associated with Newtonian gravity. It is
apparent that proper understanding of the universe’s inflationary era can’t be attained without appreciation
of the fundamental underlying role of gravitational time dilation.

At the same time, it is trivially obvious that the metric condition ggo(z) = 1 for all z, first introduced
by Friedmann in 1922, and an absolutely integral part of the Robertson-Walker metric form,

(cdr)? = (cdt)® — (R(t))?[(1 — kr?)~1(dr)? + r*((df)* + (sin 6 d¢)?)],
(see Eq. (1.6a)), utterly and completely eliminates gravitational time dilation, which is,

[(the tick rate of the clock at xq)/(the tick rate of the clock at l’l)} = v/goo(x2)/goo(z1) ,

(see Eq. (1.5d)). Therefore there can be no fundamental understanding of the universe’s inflationary era,
among other fascinating relativistic-gravity facts which are closely related to gravitational time dilation,
until the Robertson- Walker metric form ceases to be applied to cosmological models.

Wl
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It is mind-boggling that nowhere in Weinberg’s 657-page tome is there any mention whatsoever of
the trivially-obvious fact that Friedmann’s metric condition goo(x) = 1 utterly and completely eliminates
gravitational time dilation. Of course recognition of this trivially-obvious fact invalidates entire chapters
of Weinberg’s tome, particularly those concerned with cosmology, so there has to be more than a minor
suspicion that this “oversight” in Weinberg’s 657-page tome occurred deliberately.

Another strange “oversight” in Weinberg’s tome is the failure to exhibit the result of applying the tome’s
page-188, Eq. (8.4.25) formula for the angular frequency of circular orbits of a class of metrics to the simplest
metric of that class, which is the Droste metric (mistakenly called the “Schwarzschild metric” by virtually
all textbooks, including Weinberg’s tome). That result reveals that the Droste-metric circular-orbit angular
frequency is identical to the Newtonian-gravity circular-orbit angular frequency, which obuviously casts doubt
on the physical validity of the Droste metric. There has to be more than a minor suspicion that Weinberg
deliberately didn’t exhibit this result in order not to display evidence that the Droste metric is unphysical
(which it definitely is, see the discussion in the paragraphs containing Eqs. (2.1i) through (2.1n)).

Finally, when Weinberg presents the evidence in Subsection C of Section 13.5 on page 403 of his tome
that the Robertson-Walker metric form solves the Einstein equation for spherically-symmetric and spatially-
homogeneous energy-momentum sources, he “conveniently forgets” to remind the reader that every coordinate
transformation of a metric which solves the Einstein equation for a given energy-momentum tensor source
is also a metric which solves the Einstein equation for that very same source, a property which makes the
Einstein equation by itself all but useless for obtaining definite physical results. 1t is, however, straightforward
to work out a coordinate transformation of the Robertson-Walker metric form which satisfies Einstein’s
coordinate condition det(g,,(x)) = —1 instead of the disastrous Lorentz-covariance incompatible, Galilean-
covariant Friedmann condition goo(z) = 1 satisfied by the Robertson- Walker metric form, which eliminates
gravitational time dilation and sends ¢ to infinity. See Eq. (1.6e) for the coordinate-transformed Robertson-
Walker metric form which satisfies Einstein’s coordinate condition det(g,,(x)) = —1. In a nutshell, Weinberg
apparently deliberately cultivates the totally false impression that the Robertson-Walker metric form alone
satisfies the Einstein equation for spatially maximally-symmetric energy-momentum sources.

Weinberg’s seeming efforts to conceal simple facts from the reader’s view, facts which could cause the
reader to seriously question some of material Weinberg presents are the utter antithesis of what science is.

In this section we have learned far more relevant facts about cosmology models than are to be found in
tomes such as Weinberg’s. To begin with, we have learned that the Newtonian-gravity Big Bang is disas-
trously physically untenable because |dr/dt| is unbounded, which is the most extreme violation of |dr/dt| < ¢
conceivable (see below Eq. (3.6a)). This unphysical behavior is apparent as well in the combination of
Egs. (15.1.20) and (15.1.22) on page 472 of Weinberg’s tome, but as Weinberg repeatedly does with regard to
inconvenient pertinent facts (such as the trivially-obvious fact that Friedmann’s ggo(x) = 1 metric condition
eliminates gravitational time dilation) Weinberg copes by turning a completely blind eye.

In contrast, we have been able to show that the radial speed |dr/dt| of the simple Oppenheimer-Snyder
blob’s spherical surface satisfies |dr/dt| < ¢ under all circumstances when treated using the Birkhoff theorem
and the physically-correct relativistic metric published by Schwarzschild on January 13, 1916. Denoting the
total conserved energy enclosed by the blob’s radially freely-falling surface as Mc?, and the blob’s radius
as 7(t), we also showed that as that radius goes to infinity, |dr/dt| — ¢v/1 — K2, where K = exp(C) is a
dimensionless positive constant of integration. However, when K2 > 1, the blob is gravitationally bound and
its radius cannot attain arbitrarily large values. When |1 — K?| < 1, we can interpret an arbitrarily small
part of the blob’s surface as a nonrelativistic particle of mass m and total nonrelativistic energy E (E is
the sum of that infinitesimal particle’s nonrelativistic positive kinetic energy and its nonrelativistic negative
gravitational potential energy), where K2 =1 — (2E/(mc?)), so that ¢v/1 — K2 = \/2E/m.

In addition to the radial speed |dr/dt| = ¢v/1 — K? of this relativistic blob’s spherical surface in the
limiting case of arbitrarily large values of its radius 7(t), we have obtained that the radial acceleration d*r/dt?
of this relativistic blob’s spherical surface in the limiting case of arbitrarily large values of its radius r(t) is
d?r/dt? = (GM/r?)(2 — 3K?), which doesn’t agree with the well-known nonrelativistic negative acceleration
d*r/dt* = —(GM/r*) unless |1 — K?| < 1. In fact, when 0 < K2 < 2, which makes the blob’s radial surface
speed c/'1 — K2 significantly greater than %c, the negative acceleration turns positive, a classic consequence
of sufficiently strong gravitational time dilation. This result is very interesting, since it is known that the
universe’s acceleration is positive, and the current “explanation” of that fact is a wholly ad hoc epicycle
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that, even worse, postulates a Ag,, term in the Einstein equation which scuppers the verification that the
Einstein equation reproduces Newtonian gravity for a weak field due to a static energy density.

We have furthermore found that in the limiting case of arbitrarily small values of the blob’s radius r(t),
the solutions of this relativistic-gravity Oppenheimer-Snyder model manifest exponential behavior in time,
with exclusively positive acceleration of the blob’s radius.

Eqgs. (3.5b) through (3.5f) give the detailed differential equations of this model. For the purpose of
future numerical work, we now restate Eqs. (3.5f) and (3.5b) entirely in terms of the dimensionless variables
q= (r/rs) andu = (ct/ry), where ry = (2GM/c?). (These equations of course also involve the dimensionless
positive constant K2 > 0.) The second-order Eq. (3.5f) becomes,

d*q/du* = § (dx(q)/dg — K*d&(q)/dq), (3.72)
where dx(q)/dq and d&(q)/dq are explicitly given by Eq. (3.5e). The first-order Eq. (3.5b) becomes,
(da/du)? = (x(a) — K*¢(q)), (3.7b)

where x(q) and &(q) are explicity given by Eq. (3.5¢).

This relativistic-gravity Oppenheimer-Snyder model shows the supreme importance of gravitational time
dilation both to the observed acceleration of the expansion of the universe and to the inflationary character
of the universe when it was sufficiently small. Of course this relativistic-gravity model only permits speeds
strictly less than ¢ under all circumstances, so nothing remotely resembling a Big Bang, with its unbounded
speeds, could ever occur. Also, the relativistic-gravity universe has existed forever, albeit in a state of extreme
gravitational time dilation “suspended animation” when it was far smaller than its Schwarzschild radius
rs = (2GM/c?). With no Big Bang whatsoever, and its having existed forever, there is absolutely no reason
why the universe should not have a surplus of particles over antiparticles. In the next, very short section we
round out this picture with additional broad-brush ideas of a more speculative nature.

4. Further broad-brush ideas of a more speculative nature about the universe’s evolution

A key property of the universe is that it is expanding, so it presumably was arbitrarily compact and dense in
the sufficiently remote past; in particular it was far inside its Schwarzschild radius r, = (2GM/c?), where M c?
is the universe’s conserved energy. In that era its behavior would have been dominated by gravitational time
dilation, so all physical processes would have been greatly slowed and radiation frequencies greatly reduced;
it would have been dark and cold with almost paralyzed physical processes, even its expansion rate would
have been greatly reduced. Going further back in time only further accentuates its “suspended animation”
character. Going forward in time eventually brings it to a radius of the order of r,. The accompanying
decrease in gravitational time dilation would have allowed its expansion rate to increase, which would have
still further reduced gravitational time dilation, causing its expansion rate to increase still further, etc.

Thus when the universe reached a radius of the order of ry it was on the cusp of a rapid increase in
its expansion rate. Physical process rates in that era would have also rapidly increased as the dead hand of
extreme gravitational time dilation fell away. Notwithstanding its rapid expansion, the universe would still
have been vastly, vastly more compact and dense than today’s universe, which has undergone billions of years
of additional expansion. So dense a universe, which was liberated from extreme gravitational time dilation,
would have been able to give birth to every conceivable kind of young star at an utterly enormous rate,
with particular emphasis on immensely massive, extremely hot and short-lived giants. However considering
how much even denser than that the universe was when it neared the liberating radius T, only a quite small
fraction of its matter would have been able to participate directly in those fireworks; by far the greatest part
of its matter would have been compelled to take the form of primordial black holes (but do bear in mind
that black holes absolutely do not have event horizons). However those primordial black holes profoundly
modulated the spectacular star-formation fireworks underway by, for example, becoming the active nuclei of
galaxies, with the primordial black holes of lesser mass being utterly crucial to galaxy formation by supplying
the necessary cold, dark gravitational “glue”. When the compact, dense universe’s star-formation fireworks
was at its zenith, the universe was obviously extremely hot, so the black-body cosmic microwave background
is the frequency-downshifted remnant of the universe’s immense black-body radiation of that intense star-
formation era. With its continued expansion, the universe’s density of course diminished, diminishing its
rate of star and galaxy formation. The James Webb Space Telescope may possibly be registering evidence
of rapid galaxy formation in the early universe.
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