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Abstract

For 1
2
< x < 1, y > 0 and n ∈ N, let θn(x + iy) =

n∑
i=1

sgn qi

qx+iy
i

, where

Q = {q1, q2, q3, · · · } is the set of finite product of distinct odd primes
and sgn q = (−1)k if q is the product of k distinct primes. In this paper
we prove that there exists an ordering on Q such that θn(x + iy) has a
convergent subsequence.

2020 Mathematics Subject Classification ; 30B50.

1 Introduction

Let N be the set of natural numbers and P be the set of odd primes.

Definition 1.1. For an ordering on P = {p1, p2, p3, · · · } and m ∈ N, let

Pm = {p1, p2, · · · , pm}.

Definition 1.2. Let Q be the set of finite products of distinct odd primes.

Q = {p1p2 · · · pk | k ∈ N and p1, p2, · · · , pk are distinct primes in P}

and, for each m ∈ N, let

Um = {p1p2 · · · pk | k ∈ N and p1, p2, · · · , pk are distinct primes in Pm}.

Notice that Um depends on the choice of ordering on P and Um ⊂ Um+1.

Lemma 1.3. The number of elements of Um is 2m − 1.
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Proof. Since

Um = {p1, · · · , pm, p1p2, · · · , pm−1pm, p1p2p3, · · · · · · , p1p2 · · · pm},

the number of elements of Um is(
m

1

)
+

(
m

2

)
+ · · ·+

(
m

m

)
= 2m − 1.

Definition 1.4. Let

Q1 = U1 and Qm = Um − Um−1 for each m = 2, 3, 4, · · · .

Notice that

Qm = {pm, pmq | q ∈ Um−1},
m⋃
i=1

Qm = Um (1)

and Q1, Q2, Q3, · · · are mutually disjoint. Notice also that the number of ele-
ments of Qm is

(2m − 1)− (2m−1 − 1) = 2m−1.

Example 1.5. In the increasing ordering on P , we have

p1 = 3, p2 = 5, p3 = 7, · · · .

Therefore

Q1 = {3}, Q2 = {5, 3 · 5}, Q3 = {7, 3 · 7, 5 · 7, 3 · 5 · 7}, · · · .

Definition 1.6. An ordering on P and the following two conditions (C1)-(C2)
induce a unique ordering on Q = {q1, q2, q3 · · · }.

(C1) i < j if qi < qj and qi, qj ∈ Qm for some m.

(C2) i < j if qi ∈ Qm, qj ∈ Qn for some m < n

Note that any ordering on P induces a unique ordering on Q in this way.

Example 1.7. Suppose that P has the increasing ordering. In the induced
ordering on Q, we have

q1 = 3, q2 = 5, q3 = 15, q4 = 7, q5 = 21, q6 = 35, q7 = 105, q8 = 11, · · · .

Definition 1.8. For each q = p1p2 · · · pk ∈ Q, let

sgn q = (−1)k

where p1, p2, · · · , pk are distinct odd primes.
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Definition 1.9. Suppose that an ordering is given on Q = {q1, q2, q3, · · · }. For
1
2 < x < 1, y > 0 and n ∈ N, let

θn(x+ iy) =

n∑
i=1

sgn qi

qx+iy
i

In this paper we prove

Theorem 1.10. For each 1
2 < x < 1 and y > 0, there exists an ordering on

P such that, under the induced ordering on Q, θn(x + iy) has a convergent
subsequence.

2 Preliminary Theorems

We need the following theorem in the proof of Theorem 1.10.

Theorem 2.1 ([1]). Suppose that y > 0, 0 ≤ α < 2π and 0 < K < 1. Let P+

be the set of primes p such that cos(y ln p+α) > K and P− the set of primes p
such that cos(y ln p+ α) < −K . Then we have∑

p∈P+

1

p
=∞ and

∑
p∈P−

1

p
=∞.

From the argument in the proof of the Riemann rearrangement theorem, we
have

Theorem 2.2 ([4],[5]). For a series
∑∞

i=1 ai of real numbers, suppose that

lim
i→∞

ai = 0

and let
a+i = max {ai, 0} and a−i = −min {ai, 0}. (2)

If
∞∑
i=1

a+i =

∞∑
i=1

a−i =∞

then there exists a rearrangement such that the series
∑∞

i=1 ai is convergent.

We need the Lévy-Steinitz theorem which is a generalization of the Riemann
rearrangement theorem and Theorem 2.2.

Lévy-Steinitz theorem ([5]). The set of all sums of rearrangements of a given
series of vectors

∞∑
i=1

vi

in Rn is either the empty set or a translate of subspace i.e., a set of the form
v+M , where v is a vector and M is a subspace. If the following two conditions
(a)-(b) are satisfied then it is nonempty i.e., it has convergent rearrangements.
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(a) limi→∞ vi = 0

(b) For all vector w in Rn,

∞∑
i=1

(vi,w)+ and

∞∑
i=1

(vi,w)−

are either both finite or both infinite, where we use the notations in eq.
(2) and (vi,w) is the Euclidean inner product of vi and w.

The Coriolis test is useful in the proof of Theorem 1.10..

Coriolis Test ([6]). If zi is a sequence of complex numbers such that

∞∑
i=1

zi and

∞∑
i=1

|zi|2

are convergent, then
∞∏
i=1

(1 + zi)

converges.

3 Proof of Theorem 1.10

Definition 3.1. Suppose that P has the increasing ordering. For 1
2 < x < 1

and y > 0, let

ρ(x+ iy) =
1

2x+iy
+

∞∑
i=1

1

px+iy
i

=
cos(y ln 2)− i sin(y ln 2)

2x
+

∞∑
i=1

cos(y ln pi)− i sin(y ln pi)

pxi

Lemma 3.2. ρ(x+ iy) has a convergent rearrangement and therefore

∞∑
i=1

1

px+iy
i

(3)

has a convergent rearrangement, too. In other words, P has an ordering such
that eq. (3) is convergent.

Proof. Recall that 1
2 < x < 1 and y > 0. Let

v1 =

(
cos(y ln 2)

2x
, − sin(y ln 2)

2x

)
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and, for i ∈ N, let

vi+1 =

(
cos(y ln pi)

pxi
, − sin(y ln pi)

pxi

)
.

Since P has the increasing ordering, we have

lim
i→∞

vi = 0. (4)

Let
w = r(cosα, sinα)

be a vector in R2, where r ≥ 0 and 0 ≤ α ≤ 2π. If r = 0 then (vi,w) = 0 for
all i ∈ N and therefore

∞∑
i=1

(vi,w)+ =

∞∑
i=1

(vi,w)− = 0. (5)

Suppose that r > 0. We have

v1 ·w =
r cos(y ln 2) cosα− r sin(y ln 2) sinα

2x

=
r cos(y ln 2 + α)

2x

and

vi+1 ·w =
r cos(y ln pi) cosα− r sin(y ln pi) sinα

pxi

=
r cos(y ln pi + α)

pxi

Let P+ be the set of primes p such that cos(y ln p + α) > 1
2 and P− the set of

primes p such that cos(y ln p+ α) < − 1
2 . From Theorem 2.1, we have

∞∑
i=1

(vi,w)+ ≥
∑
p∈P+

r cos(y ln p+ α)

px

≥ r

2

∑
p∈P+

1

px
≥ r

2

∑
p∈P+

1

p
=∞

and

∞∑
i=1

(vi,w)− ≥ −
∑

p∈P−

r cos(y ln p+ α)

px

≥ r

2

∑
p∈P−

1

px
≥ r

2

∑
p∈P−

1

p
=∞.
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Therefore
∞∑
i=1

(vi,w)+ =

∞∑
i=1

(vi,w)− =∞. (6)

From eq. (4), (5), (6) and Lévy-Steinitz theorem, we know that the series of
vectors in R2

∞∑
i=1

vi

has a convergent rearrangement, and therefore ρ(x+ iy) has a convergent rear-
rangement.

Lemma 3.3. Let z = x+ iy. For all m ∈ N, we have

m∏
i=1

(
1− 1

pzi

)
− 1 =

∑
q∈Q1

sgn q

qz
+
∑
q∈Q2

sgn q

qz
+ · · ·+

∑
q∈Qm

sgn q

qz
.

Proof. We use induction on m. If m = 1, it is clear. Suppose that it is true for
m = k − 1. We will show that it is true for m = k. From eq. (1), we have

k∏
i=1

(
1− 1

pzi

)
=

(
k−1∏
i=1

(
1− 1

pzi

))(
1− 1

pzk

)

=

1 +
∑
q∈Q1

sgn q

qz
+ · · ·+

∑
q∈Qk−1

sgn q

qz

(1− 1

pzk

)

=

1 +
∑
q∈Q1

sgn q

qz
+ · · ·+

∑
q∈Qk−1

sgn q

qz


− 1

pzk

1 +
∑
q∈Q1

sgn q

qz
+ · · ·+

∑
q∈Qk−1

sgn q

qz


=

1 +
∑
q∈Q1

sgn q

qz
+ · · ·+

∑
q∈Qk−1

sgn q

qz

− 1

pzk

1 +
∑

q∈Uk−1

sgn q

qz


= 1 +

∑
q∈Q1

sgn q

qz
+ · · ·+

∑
q∈Qk−1

sgn q

qz
+
∑
q∈Qk

sgn q

qz

Now we can prove Theorem 1.10.

Proof of Theorem 1.10
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By Lemma 3.2, we can choose an ordering on P such that

∞∑
i=1

1

px+iy
i

is convergent. From now on, we assume that P has the chosen ordering, and Q
has the induced ordering.

Since 1
2 < x < 1,

∞∑
i=1

∣∣∣∣∣ 1

px+iy
i

∣∣∣∣∣ =

∞∑
i=1

1

p2xi

is convergent. Therefore, by the Coriolis test,

∞∏
i=1

(
1− 1

px+iy
i

)
is convergent. By Lemma 3.3, Lemma 1.3 and eq. (1), we have

m∏
i=1

(
1− 1

px+iy
i

)
− 1 =

∑
q∈Q1

sgn q

qx+iy
+
∑
q∈Q2

sgn q

qz
+ · · ·+

∑
q∈Qm

sgn q

qx+iy

=
∑
q∈Um

sgn q

qx+iy

=

2m−1∑
i=1

sgn qi

qx+iy
i

.

Therefore θ2m−1(x+ iy) is a convergent subsequence of θn(x+ iy).
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