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1. Introduction
Newton's theory considers the Universe to be homogeneous and infinite, whose bodies are

subject to gravity, which depends on the distance between the interacting bodies and is an action at
a distance (that is, it propagates instantaneously). Then, the entire Universe does not affect the
local bodies since the action of the opposite part counteracts the gravitational action of one part of
the Universe since the direction of the force is radial. Only nearby objects (the Sun, planets, etc.),
which are irregularly distributed, exert gravitational forces on local bodies.

For what has been said, local bodies are isolated from the Universe; therefore, according to
the Newtonian conception, the Universe does not affect the movements of local bodies, although
all the objects of the cosmos exert forces on them.

A fundamental concept in Newton's physics is inertia, or the property that bodies have to
oppose change in motion (that is, changes in their speed), which means that it is necessary to apply
a force to change the speed.

We quantify inertia by inertial mass, which we define as the ratio between the force applied
to the body and the acceleration it acquires. For Newtonian physics, mass is an innate and invariable
property of bodies, which measures the amount of matter they contain.

In classical physics, we distinguish inertial and non-inertial reference frames. In the first
frame, the law of inertia and the law of proportionality between force and acceleration or Newton's
law ( mF a ) are fulfilled. Non-inertial frames are accelerated with respect to inertial frames, and
Newton's law is not applicable unless additional terms are added to the applied force, which are
incorrectly called fictitious or inertial forces (Segura, 2019).

We noted that these fictitious forces are not forces caused by interaction with other bodies
or fields; that is, the name force is not appropriate; they are only additional terms with which we
maintain the form of Newton's law in non-inertial frames and which are the product of the mass
and an acceleration. It is also inappropriate to identify these fictitious forces with the force of
inertia, which is a different concept, as we see below.

In order to understand the concept of inertial force, it is necessary to replace Newton's law
with the principle of dynamic equilibrium or D'Alembert. In this context, the force of inertia is a real

Abstract.  We propose that inertia is the result of the gravitational force of induction of the entire
Universe; that is, we understand that the force of inertia is the induction force exerted on a body
by its accelerated movement with respect to the Universe, a statement that we call Mach's principle.
We calculate this force by applying the weak field theory of General Relativity and using the
results of electromagnetic theory. To avoid the divergence of the integral in calculating the induction
force, we assume that in the Universe's early stages there was a strong gravitational absorption,
which weakened as the cosmic density decreased. Admitting an ad hoc absorption function, we
demonstrate Mach's principle, verifying that the inertial mass of a body is proportional to the
gravitational mass with a proportionality coefficient dependent on cosmic time. Applying this
result, we calculate the relative variation of the universal gravitation constant.
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force and, therefore, measurable *, which acts on anybody accelerated with respect to an inertial
frame and of magnitude i m F a  and is the same for all reference frames, whether inertial or
non-inertial. Then, the law of dynamic equilibrium or D'Alembert states that the sum of all the
forces that act on a body (the applied ones and the inertia force) is zero

0.i F F
We insist that the erroneously called fictitious forces are different from the force of inertia, which
acts on all accelerated bodies and is a real force. Add that we apply D'Alembert's law (1) in both
inertial and non-inertial frames as long as we measure the acceleration with respect to an inertial
frame and that the applied forces only depend on the distances between the interacting bodies.

If the force of inertia, as we have just defined it, is a real force, it must be exerted by another
body either by direct action or through the mediation of a field. The law of dynamic equilibrium
does not specify the source of the inertial force, which is a doubt resolved by Mach's principle.

Mach's idea consists of accepting D'Alembert's principle and adding that the force of inertia
(and therefore the phenomenon of inertia) results from the action of the entire Universe on accelerated
bodies. Although Mach did not suggest what type of interaction the inertial force exerted by the
Universe is, we are forced to consider that it is gravitational. Mach argues that the force of inertia
acts only on bodies that are accelerated with respect to the entire Universe, which is why he
assumed that the Universe must intervene in the generation of the force of inertia. Mach did not
specify the mechanism by which the gravity of the Universe produces the force of inertia.

We understand Mach's principle as the statement that inertia, and consequently inertial mass,
is generated by the gravitational action of the entire Universe (Bondi & Samuel, 1996), (Barbour &
Pfister editors, 1995)

Until the 20th century, the scientific community did not realize that classical physics uses two
types of mass: inertial mass, which we have previously defined, and gravitational mass, which we
should better call gravitational charge, which is the mass that appears in the law of gravitation of
Newton and which we assume is an invariable magnitude of the body. There is ample experimental
evidence of the validity of the equivalence principle (Segura, 2023a), which states that inertial and
gravitational mass are proportional. If we properly choose the universal gravitation constant, we
achieve that both masses have the same value, which is why both masses were considered the
same concept.

There is a fundamental difference between gravitational and inertial mass, which refers to
distinct phenomena. Any theory of inertia must account for the proportionality of the two types of
mass.

Although Mach's principle was a known idea since Einstein began his research on gravitation,
there was difficulty in specifying a theory that would develop it (for the status of this problem in
1951, see Bondi, 1951, pp. 27-33). (Sciama, 1953) was the first to treat the generation of inertial
force with a concrete theory. In his "toy theory", the force of inertia results from the gravitational
induction of the Universe, that is, the force of gravitational origin produced by the relative movement
of the source. Although Sciama's theory has been widely valued, few authors have followed this
idea (Martín et al., 2007).

Most of those who have investigated Mach's principle have developed new gravitational
theories to replace General Relativity. Brans-Dicke type theories have been the most considered
(Brans and Dicke, 1961).

In our research, we adopt Sciama's original concept, which proposes that the force of inertia
arises from the gravitational induction created by a body's accelerated motion relative to the Universe.
Although they have some flaws, we accept the general theory of Relativity and the lambda-CDM
cosmological model. Since the gravitational field at the current cosmic moment is very weak,
instead of the complete tensor theory, to find the equation of motion we use the vector field theory
that we derived from General Relativity (Segura, 2023b) (Weinberg, 1971, pp. 241-249)

2

* Newton seems to be referring to the force of inertia when he wrote: «This vis insita, or innate force of matter,
is a power of resisting (not driving), by which every body, as much as in it lies, continues in its present state,
whether it be of rest, or of moving uniformly forward in right line.»

(1)
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(Chandrasekhar, 1965) (Segura, 2013, pp. 41-54). This simplification, which we do not apply to
early cosmic epochs, has the advantage that we extend the theory of electromagnetic induction to
gravitation (Panofsky & Phillips, 1929, pp. 297-301).

In the appendix, we briefly present the theory that we have developed (Segura, 2018), from
which we obtain the following results:

* The entire Universe is an inertial reference frame. To a certain extent, the Universe is
comparable to Newtonian absolute space.
* The force of cosmic induction is proportional to the acceleration of the body on which
it acts, not depending on the speed, at least in the classical approximation.
* The force of induction is proportional to the gravitational mass.
* The sense of the induction force is opposite to the sense of the body's acceleration.
* Inertial mass is proportional to gravitational mass.

 i gm t m
 t  is the coefficient of inertia, a function that depends on cosmic time.

* All cosmic epochs contribute to the inertial mass of an object with varying degrees of
intensity.
* As cosmic time progresses, the coefficient of inertia also increases, which implies that
the object's inertial mass is increasing as well, assuming that the object's gravitational
mass remains constant.

Our results are consistent when we identify the force of cosmic induction and the force of
inertia. However, we encountered a problem while calculating the coefficient of inertia caused
by the gravitational effect of the initial stages of the Universe, where we found a divergent
integral.

To overcome this difficulty, in the present investigation, we assume the existence of strong
gravitational absorption in the primitive stages of the Universe, which dampens the gravitational
induction produced by the Big Bang, making the coefficient of inertia finite when we consider the
action of the entire cosmos.

2. Gravitational induction force. The problem of distances
There is no possibility of deducing Mach's principle if we consider that gravity obeys Newton's

law, which is not a field theory but one of action at a distance. However, suppose we accept that
gravity is a field, as is General Relativity or electromagnetism, whose signals propagate at the
speed of light. In that case, we must accept the existence of induction forces, which depend on
relative motion between the source and the test body. Therefore, any gravitational field theory
contemplates induction phenomena, which we can use to explain Mach's principle.

As we have said, induction in electromagnetic theory serves as a guide in our research, but
we must distinguish between active and passive induction. Although the difference is insignificant
in electromagnetism due to the proximity of the interacting charges, it becomes essential when
calculating cosmic distances.

We call active induction when the source of the field moves and passive induction when it is
the test body in motion. In our problem, it is the test body that moves accelerated with respect to the
entire Universe, that is, passive induction, so we must ask how it is possible that when a change in
the motion of a test particle occurs an induction force produced by enormously distant cosmological
objects, it is as if the gravitational action propagated instantaneously.

This discrepancy is because the test body does not directly interact with the distant cosmic
object. Instead, it interacts with the field created by the distant object when it is in its retarded
position (that is when the gravitational interaction originates from the cosmic source).

Two distances appear in gravitoelectromagnetic potentials. One of them, which we have
called pr , is the distance travelled by the gravitational signal from the moment it left the source at
time t until it reached the point in the field at time t̂ . There is also the distance with which we
calculate the volume element  ˆ,dV t t or volume of a spherical shell centred at the field point

   2 ˆ ˆ4 , ,dV t t d t t  

 ˆ,t t  is the proper distance where the cosmic objects, whose signals leave at t, reach the field

3

(2)
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point at t̂  (reception moment).
The distance pr  in formula (A.7) is what we call photonic distance, that is, the distance

travelled by the gravitational signal from time t to t̂

 ˆ ,pr c t t 

(Vetö, 2013) assumes that pr  is the photon flux distance, and for (Martín et al., 2003), it is the
retarded proper distance.

 is the retarded proper distance or proper distance at which an object was, that emitting a
signal at retarded time t reaches the observer at time t̂ . By the Robertson-Walker line element in
spherical coordinates

 
2

2 2 2 2 2 2 2 2 2
2

sin
1

dr
ds c dt R t r d r d

kr
  

 
     

for 0k  we find

         

ˆ

ˆ ˆ, ,
t

t

cdt
t t R t r t t R t

R t



 


R is the scale factor at retarded time, and r is the coordinate distance at retarded time t.

3. Gravitational absorption function
The absorption or shielding of gravity has been a recurring idea. However, experimental

measurements have not shown that matter can absorb gravity (Borzeszkowski et al., 2003).
However, the situation may be different when gravity has to pass through areas of very high

energy density, such as those that exist in the first moments of the Big Bang, although we do not
know much about the characteristics of this absorption.

As we have said, when we calculate the coefficient of inertia (A.10), we find a divergent
integral due to the high gravity of the Universe's early stages. To overcome this problem, we now
assume that gravity absorption exists but is only perceptible for very high densities. With this
hypothesis, we obtain, as we will see later, a finite value for the coefficient of inertia, which means
explaining Mach's principle through the gravitational induction of the Universe.

We assume that the absorption function depends exclusively on cosmic time, and we understand
it as the decrease registered in the gravitational force. The properties we expect from the absorption
function     are:

*  0 0   that is, the absorption is total at time 0t  .
* There is a time   after which the absorption is so small that we assume it to be zero;
therefore,   1t t   .
* The union between the two cosmic phases (when it exists and ceases to exist absorption)
must have continuity, that is,   0t t   .
* Finally, the absorption function must satisfy the condition that the inertia coefficient at

0t t  is 1, 0t  at the current age of the Universe.
Apart from the above, we do not know more about the absorption function in the primitive

stages of the Universe. The calculations we make below will be speculative. Although the values
we find are only approximations, they will be very useful because they will give us qualitative
information about the consequences of Mach's principle.

For the calculations we choose ad hoc the function

   sin ,b a  

0t t  , a and b are coefficients determined with the conditions previously imposed on   
(Graph 1). With the condition   0    0t t    we find

  sin .
2

b



  


 
  

 

4. Coefficient of inertia with gravitational shielding
From (A.9) we find the function

4

(3)

(4)

(5)

(6)
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By (A.10), we find the coefficient of inertia and, therefore, the inertial mass of a body at any
moment. If we apply (7) to the Einstein-de Sitter cosmic model, which we choose for simplicity, we
find by (A.11)

 
1 2 3 2 3 1 3 1 32 7 8ˆ ˆ ˆ 1

3 3 3ˆ, 66 ,
ˆ

f
    

 
 

    



we find an infinite value by integrating (A.10) with (8). This result is what leads us to assume the
existence of gravitational absorption. Adapting the absorption function (6) to (8) and imposing the
condition that at the current moment ˆ 1  , i gm m  or  1 1    , i.e.

       
1

0

ˆ ˆ ˆ1 1, 1, 1,f d f d








               
we find, among other possibilities, the coefficients 0.258   and 8b  , with which we can
determine the coefficient of inertia at the moment ̂

           
ˆ ˆ0.258

8

0 0 0.258

ˆ ˆ ˆ ˆ ˆ, , sin , , .
2 0.258

f d f d f d f d




  



                         
We show the result of the integration in Graph 2 and in Table 1, where we verify that the coefficient
of inertia increases with cosmic time. The numerical values are only indicative, both because we do
not know the law of gravitational absorption and because of the use of a simplified cosmic model.

In Graph 2, we represent the variation of the inertia coefficient in a Universe filled exclusively
with electromagnetic radiation, where we once again verify that     is increasing, which means
that the inertial mass of the bodies is increasing as long as we consider unalterable gravitational
masses.

The variation of the inertial mass is equivalent (dynamically) to the variation of the gravitational
constant. The equation of motion in the classical approximation is

     
0 0

0 2 2
,g g g g

i g g

m m m mG G
G m a t m a m a G

r t r t


 
 
     

that is, the variation of the inertial mass is equivalent to assuming that G varies with time. From (10)
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Graph 1.- Example of gravitational absorption function. In the Universe's first moments, its value is very close
to 0, indicating great absorption of gravity. Gradually, the absorption function increases, indicating less
shielding until the moment   when the absorption function takes the value 1; that is, absorption ceases to
exist. The graph corresponds to the function (6) with the parameters 0.258   and 8b  .
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(8)

(10)

(9)
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Graph 2.- In blue, we represent the variation of the inertia coefficient for the Einstein-de Sitter Universe with
only matter, using (6) with the coefficients 0.258   and 8b  . The curve in red is the variation of the
inertia coefficient for a Universe with only radiation, in which we have used the absorption function (6) with
the coefficients 0.181   and 2b  . The curve in black with a dashed line corresponds to a Universe with
matter and dark energy, with the coefficients 0.2055   and 1b   for function (6). In all three cases, the
coefficient of inertia increases, indicating that the body's inertial mass increases; this occurs because the
Universe observable or causally linked to the body, is increasing, and therefore, the gravity it produces
increases. We started drawing the graph at ˆ 0.3  .
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Table 1.- Results of the integration of (9), whose graphic representation is in Graph 2. We verify the importance
of the Universe's first moments (second column) in the formation of the inertial mass. The temporal variation
of the inertia coefficient (last column) indicates that the inertia, and therefore the inertial mass, is increasing.
We have found the results with the Einstein-de Sitter cosmic model.
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Graph 3.- The graph shows the relative variation of the gravitation constant G G  measured in years-1 for the
Einstein-de Sitter model. We verify that G decreases over time because G  is negative. There was a significant
variation of G in the Universe's early stages (not represented in the drawing). The variation was damped until
it was practically constant from ˆ 0.6  . At the current time ˆ 1  , the relative change of G is

101.6 10  y-1. The decrease of G with time means that the intensity of gravitation decreases under the
assumption that i gm m ; or that the inertial mass increases its value while maintaining the value of G. Wee
have obtained the data for a current age of the Universe of 109.69 10  years ( 18

0 2.181 10H    s-1).
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
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In Graph 3, we represent (11) with respect to  for the simplified cosmological model we consider.
From Graph 3 we see that the variation of G was very rapid in the first stages of the cosmos,
attenuating later. G varies constantly with time, which means a decrease in gravitational force,
equivalent to an increase in inertial mass. Currently, 10 11.6 10 yG G      a value higher than the
limit measured by various procedures (Uzan, 2011, p. 77).

We decompose the integral (9)

           
ˆ0.258 0.3 0.4

ˆ0 0.258 0.3 0.1

ˆ ˆ ˆ ˆ ˆ, , , .... , ,f d f d f d f d




               


       
in this way, we can know the contribution to the inertial mass of different cosmic epochs. In Graph
4, we represent the contributions to the inertial mass, in per cent, according to the retarded moment.
We verified that most of the inertial mass, 41%, corresponds to signals emitted between moments
0 and 0.3. The minor contribution to the inertial mass corresponds to the signals emitted in time
close to the current time, that is, gravitational actions that come from nearby bodies.

5. Universe with matter and radiation
Let us consider another simplified cosmological model that, in addition to matter, contains

dark energy and has zero scalar curvature. The relative scale factor of this model is (Raine &
Thomas, 2001, p.88)
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where
2
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0 0 0

2 2 1
; ; ; ,

3 33
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   




      

 
is the cosmological constant, 0

  is the vacuum density parameter at the present moment.
We deduce the Hubble constant from (12)

 0
0 cothH H  

when 0t t , 0H H , then from (13) we find

0
0 00 0 0

1 2 1 1
arcoth arcoth .

3

t
H t

t


   

   
  

By definition of the dark energy density parameter

 
2

0 20
2

tanh .
H

H
      

6. Calculation of the force of inertia in a Universe with dark matter and energy
With the results of the previous section we determine the force of inertia by (A.8)
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Graph 4.- We show the percentage participation of each cosmic epoch in the generation of the inertial mass
of a body for the current moment. The interval between 0 and 0.3 is responsible for 40.9% of the inertial mass.
Recent epochs of the Universe contribute to a lower average. For example, 0.9 to 1 only contributes 1.3%. The
intervals on the horizontal axis indicate the emission times of the gravitational signals currently arriving at the
body.

(14)
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(13)
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we have taken into account (13), (15) and
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M ,   and c  are the energy densities of matter in t, vacuum and critical, M  is the density
parameter of matter and H is the Hubble constant at time t.

Applying (14) in (16), we find
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F a (17)

using (A.14) we can now do the integration of the function  ˆ,f   .
We assume that  is the same function as the Einstein-de Sitter Universe to simplify the

calculations; this is justified because the cosmic factors for both cosmological models are very
similar, at least for reception times not much higher than ˆ 1  .

We do the integration for a model with void density parameter 0.685 and with (6) as the
absorption function. Requiring that the coefficient of inertia is unity for the current moment, we
find, for example, the parameters 0.2055   and 1b   for (6). Once again, we indicate that the
absorption function (6) is an approximation; therefore, the values we find will only serve to reach
some qualitative conclusions.

We show the results of the integration of    ˆ,f     in Graph 2 (dashed black line), and
we verify that the inertia coefficient increases with cosmic time, as in the models with only matter
or radiation.

Graph 5 represents G G . The shape of the curve is similar to that found for matter only
(Graph 3). However, the values found are one order of magnitude smaller and, therefore, closer to
the limit values found experimentally.

7. Conclusions
We understand Mach's principle as the statement that the inertia of a body is the result of the

gravitational action of the Universe as a whole. More specifically, the force of inertia is the force of
gravitational induction produced by the accelerated movement of a body in relation to the Universe.

We calculate the induction force on an accelerated body and verify that it has the properties
required by the laws of classical physics: it depends exclusively on the acceleration, is proportional
to it and has the opposite sense. That is, the inertial mass is proportional to the gravitational mass,
and its proportionality coefficient is dependent on cosmic time.

However, when we calculate the induction force produced by the entire Universe, we obtain
a divergence due to the high gravity originating in the early stages of the cosmos.

To avoid this problem, we assume that there is a shielding or gravitational absorption, which
must be very high at the beginning of the Universe but disappears when the Universe has expanded
sufficiently. Speculatively, we have chosen an absorption function, exclusively dependent on time,
that meets some minimum requirements but is an arbitrary hypothesis. However, although the
specific values we obtain are incorrect, the results are interesting because they provide qualitative
information related to Mach's principle.

Of the various conclusions we obtain from our reasoning, we limit ourselves to calculating
the variation of the universal gravitation constant for several simplified cosmic models. Verifying
that G decreases over time, there is a great variation in the first cosmic stages, to stabilize when the
Universe's energy density decreases.

There are two other significant consequences of Mach's principle that we did not analyze in
this research but that we now mention: the variation of the atomic emission frequency and the
variation of the nuclear binding energy, both produced by the variation of the inertial mass.

(16)
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The emission frequencies of an atom depend on the inertial mass of the electrons. Therefore,
these frequencies are not unalterable but depend on the moment of their emission. Since the radiation
that now reaches us originated in the past when the inertial mass was smaller, the frequencies we
observe are lower than the frequencies of equal radiation produced today; this means that there
would be shift of spectral lines even if there were no cosmic expansion. Alternatively, the redshift
that we measure corresponds partly to the expansion of the Universe and partly to the variation in
inertial mass. Therefore, the variation of inertial mass has important consequences in cosmological
theory.

The rest energy of a body depends on its inertial mass (Segura, 2023a); if this varies as
required by Mach's principle, its rest energy will also vary and, consequently, the energy released in
nuclear processes. Therefore, the nuclear binding energy of a chemical element varies with time, in
the sense that it increases as the inertial mass increases, which would produce noticeable modifications
in stellar evolution.

Appendix
Below, we present a summary, with some corrections, of our article "Mach's Principle: the origin of
the inertial mass (II)" (Segura, 2018).
A.1.- Equation of motion
The equation of motion of a free particle in a gravitational field is the geodesic equation

2

2
0,

r i k
r
ik

d x dx dx

d d d  
  

 is the proper time of the particle, and rx  is its coordinates. Christoffel symbols appear for three
reasons: by using curvilinear coordinates instead of Cartesian coordinates, by the acceleration of
the reference frame, or by the presence of a gravitational field. We calculate the Christoffel symbols
for Cartesian coordinates and an inertial reference frame, finding the second order in the inverse of
c (Segura, 2013, pp. 41-54)
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112 10 

113 10 

114 10 
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Graph 5.- Relative variation of the gravitation constant G G  measured in year-1 for a Universe containing
dark matter and energy. The curve has the same shape as that corresponding to a Universe with only matter,
but it is one order of magnitude smaller. The relative variation of G for this cosmic model for the current
moment is 11 18 10 y  .
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 is the Newtonian scalar potential, A is the vector potential, and  is the inductive scalar potential.
(A.2) is a function of distance and coordinated time, non-measurable magnitudes. Following an
idea from (Brans, 1962) we express (A.2) in terms of the proper distance and the proper time
(Segura, 2023b) *

   
2 2

2 2 2 2 2

1
4 4 2 ,

d d w

d d c c c c

   
   

                   
 

σ w A w w
w A w

is the proper distance,   is a derivation with respect to the components of the proper distance,
and w is the proper velocity. If we depreciate the speed w of the particle with respect to c, we find

4 ,
d

d


 
  


w A

we do not consider   A , it is of one lower order than (A.3) with respect to the inverse of c
(Panofsky & Phillips, 1929, p. 300).
A.2.- Cosmic induction force
From (A.3), we deduce that the gravitational force acting on a body of gravitational mass gm  in a
weak gravitational field is

4 .gm 


     

A
F

If the body is at rest relative to the Universe, there are no inductive terms, that is, components of 
and A dependent on the relative velocity. Therefore, only the Newtonian force would exist, which,
as we have seen, is nullified when it is calculated for the entire Universe, as long as the cosmological
principle is applicable. Later, we verified that the force (A.4) was also zero if the body had uniform
and rectilinear movement.

Suppose that the particle is accelerated with respect to the Universe; then there will be
relative motion and therefore,and A will have inductive terms. This inductive force is what we
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ˆ, ct  



Graph 6.- The graphs are the retarded proper distance functions corresponding to various reception instants
for the Einstein-de Sitter Universe. That is, the distance of the source that emits the signal at time  and
reaches the body at time ̂ . We observe that the curves have a maximum, which corresponds to the maximum
proper distance that is causally linked to the body at time ̂ .
The graphs show that the derivative  is positive until it reaches the maximum and then negative. In the
calculations in the text,d  corresponds to the width of a spherical shell, which must be a positive distance,
so we take its absolute value.
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* Some authors omit factor 4 in the second member but place it in the definition of A. In any case, this factor
is a differentiating element concerning the Lorentz force of electromagnetism.

(A.3)

(A.4)
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identify with the force of inertia.
The equation of motion (A.1) is valid using the constant 0G  (its usual value); that is, we

assume that the inertial mass is equal to the gravitational mass. Now, if gm  and im were proportional
with a proportionality factor, then the constant would have to be changed to 0G G  .

Since the constant G appears in the gravitational potentials which we derive from Christoffel's
symbols, we will obtain

2

2
0 4 .

r i k
g r

ik i g
i

md x dx dx d
m m

d m d d d


    
         

w A

We consider (A.5) valid even if the proportionality between im and gm  is time-dependent because,
during the time involved in the movement of a particle, we can consider the relationship between

im  and gm  constant.
A.3.- Gravitoelectromagnetic potentials
By application of the Liénard-Wiechert potentials of electromagnetism (Panofskhy & Philips, 1929,
pp. 286-289), we find the gravitoelectromagnetic potentials

 22 2
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u

We use the components of the energy-momentum tensor deduced from the linearized theory of
General Relativity (Segura, 2019). The bracket in the integrals indicates that we take the retarded
values, that is, those corresponding to the time of emission; u is the relative velocity of the source
with respect to the body; we define s by s r c  r u ; r is the position vector of the body with
respect to the source; s coincides with the relative distance r when the speed u is very small
compared to c;  is the density of all forms of energy and p is the pressure caused by radiation and
dark energy.
A.3.- Induction force
We consider that the body of gravitational mass gm  has speed u and acceleration a  with
respect to the Universe. We calculate the induction force acting on the body by (A.6) and (A.5).

To integrate the induction force we divide the Universe into spherical shells of negligible
thickness dr, centered on the body. The position vector of an element of the spherical shell with
respect to the body in spherical coordinates is

sin cos sin sin cos .r r r        r i j k
To calculate the potentials of a spherical shell, the terms of interest are
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A u

  and A  are the potentials produced by the spherical shell, and the limit of the integral is the
volume of the shell.

We use the results found in electromagnetism (Panofsky & Phillips, 1929, pp. 297-300), we
neglect the terms 21 r  with respect to 1 r , since r is a cosmic dimension and, we consider u c ,
then the integration is
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F  is the induction force or force of inertia produced by the spherical shell that is at the retarded
proper distance. Note that by our previous definition, a  is the acceleration of the body with
respect to the Universe. Therefore, we verify that the force of inertia is opposite to the acceleration
of the body. We integrate (A.7) for the entire Universe to find the total inertial force.
A.4.- Cosmic parameters
Using the cosmic density parameters, from (A.7) we obtain

20 0 2
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3 4 2
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F a

0 0 0, ,M R     are the density parameters of matter, radiation and vacuum at the current moment

0t ; 0a R R , R and 0R  are the cosmic scale factors at time t and at the current time 0t ; 0H  is the
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Hubble constant at the current time; d d    and pr  is the photonic distance.
A.5.- Coefficient of inertia
The force of inertia on the particle of gravitational mass gm  at time ̂  is
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Since the acceleration of the body is a  and the force of inertia is  i im m  a a , then the
coefficient of inertia (2) is by (A.9)
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A.6.- Application to the Einstein-de Sitter cosmic model
We apply (A.10) to the Einstein-de Sitter Universe, characterized by 0 1M   and null the other
cosmic parameters. Using the Friedman equation, we find the scale factor
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A.7.- Calculation of distances
The coordinate distance is defined by
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t is the moment of emission or retarded moment and ̂  is the moment of reception.

The retarded proper distance is
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We mention that, as we see in Graph 5, the slope of the curve is initially positive and then
negative. However, we will always take the absolute value, since d  corresponds to the thickness
of a spherical shell, which must be positive. Applying these results in (A.9), we find a divergent
integral due to the first states of the Big Bang. For this reason, we establish the gravitational
absorption hypothesis, as explained in the main text.
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