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Abstract

In a series of 4 papers an approach to a unified physics is presented. In part 1 the founda-
tion of such an approach is given. In part 2 it was shown how particle physics follows. In
this 3rd part gravitational physics will be derived. In part 4 open fundamental questions
of actual physics are answered and the concept of a new cosmology is introduced.
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Basic equations found in part 1.

To simplify quoting, here are some results from part 1:
In the assigned spacetime, a 6d Minkowski space, it holds

• a 6d Klein-Gordon equation without mass term

∂α∂αϕ = 0 with α = 1, 2 . . . 6 and the 6d wavefunction ϕ. (1)

• a Lagrangian L6KG based on the 6d Klein-Gordon equation

L6KG = ((∂α − igAα) Φ)
+
((∂α − igAα) Φ)− L6B . (2)

with Φ = (ϕ1, ϕ2, ϕ3, ϕ4)
T (T means transposed), where the ϕi are solutions of the Klein-

Gordon equation. The Aα are representing the boson field describing the one force in
6d. The free boson field part L6B describes interaction of the bosons. The Aα and L6B
do not matter in the following.
• With the 6d coordinates x6α = x6α(T, u, v, x) (x stands for x1, x2, x3 coordinates
occurring also in 4d and u,v for coordinates not accessible for a 4d observer) and the
Jacobi determinant J(T, u, v, x) the 6d action integral S can be written as

S =

∫
dx3dT

∫
dudvJ(T, u, v, x)L6(T, u, v, x).

The inner integral

L̂4 =

∫
x,t

dudvJ(T, u, v, x)L6(T, u, v, x). (3)

is called non-interpretable Lagrangian.
The following is very much based on the principles set out in part 1 of the series. You

can find it at http://viXra.org/abs/2312.0062

1 Introduction

Having shown in part 2 that UR allows deducting particle physics to be a universal
approach the same procedure must lead to gravitation.

Newton understood gravity, which he introduced, as a property of (heavy) mass, as a
force causing material bodies to attract each other. It is a long-range force that does not
spread out in time, but acts simultaneously at all distances.

The concept is not compatible with the special theory of relativity, e.g. because of
their limited propagation speed. All trials to introduce gravity into special relativity did
fail. [1]

Einstein overcame the problem and founded 1915 with its general relativity (GR)
the modern theories of gravitation. It describes the behavior of classical particles in
curved spaces. The Einstein field equations connect the energy-momentum tensor to
the curvature of spacetime. Up to now solutions exist only for a few geometries. They
are formulated as a tensor equation in a spacetime with Riemannian metric what makes
them automatically background independent.[2]

Solving the Einstein equation gives the metric coefficients of the spacetime depending
on the regarded energy-momentum tensor.

All attempts to formulate quantum physics with tensors did fail. Especially the differ-
ent meaning of time in the background-dependent and -independent theories generates
problems.

Also the further development of gravity physics – as for example in the Einstein-
Cartan theory that regards besides curvature also torsion or in the Brans-Dicke theory
that generates a variable (effective) gravitational constant by introducing an additional
scalar field – is built upon the same fundamental assumptions.

Striking is the similarity of results given by GR with its curved space with those of
Newton’s gravity theory formulated in a Euclidean space. Question is whether there is
an inner relation between the two theories.
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The best known solution of GR is given for spherical symmetry by Schwarzschild.
It made it possible to overcome the shortcomings of Newton’s celestial mechanics. The
elimination of the error in the perihelion rotation of the planets and in the diffraction of
light in the gravitational field of the sun served to confirm the validity of GR.

Also in cosmology, particularly for the large scales considerations, GR is important.
This topic will be covered in the next part of the series.

GR can be seen as a way to find the metric for a given energy-momentum tensor. As
there are originally no regulations for the energy-momentum tensor for certain specifi-
cations physically problematic metrics can arise. This is shown impressively by Gödel’s
proof, that in GR there only can exist spatial and no temporal coordinates. To show
this he created an exact solution of the Einstein field equations with a special energy-
momentum tensor (dust universe) and showed that in this universe time traveling would
be possible. Analyzing the consequences he came to his conclusion.[3] There are other
solutions e.g. the Kerr metric that under special conditions produce structures ("naked
singularities") in which causality is breached. To avoid such phenomena destroying our
understanding of the world based on time and causality additional conditions as the
Chronology Protection Conjecture of Hawking or the Cosmic Censorship hypotheses of
Penrose have been introduced.

2 Gravitaty with UR

It is an advantage of UR in the calculation of gravity that the energy-momentum tensor
and the 4d metric are derived together from a single source.

That starting with the same flat 6d space and using the same procedure can give
particle and gravity physics is due to the symmetry of the flat 6d space expressed in its
adapted coordinates (see part 1 of the series). This means Cartesian coordinates if the
space has translational symmetry and spherical coordinates if the space e.g. has spherical
symmetry. The coordinates of the 6d space are propagated to 4d.

What are the differences in explaining gravitation between UR and the other ap-
proaches:

1. In 6d there is no mass and the space is flat so there is nothing comparable with
4d gravity. While the inner forces in 4d reflect the inner force in 6d gravity is a
mere 4d issue. As particle mass it occurs as a compensatory measure with the
dimensional transition.

The fact that gravitation has a fully different origin as the external forces may be
used to explain its weak strength compared to these. This difference is a problem
for theories that want to justify the different forces in a uniform way.

2. Our spacetime is a 4d bubble expanding with the 6d assigned spacetime in the
complex extension of the 6d Euclidean space. In contrast to the expanding universe
in GR for UR however there exists the Euclidean 6d space. Its invariant structure
gives a framework that can serve as a stage on which the 4d events happen. In the
adapted coordinates a joint description of particle and gravity physics is possible.
Only in a 4d perspective spacetime is dependent on the distribution of mass.

3. For the actual theories the 4d spacetime has to be Minkowskian or Riemannian.
It is difficult to define a spacetime fulfilling both qualifications. In UR the 4d
spacetime is not genuine. 4d physics is just a picture of 6d physics adequate to our
abilities. This means that not the 4d spacetime has to fulfill both qualifications but
the picture we get of the 6d one. With other words, as the aim of 4d physics is
to replicate the 6d one as good as possible this can demand in one case a flat 4d
spacetime and in the other a curved one. So a compromise between the seemingly
incompatible preconditions is possible.

Further conditions must be met by the 6d specifications of UR to lead to gravity in 4d:

1. There must exist symmetries of the 6d Euclidean space generating non-interpretable
Lagrangians L̂4 to which no interpretable 4d Lagrangian formulated in a Minkowski

3



space can be adapted, that it needs the elements of the metric tensor of a curved
4d spacetime as additional adaption parameters to achieve it.

2. UR at least in 6d is a quantum field theory. Deducting gravitation will generate 4d
quantum gravitation. In order to enable comparisons with the results of GR, it must
be possible to derive a classic version which has to hold for entities corresponding
to the classical particles described by GR (or Newton’s gravity law).

3. Gravitation acts on the mass of particles. The 6d Lagrangian knows neither mass
nor particles. To generate gravitation the transition to 4d so mandatory has to gen-
erate the mass of a planet particle – as it does in a 6d spacetime with translational
symmetry – but also that of a central particle.

4. The 6d space is flat. The transition to 4d has to generate a curved spacetime with
a curvature creating the correct force.

Gravitation is characterized by the absence of inner forces and spin what means confining
the view to effects of geometry. These restrictions are also used with UR when describing
gravity. They make analytical calculations possible and allow demonstrating the necessity
of a curved spacetime.

Neglecting effects generated by spin means starting with the Lagrangian of the 6d
Klein-Gordon equation L6KG of equation (2). Without Yang-Mills fields this Lagrangian
decomposes in a sum over four equal Lagrangians generating four equal Klein-Gordon
equations in curvilinear coordinates. It suffices to consider one. So the action integral
describing gravity in UR becomes

S =

∫
(dx)

3
dTdudv

√
−ggµν∂µϕ∗∂νϕ. (4)

gµν is the inverse metric tensor, g the determinant of the metric tensor gµν†

This integral of action is the UR pendant to Hilbert’s integral of action. The one
generates a homogenous linear equation of motion, the other the inhomogeneous tensoral
Einstein equation.

The main reason for the simple structure UR provides, is that what is described by
the energy-momentum tensor in GR does not act as an external source in UR but is
inherent in the equation and emerges only in the transition to 4d.

As a consequence of omitting the Yang-Mills fields in 6d in 4d all nongravitational
forces vanish. So all binding forces for the wave functions usually used to describe
particles are zero.

To examine only gravity it has no effect whether single particles or groups of particles
are considered (neglecting gravitational forces in the groups). To get however a better
fit to 4d reality where the nongravitational forces are always active the loose particles
virtually are to be combined to larger units. The composition of these virtual units is
to correspond with that of particles like e.g. galactic nebula particles in which all of the
internal nongravitational forces are saturated so that they cannot be affected by external
nongravitational forces.

The energy of the missing internal forces in the virtual units according to Einstein’s
principle can be added to their mass. As this mass usually is not known and has to be
determined by experiment this has no effect.

The so constructed units in spite of their artificiality are to be called particles.
The 6d metric tensor occurring in the Lagrangian cannot be chosen arbitrarily. It

has to respect the Euclidean or pseudo Euclidean structure of the 6d space or spacetime
what means that its curvature tensor has to be zero.

With respect to the various symmetries of the tensor in a n-dimensional space these
are 1

12n
2
(
n2 − 1

)
second order nonlinear partial differential equations for the metric

coefficients.[4] In 6d 105 equations result.
Among the possible solutions of this system of equations (in the assigned spacetime)

there are all pseudo Euclidean four-dimensional metrics (with coefficients independent

†As metric in gravitation theory is a common quantity the Jacobean determinant is here written by the equal
expression

√
−g.
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of u and v) expanded by “1”-coefficients for the missing two diagonal elements and
“0”-coefficients elsewhere.

Easier than checking for a given metric the 105 equations is introducing suitable
coordinates in the 6d space and calculating the resulting metric. As transformations of
coordinates do not change curvature the found metric will be (pseudo) Euclidean.

3 From 6d to 4d with spherical symmetry

The necessity to use a curved 4d spacetime is to be shown exemplary with a symmetry
of the 6d space that allows comparing results with those of the Schwarzschild solution of
GR.

Starting point is a sphere in the Euclidean 6d space. The adapted coordinates for
this symmetry are spherical coordinates with radius r6 and the angles α, β, γ, δ and θ
defining the direction of the radius. This means

u = r6 sin (δ) sin (θ) sin (γ) sin (α) cos (β) ,

v = r6 sin (δ) sin (θ) sin (γ) sin (α) sin (β) ,

y = r6 sin (δ) sin (θ) sin (γ) cos (α) ,

x = r6 sin (δ) sin (θ) cos (γ) ,

z = r6 sin (δ) cos (θ) ,

w = r6 cos (δ) . (5)

From this it follows the metric

ds2 = dr26 + r26dδ
2 + r26 sin (δ)

2
A (6)

with

A = dθ2 + sin (θ)
2
dγ2 + sin (θ)

2
sin (γ)

2
dα2 + sin (θ)

2
sin (γ)

2
sin (α)

2
dβ2 (7)

As was formulated when defining the adapted coordinates, the transition to the assigned
spacetime is made by introducing time as a Cartesian coordinate and maintaining the
original symmetry for the remaining spatial coordinates.

This is achieved by introducing two new variables Z = r6 cos (δ) and r5 = r6 sin (θ).
With δ = arctan ( r5Z ) and r6 =

√
r25 + Z2 we find r6dδ = r5dZ−Zdr5√

Z2+r25
and dr6 =

ZdZ+r5dr5√
Z2+r25

. Inserting these expressions into equation (6) gives the metric ds2 = dZ2 +

dr25 + r25A. That is the appropriate form to introduce the time variable dT = idZ .
So finally we get the metric of the assigned spacetime

ds2 = −dT 2 + dr25 + r25A. (8)

As for translational symmetry the variable T appears only in the differential dT and not
in the metric coefficients. Time T results from integration of the differentials. So the
meaning of time is identical in spacetimes with translational and spherical symmetry.

3.1 Non-interpretable Lagrangian

The adapted spatial coordinates to a five-dimensional sphere are

u = r5 sin (θ) sin (γ) sin (α) cos (β) ,

v = r5 sin (θ) sin (γ) sin (α) sin (β) ,

y = r5 sin (θ) sin (γ) cos (α) ,

x = r5 sin (θ) cos (γ) ,

z = r5 cos (θ) (9)
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Adding the squares of the differentials of these coordinates and introducing the square
of the time-like differential we get the metric

ds2 = −dT 2 + dr25 + r25A. (10)

As next step the equation of motion following from equation (4) in these coordinates
has to be found and solved.

The Lagrangian of the metric is given by

L6 =
∂ϕ⋆

∂T

∂ϕ

∂T
− ∂ϕ⋆

∂r5

∂ϕ

∂r5
− 1

r25

{
∂ϕ⋆

∂θ

∂ϕ

∂θ
+

1

sin (θ)
2

∂ϕ⋆

∂γ

∂ϕ

∂γ
+

1

sin (θ)
2
sin (γ)

2

∂ϕ⋆

∂α

∂Φ

∂α
+

1

sin (θ)
2
sin (γ)

2
sin (α)

2

∂ϕ⋆

∂β

∂ϕ

∂β

}
, (11)

and the Jacobean determinant by

J = r45 sin (θ)
3
sin (γ)

2
sin (α) . (12)

Using Hamilton’s principle we find the equation of motion

A1

(
r45
∂2ϕ

∂T 2
− ∂

∂r5

(
r45
∂ϕ

∂r5

))
− r25

{
A2

∂

∂θ

(
sin (θ)

3 ∂ϕ

∂θ

)
+

A3
∂

∂γ

(
sin (γ)

2 ∂ϕ

∂γ

)
+A4

(
∂

∂α
sin (α)

∂ϕ

∂α

)
+A5

∂2ϕ

∂β2

}
= 0 (13)

with

A1 = sin (θ)
3
sin (γ)

2
sin (α) , A2 = sin (γ)

2
sin (α) ,

A3 = sin (θ) sin (α) , A4 = sin (θ)

A5 = sin (θ) sin (α)
−1
.

This equation can be separated in a part depending on r5 and T and one depending on
the angular variables. Using

ϕ = Θ(T )G (r5)F (θ, γ, α, β) with Θ(T ) = eikT (14)

the radial dependence is given by

∂2G

∂r25
+

4

r5

∂G

∂r5
+

(
k2 +

p

r25

)
G = 0 . (15)

p is the constant of separation.
Solutions of this equation are Bessel functions J and Y of transcendent order.[5] They

can be combined to something similar to spherical Bessel functions of the third kind

Gp(kr5) =
J 1

2

√
9−4p (kr5) + iY 1

2

√
9−4p (kr5)

(kr5)
3

2

. (16)

For large r5 they converge to G0(kr5), the solutions with p = 0:

G0(kr5) =
eikr5

(kr5)
2 + i

eikr5

(kr5)
3 . (17)

Then F (θ, γ, α, β) = const for all θ, γ, α, β is a solution of the angular dependence of
equation (13). This means that ϕ is isotropic and that the angular dependence in the
action integral is introduced only by the Jacobean. Integration over its angle variables
then can be executed giving

∫
J
r45
F0F

∗
0 dθdγdαdβ = const. Since the Lagrangian is only
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defined up to an arbitrary multiplicative factor without loss of generality, the constant
can be assumed to be 1.

Thus we obtain for the action integral

S =

∫
∂Θ⋆

∂T

∂Θ

∂T
dT

∫
r45G0G

∗
0dr5−∫

Θ⋆ΘdT

∫
r45
∂G⋆0
∂r5

∂G0

∂r5
dr5 . (18)

To gain the non-interpretable Lagrangian, integration in the action integral over the
two variables not occurring in 4d must be executed what means introducing new spatial
variables in which these two variables occur explicitly.

Maintaining the demands of symmetry this is achieved by transferring the original
spherical symmetry to the in four dimensions remaining three spatial variables what
means choosing spherical coordinates for them. Instead of integrating over u and v
integration can be done over the associated polar coordinates as they also span the u, v-
plain.

Introducing the new coordinates

r3 = r5

√
1− sin (θ)

2
sin (γ)

2
sin (α)

2
,

ρ = r5 sin (θ)
2
sin (γ)

2
sin (α)

2
,

tan
(
θ̄
)
= tan (θ) cos (γ)

√
1 + tan (γ)

2
cos (α)

2

tan (ᾱ) = tan (β) ,

tan (γ̄) = tan (γ) cos (α) . (19)

describing two spheres in three and two dimensions in the spatial part of the assigned
spacetime we get

x = r3 sin
(
θ̄
)
cos (γ̄) , y = r3 sin

(
θ̄
)
sin (γ̄) , z = r3 cos

(
θ̄
)
,

u = ρ cos (ᾱ) , v = ρ sin (ᾱ) . (20)

It also holds r23 + ρ2 = r25 .
In the new variables the Jacobi determinant becomes ρr23 sin

(
θ̄
)
. For the isotropic

solution also in the new variables the angular dependence enters the action integral only
by the Jacobi determinant.

So integration over the angular variables can be executed. Besides an unessen-
tial constant factor the spatial part of the action integral is transformed in

∫
r45dr5 =∫

r23dr3
∫
ρdρ. Using instead of ρ the integration variable ζ2 = r23 + ρ2 we finally find

the non-interpretable Lagrangian

L̂4 =
1

k2
∂Θ

∂T

∂Θ⋆

∂T

1

(kr3)
2

(
1 +

1

2 (kr3)
2

)
− ΘΘ⋆

(kr3)
2

(
1 +

3

2 (kr3)
2 +

3

(kr3)
4

)
. (21)

It must be mentioned that r3 is a 6d variable.

3.2 Interpretable Lagrangian

Next a Lagrangian formulated with 4d variables must be found giving the same contri-
bution in the 6d action integral as L̂4. As the non-interpretable Lagrangian given in
equation (21) is isotropic the interpretable Lagrangian with spherical symmetry looked
for has to have this property as well.

3.2.1 Impossibility of adaption in a Euclidean space

First, it is to be shown that with spherical symmetry of the 6d Euclidean space, there is
no 4d Lagrangian that can be adapted.

7



Due to the transfer of symmetries in UR, the spatial part of the 4d spacetime also
has spherical symmetry. The adapted coordinates in a Minkowski spacetime then gen-
erate a diagonal metric tensor. Replacing θ̄ by the new variable µ = cos

(
θ̄
)
and

introducing the radius r of the 3d spatial part the diagonal elements are given by{
1,−1,−r2

(
1− µ2

)−1
,−r2

(
1− µ2

)}
and it holds

√
−g = r2.

With the 4d wave function ψ the test-Lagrangian is given by

L4 =
∂ψ

∂T

∂ψ⋆

∂T
− ∂ψ

∂r

∂ψ⋆

∂r
− 1− µ2

r2
∂ψ

∂µ

∂ψ⋆

∂µ
− 1

r2 (1− µ2)

∂ψ

∂ψ̄

∂ψ⋆

∂ϕ̄
− aψψ⋆. (22)

Dabei ist
a = 1/λ2C = m2

0c
2/h̄2 (23)

the mass term generated in the transition from 6d to 4d with translational symmetry as
shown in part 2 of the series equation (12).

The resulting equation of motion is

r2
∂2ψ

∂T 2
− ∂

∂r

(
r2
∂ψ

∂r

)
− ∂

∂µ

((
1− µ2

) ∂ψ
∂µ

)
− 1

(1− µ2)

∂2ψ

∂γ̄2
+ ar2ψ = 0 . (24)

As it was shown above an isotropic solution in 6d demands an isotropic solution in 4d.
For this isotropic solution it holds ∂ψ

∂µ = 0 and ∂γ̄
∂µ = 0

Separated by a product ansatz

ψi = Θ(T )W (r) (25)

equation (24) gives the ordinary differential equations

∂2Θ

∂T 2
= −k2. (26)

and

−
(
k2 − a

)
W − 1

r2
∂

∂r

(
r2
∂W

∂r

)
= 0 . (27)

Introducing in the last equation the new constant

κ2 = k2 − a (28)

and the new variable
r̂ = κr (29)

it becomes
1

r̂2
∂

∂r̂

(
r̂2
∂W

∂r̂

)
+W = 0. (30)

If k is chosen equal to the value found in equation (14) this is the same time dependency
as in the 6d equation of motion.

Solutions are a complex exponential function

Θ = eikT (31)

and the spherical Bessel function of the third kind [6] zero order

W = h0 (κr) =
eiκr

κr
. (32)

Inserting this solution in the isotropic part of the test-Lagrangian (21) gives

L4 = − 2k2 − a

r2(k2 − a)
− 1

r4(k2 − a)
.

This test-Lagrangian has not the form of the non-interpretable Lagrangian (21). In par-
ticular, the occurrence of the mass term a in the expression makes it unusable. Also no
terms with powers greater than 1/r4 are possible. So it cannot be used as a 4d transfer
function.

Thus it is shown that for spherical symmetry in 6d there is no adaptable Lagrangian
in a 4d Minkowski space.
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3.2.2 Adaption in a curved spacetime

Here the basic idea of UR comes into play. It allows using a more flexible test-Lagrangian
enabling adaption. That is e.g a Lagrangian in a spacetime with a pseudo Riemannian
metric.

For the required spherical symmetry we then find the metric{
g11 (r) ,−g22 (r) ,−

r2

1− µ2
,−r2

(
1− µ2

)}
with

√
−g = r2

√
−g11g22 (33)

By symmetry considerations the metric coefficients only occur for the temporal and
radial components.[7] g11 and g22 are two unknown functions depending on r and T .
The structure of the non-interpretable Lagrangian suggests an approach with coefficients
depending only on r.

This gives the interpretable test-Lagrangian

L4 = gνλ∂νψ∂λψ
∗ − aψψ∗ (34)

and the action integral

S =

∫
r2
√
−g11g22L4dTdrdµdγ̄ . (35)

The metric coefficients g11, g22 are the additional adaption parameters needed.
Introducing the modified metric coefficient

A =
√
−g11/g22 (36)

the equation of motion becomes

r2

A

∂2ψ

∂T 2
− ∂

∂r

(
r2A

∂ψ

∂r

)
+
√
−g11g22r2aψ

−
√
−g11g22

[
∂

∂µ

((
1− µ2

) ∂ψ
∂µ

)
+

1

(1− µ2)

∂2ψ

∂γ̄2

]
= 0 . (37)

For the isotropic solution the second line is zero.
Adaption to L̂4 means finding metric coefficients that give for the isotropic part of the

differential equation (37) a solution which inserted in the action integral (equation (35))
together with the metric coefficients of the Jacobian determinant therein gives formally
the same expression as L̂4 of equation (21).

This procedure would not be feasible with completely unknown metric coefficients,
but here it helps that the solution of the equation of motion of the sought Lagrangian
must be a function of Hilbert space.

Some general considerations valid for arbitrary symmetries can be made: As in the
gravitational approximation in 6d there is no force the assumption can be made that
in great distance of the center of symmetry the influence of the symmetry on the wave
function vanishes and the Lagrangian together with the radial part of the Jacobian is that
of a plane wave.

Plane waves are the limiting case of a wave function in Hilbert space. A slower decay
of the wave function is not allowed as such functions are not normalizable. A stronger
decay as e.g. exponential on the other hand characterizes a bound state and implies a
force.

A general wave function in the assigned spacetime with all Young-Mills field being
zero therefore must be described by a power series in 1/r (r here means the distance
from the center of symmetry) multiplied with a phase factor whose differential is also a
power series in 1/r. Equation (21) shows this behavior.

As thus a general L̂4 is represented by a power series in 1/r this has to hold also for
the adapting L4, here given by equation (34). It is achieved when all summands, their
factors and the derivatives of the phases in L4 are given by power series in 1/r what
means that metric coefficients are described by power series in 1/r.

9



Coming back to the spherical symmetry. It seems that for the isotropic part of
equation (37)

r2

A

∂2ψ

∂T 2
− ∂

∂r

(
r2A

∂ψ

∂r

)
+
√
−g11g22r2aψ = 0 (38)

with metric coefficients given by a power series in 1/r no formulated solution is available.
Therefore such a solution is looked for with a power series ansatz.

The Klein-Gordon equation (38) has two independent parameters A and
√
−g11g22.

To simplify the examination firstly two simplified equations, the "S-type" with
√
−g11g22 =

1 and the "N-type" with A = 1 are to be considered. The general solution is discussed
later.

3.2.3 S-type adaption

Motivation for the denomination S-type is the similarity of the found metric with that of
the external Schwarzschild solution in GR.

Multiplying the simplified equation (38) with A/r2, executing the differentiation of
the first term as given in equation (26), using the parameter κ given in equation (28) and
the variable r̂ given in equation (29) we find

A

r̂2
d

dr̂

(
Ar̂2

dW

dr̂

)
+
(
1− a

κ2
(A− 1)

)
W = 0 . (39)

Since, as we will see, there is a close relationship between this differential equation and
the differential equation of the Coulomb wave functions [8], its asymptotic solution for
large r should is taken as a template for the solution we are looking for.

Introducing the approach
W = z(r) exp iq(r) (40)

this means for the different terms of the formula specific power series

A = 1 + r1/r̂ + r2/r̂
2 + . . .

q = k0r̂ + k1 ln r̂ + σ0

z = z1/r̂ + z2/r̂
2 + z3/r̂

3 + . . . . (41)

σ0 is a phase not depending on r̂ needed to make the argument of the exponent dimen-
sionless.

The coefficients in A and q are real, those in z might be complex. It is notable that
q is not a series but has only two terms.

Implementing these expressions in equation (39) gives a power series whose coeffi-
cients must be zero. For the first powers after a lengthy calculation it results

z1 = arbitrary

z2 = ik0z1

((
r21 − r2

) (
1 +

a

2κ2

)
− a2r21

8κ4
+
ak0r1i

4κ2

)
k20 = 1

k1 = −r1k0
(
1 +

a

2κ2

)
. (42)

It can be seen that z1 is the free multiplicative constant and that k0 = 1 and k0 = −1
generate the two independent solutions conjugate-complex to each other of the homo-
geneous second order differential equation. The equation for k1 shows that for large r̂
gravity and the logarithmic phase are related.

Next step is showing to which extent the interpretable Lagrangian L4 given by equa-
tion (34) formulated with the found functions can be adapted to the non-interpretable
Lagrangian L̂4 of equation (21).

Implementing Θ(T ) = eikT of equation (14) in the L̂4 of equation (21) with

ΘΘ⋆ = 1 and
1

k2
dΘ

dT

dΘ⋆

dT
= 1

10



the terms quadratic in 1/r cancel each other. Only terms of fourth and sixth order in
1/r remain. This means that the different terms in L4 up to third order must cancel each
other and the sum over the terms of fourth order must become 1 (kr)

4.
This is just what results if Θ and the functions found in equation (42) are implemented

in L4. As necessary for an adaption all terms up to third order vanish and it remains
z1z

∗
1/r̂

4.
By an appropriate formulation of the found ”0” the interpretable Lagrangian can be

written as

L4 =
1

k2
dΘ

dT

dΘ⋆

dT

1

(kr)
2

(
1 +

1

2 (kr)
4

)

−ΘΘ⋆

(
1

(kr)
2 +

1

2 (kr)
4 +

z1z
⋆
1

(kr)
4

k4

κ4

)
(43)

Setting in a last step

z1z
⋆
1 =

κ4

k4
(44)

we see that L4 and L̂4 are formally equal up to fourth order, if the 6d variable r3 is
replaced by the 4d variable r. As mentioned this is possible as it happens for dummy
variables in an integral.

This shows that the Lagrangian of the S-type approach for large distances of the
center can be adapted to L̂4 and that the 4d observer to describe the spherical symmetry
of 6d space must introduce a curved space that can be assumed as pseudo-Riemannian.

3.2.4 N-type adaption

Although the Lagrangian given in equation (38) is formulated in a spacetime with Rie-
mannian metric in the N-type approach because of the demand A = 1 it seems to act in
a Minkowski spacetime. f(r) =

√
−g11g22 enters the equation as a force field. The "N"

in the denomination is to show the similarity to Newton’s gravity theory.
It can be seen that this approach must be an approximation as the force field f(r)

cannot act on particles without rest mass.
As the metric coefficients in the last chapter f(r) can be written as a power series in

the dimensionless variable r̂. With

f(r) = 1 + f1/r̂ + f2/r̂
2 + . . . (45)

the equivalent to equation (39) becomes

1

r̂2
∂

∂r̂

(
r̂2
∂W

∂r̂

)
+
(
1− a

κ2
(f − 1)

)
W = 0. (46)

With the new variable w =Wr̂ it follows

d2w

dr̂2
+

(
1− a

κ2

(
f1
r̂

+
f2
r̂2

+ . . .

))
w = 0. (47)

Setting af1/κ2 = 2η and f2 and all coefficients of higher powers to zero, Coulomb wave
functions [8] for zero angular momentum H0 (η, r̂) and G0 (η, r̂) solve this equation.

In general the two solutions cannot be combined like spherical Bessel functions of
first and second order to those of third order. But this is possible for their asymptotic
expansions for large r̂.
Then it holds w (r̂) = (G0 (η, r̂) + iF0 (η, r̂)) = (f0 + ig0) e

iΘ0 (48)

with
f0 + ig0 = 1 +

iη (iη + 1)

1! (2ir̂)
+
iη (iη + 1)

2
(iη + 2)

2! (2ir̂)
2 + . . . (49)

and
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θ0 = r̂ − η ln 2r̂ + σ0. (50)

σ0 is introduced for the same reason as in equation (41).
Reintroducing W this gives

W =

(
z1
r̂

+
z1η (iη + 1)

2r̂2
. . .

)
eiΘ0 . (51)

The same procedure as in the last chapter can be used to show that this function allows
an adaption to L̂4 as well.

This shows that also the N-type solution is able to describe the 4d manifestations of
the spherical 6d symmetry.

3.2.5 Comparing S- and N-type solution

The main difference between S- and N-type solution consists in the second terms of the
phases q of equation (42) and θ0 of equation (50). In the N-type solution it is proportional
to the mass term a, what means that it vanishes for massless particles, whereas in the
S-type solution an additional term not dependent on a occurs so that also massless
particles are affected.

The otherwise narrow connection between the two solutions can be shown by a
coordinate transformation. Starting point is equation (39) of the S-type solution. It is
assumed that the power series of the metric has only terms up to first order in 1/r̂.

With A = 1 + r1
r̂ and the new variable ρ = r1

ln (1+ r1
r̂ )

it becomes

1

ρ2
∂

∂ρ

(
ρ2
∂W

∂ρ

)
+
r̂4

ρ4

(
1− ρ

r̂

ar1
κ2ρ

)
W = 0. (52)

Developing 1/r̂ in a power series of 1/ρ to elimimate r̂ gives

1

ρ2
d

dρ

(
ρ2
dW

dρ

)
+

(
1− r1

ρ

(
2 +

a

κ2

)
+
r21
ρ2

(
11

6
+

3a

2κ2

)
+ . . .

)
W = 0 . (53)

The relation between ρ and r̂ is given by

ρ = r̂

(
1 +

r1
2r̂

− r21
12r̂2

+ . . .

)
or ρ ≈ r̂ +

r1
2
. (54)

This means that as long as a≫ k2 the two solutions are essentially equivalent if f1 and
r1 are equal, r̂ ≫ r1 and if effects of quadratic and higher order in 1/r̂ can be neglected.

The fact that both S-type and N-type solution allow adapting a 4d Lagrangian to L̂4
shows an inner connection of Newton’s theory of gravity and the external Schwarzschild
solution of GR. It is no happenstance but a consequence of being almost equivalent
solutions of a common equation. As well it does not mean that Newton’s theory is valid
only as a limit of GR. Besides the (small) difference occurring when taking the angular
part of equation (37) into account (see below) in the mentioned domain the two solutions
are equal.

4 Effects of gravitation on particles

The previous considerations were used to derive the 4d effects of spherical symmetry
in 6d. We did find metric coefficients modifying the Klein-Gordon equation. In the
following effects of these changes on particles as e.g. planets, that are subject to them
will be examined. Their movement refers to the secondary effects described at the end
of section 4.1.4. For these particles the requirement of isotropy does not hold. In order to
fully describe their motion their torque has to be taken into account. This means that a
Klein-Gordon equation of the type given in equation (37) with angular dependence must
be used.
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Separating this equation by a product ansatz

ψ = Θ(T )P (µ)Q (γ̄)W (r) with Θ(T ) = eikT (55)

we get the ordinary differential equations

∂2Q

∂γ̄2
= −m2Q (56)

∂

∂µ

((
1− µ2

) ∂P
∂µ

)
− m2

1− µ2
P = −l (l + 1)P (57)

and, using the variable given in equation (29),

1

r̂2
∂

∂r̂

(
r̂2
∂W

∂r̂

)
+

(
1− l (l + 1)

r̂2

)
W = 0. (58)

Solutions are complex exponential functions

Q = Qm = eimγ̄ (m integer), (59)

Legendre functions [6]

P = Pml =

√
(2l + 1) (1 + |m|)!

2 (l + |m|)!
(
1− µ2

) |m|
2
d|m|Pl (µ)

dµ|m| (60)

with Legendre polynomials Pl (µ) = 1
2ll!

dl(µ2−1)
l

dµl (l = 0, 1 . . ., |m| ≤ l)
and spherical Bessel functions of the third kind [9]

W = hl (κr) with hl (x) = xl
(
1

x

d

dx

)l
eix

x
. (61)

The dependence on the angular variables µ and γ̄ often is expressed together by spherical
harmonics Yl,m(µ, γ̄) = Pml Qm.

It is not yet obvious how gravitation arises out of these equations found in the last
section. To show this at first the particle aspect of the theory is to be examined what
should give besides others the results found by the Schwarzschild solution of GR. In
section 8 it will be considered to what extent the quantum theoretical character of the
equations can give additional information.

Without any understanding of the meaning of a wave function in a theory of gravita-
tion the Klein-Gordon equation equation was widely used in GR. Its separability in dif-
ferent coordinate systems served to find most known metrics like that of Schwarzschild,
de Sitter or Kerr.[10, 11, 12, 13] In [12] Carter writes: "We shall be led to impose the
. . . condition that the . . . Schrodinger equation (in our nomenclature the Klein-Gordon
equation) is separable not because there is any good physical reason for doing so but
because it leads to a very simple algebraical form for the metric."

This strictly formal use of the wave function differs fully from the approach followed
here. For UR the wave function also in describing gravity is of physical relevance.

Interpreting the S-type solution of equation (38) two limiting cases can be distin-
guished: slowly moving particles with rest mass and massless particles moving by nature
with the speed of light. For the N-type solution only the first limit is of interest. Therefore
in a first step both solutions are examined for slowly moving particles with rest mass and
then the general solution for massless particles.

The metric coefficients in UR are given by power series in 1/r. Weinberg describes
some metrics introduced by Eddington and Robertson that also use higher powers of 1/r
and discusses their implications.[14] He shows that possible effects are so small that they
are completely masked by the effects of GR and up to now not yet found. Therefore in
the following the power series in UR are cut for all terms with order higher than 1/r.
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4.1 Slowly moving particles with rest mass

Knowing that
1. the Klein-Gordon equation describes systems in which particles and antiparticles

occur simultaneously,
2. in the non-relativistic limit the Klein-Gordon equation degenerates into two Schrö-

dinger equations one for particles and one for antiparticles,
3. our solar system is built by particles only and
4. the speed of most particles with rest mass in the solar system is small compared to

the velocity of light
it seems natural not to use the Klein-Gordon equation in describing particles with rest
mass but to replace it by a Schrödinger equation.

The transition from the Klein-Gordon to the Schrödinger equation is achieved by
eliminating the mass term in the Klein-Gordon equation by means of a unitary transform.

Non-relativistic physics is characterized by the approximation that in all areas where
the wave function is measurably distinct from zero for any function Θ occurring in the
system the relation |h̄∂tΘ| ≪ |m0c

2Θ| holds.[15]
This means introducing by

ψ = Xe−iαt with α =
m0c

2

h̄
and T = ct (62)

a modified wave function X and neglecting all small terms in the differential operator. It
follows

∂T∂Tψ =
1

c2
e−iαt

c2
(
∂t∂t − 2αi∂t − α2

)
X

≈ e−iαt

c2
(
−2αi∂t − α2

)
X. (63)

With this approximation, introducing the mass term a = m2
0c

2/h̄2 of equation (23) and
using for the angular part the result of equation (57) we get instead of the Klein-Gordon
the Schrödinger equations

ih̄
∂XS

∂t
= − h̄2A

2m0r2

[
∂

∂r

(
r2A

∂XS

∂r

)
− l (l + 1)

]
+

m0c
2

2
(A− 1)XS (64)

and

ih̄
∂XN

∂t
= − h̄2

2m0r2

[
∂

∂r

(
r2
∂XN

∂r

)
− f(r)l (l + 1)

]
+

m0c
2

2
(f (r)− 1)XN (65)

The indices S and N stand for the S- and N-type solutions.
It can be seen that both solutions have a modified mass term that can be interpreted

as a potential. The solutions differ in the expression of kinetic energy and by the multi-
plicative factor A or f(r) in the angular parts.

Separation of the Schrödinger equations with an ansatz

X = e−i
E
h̄ tR(r) (66)

gives the radial parts

A

r2
d

dr

(
Ar2

dRS
dr

)
−
(
κ̂2 +A

l (l + 1)

r2
− 2

rBr

)
RS = 0 (67)

and 1

r2
d

dr

(
r2
dRN
dr

)
−
(
κ̂2 + f

l (l + 1)

r2
− 2

rBr

)
RN = 0 (68)

with
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κ̂2 = −2m0

h̄2
E and rB =

2h̄2

m2
0c

2rS
. (69)

As demonstrated above it is natural assuming f1 and r1 to be equal. So in the last terms
rS = −f1/κ = −r1/κ is introduced.

Applying the same transformation as used to show the connection between S- and
N-solution of the Klein-Gordon equation to equation (67) leads in first order of rS/r to
an equation with the structure of equation (68):

1

ρ2
d

dρ

(
ρ2
dRS
dρ

)
−
[
κ̂2 +

l(l + 1)

ρ2
(1− ϵ)− 2

ρrB

]
RS = 0 . (70)

This shows that for r ≫ rS the S- and N-type solutions are identical besides the term
ϵ = 3rS

rBl(l+1) . Implementing the result we find in equation (82) this gives ϵ ≈ 3rS
ρ ≪ 1.

The parameter κ̂2 = − 2m0

h̄2 E is clarifying the different types of solutions for positive
or negative energy. For E > 0 we get κ̂2 negative, κ̂ imaginary and the solutions are
spherical waves. For E < 0 κ̂2 is positive and the solutions are bound states.

Setting in the Schrödinger equations (67) A = 1 or in (68) f = 1 they formally
coincide with the Schrödinger equation of a hydrogen atom in center of mass coordinates.
rB is the equivalent of the Bohr radius introduced there.

The eigenfunctions R of the simplified Schrödinger equations for E < 0 are Laguerre
functions [16]

R = Rn,l (x) = xle−
x
2L2l+1

n−l−1 (x) (71)

with x = 2r
nrB

, n = 1, 2 . . . and l < n. L2l+1
n−l−1 (x) are associated Laguerre polynomials.

Formally the full equations (67) and (68) have the same structure as the simplified
equations. The small terms rs/r in A and f or the ϵ in equation (70) however destroy
the integrity of the angular momentum term so that Laguerre functions are only an ap-
proximate solution. Nevertheless because of the smallness of the distortion - it generates,
as will be shown, perihelion rotation - they describe the behavior of particles with rest
mass quite well.

The relativistic Klein-Gordon equations comprise the square of energy as it describes
at a time particles and antiparticles. As this expression is always positive no binding
force exists. In the non-relativistic Schrödinger equations energy enters linearly so that
it can be also negative. Negative energies generate bound states what requires a binding
force. With this force of attraction finally for particles with rest mass we have found
gravitation.

4.1.1 Elementary particles in a gravitational field

The Schrödinger equation commonly is used to describe the behavior of elementary
particles. So a first test of the here found Schrödinger equation of gravitation is to
examine whether it can correctly characterize the performance of elementary particles in
a gravity field.

Such an experiment was conducted at the ILL†. In order to avoid distortions by the
much larger electromagnetic force the experiment was accomplished with neutrons. It
could be shown that the behavior of a neutron in the gravitational field on the surface of
the earth agrees fully with the predictions calculated with the Schrödinger equation.[17].

This result can be understood as a confirmation showing the validity of the approach
taken.

4.1.2 Planet orbits and perihelion rotation of classical particles

To give results for UR comparable to those of GR it must be formulated for classical
particles. So we need to find out how wave function and classical particles relate to each
other.

†Institut Laue-Langevin in Grenoble
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This can be achieved going back to the early days of quantum mechanics. Then a
formalism was introduced determining how mechanical quantities must be “translated“
to give quantum physical quantities. This translation scheme shows that a classical
potential enters formally unaltered the Schrödinger equation in position representation.
In turn this means that a potential in a Schrödinger equation expressed with the position
operator formally unaltered describes the potential of a classical Hamilton equation. This
relation offers the easiest way to calculate trajectories of particles in UR.

How can the Schrödinger equation describe the behavior of such large structures
as planets with their huge amount of particles? In the gravitational approximation the
interaction between the individual particles is neglected and only their interaction with
the central gravitational force is taken into account. The Schrödinger equation can be
understood as describing one representative particle. All others as the whole planet show
the same behavior.

GR tells us that particles under the influence of gravitation move along of geodetic
lines. The Hamilton equation with the re-translated potential describes the trajectories
of particles enabling a comparison with the results of UR.

The effective potential in the radial parts of the Schrödinger equations (67) respective
(68) simplified by setting A = 1 resp. f = 1 is given by

Veff =
h̄2

2m0

(
κ̂2 +

l (l + 1)

r2
− 2

rBr

)
. (72)

This expression interpreted as a classical potential is equal to that of Newton’s celes-
tial mechanics if the parameter rS introduced in equation (69) is identical with the
Schwarzschild radius

rS =
2GM

c2
(73)

(G gravitational constant, M mass of the central star) and if as usual h̄2l(l+1) is replaced
by the square of the classical angular momentum.

This can be shown by retranslating the simplified Schrödinger equations using the
effective potential (72) giving the original Hamilton function

p2r
2m0

+
L2

2m0r2
− Gm0M

r
= E

where pr stands for the radial momentum.
Without simplifications the found Schrödinger equation of gravitation is equivalent to

the Einstein equation in spaces with spherical symmetry. This can be seen comparing the
trajectories for massive particles found with the Schrödinger equation with the geodetic
lines of the external Schwarzschild solution.

Equations (67) respective (68) describe the effective potentials

Veff =
h̄2

2m0

(
κ̂2 +

(
1− rS

r

) l (l + 1)

r2
− 2

rBr

)
. (74)

This potential (also with h̄2l(l+1) replaced by the square of the classical angular momen-
tum) generates the same trajectories (with perihelion rotation) as found with a lengthy
calculation for the Schwarzschild solution.[18]

The metric coefficient in the term h̄2A
r2

d
dr

(
Ar2 dRS

dr

)
in equation (67) results as shown

in equation (70) in a negligibly small change of the radius of a planet by rB/2.

4.1.3 Barycentric coordinate time

A problem with local time arises in GR because of the different clock rates at different
locations in the solar system. This would mean that time runs with different speed at the
positions of the different planets, which contradicts observations.

To overcome the problem in 1991 the barycentric coordinate time was introduced, a
uniform variable of time for all heavy bodies in the solar system.[19] It can be understood
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as the time at the position of the barycenter of a solar system without mass. This
common time for the whole solar system allows a correct description of the movement of
the various bodies.

The barycentric coordinate time is the time of UR. It is the time used in the Schrödinger
equation of gravity.

The time deducted from 6d does not only hold in our solar system but holds univer-
sally. This is shown, for example, in the fact that the behavior of the galaxies is described
quite well by Newton’s theory of gravity with its uniform time.

The necessity of the barycentric coordinate time is a strong endorsement of the UR
approach.

4.1.4 Black holes

Black Holes often are understood as a consequence of the pole of the 1/r part in the
metric of GR. They are interpreted as huge mass accumulation concentrated in a volume
smaller than its Schwarzschild radius. For a quantum field theory of gravitation as UR a
pole in the metric coefficients must not mean a pole in the wave function. Furthermore
the metric coefficients are given by series in 1/r with unknown zeros and poles.

Although gravitation as deducted here only holds for large radii, UR offers an expla-
nation for the effects found in cosmology attributed to black holes. To do this we need
to take a closer look at the Schrödinger equation of gravity.

In Newtons celestial mechanics the orbits of the planets around the sun are calculated
in center of mass coordinates, what in line with the observations means that the sun is
moving under the influence of the planets. The point around which planets and sun orbit
is the barycenter. Only if one mass is infinitely large the center of rotation lies in the
center of its mass.

That differs from GR, where spherical symmetry around the sun is assumed.
With UR, we have found that the center of a spherical symmetry in 6d generates in 4d

an immovable attractor characterized by a radial force for large r proportional to −1/r2.
This immovability causes that all massive particles in the solar system are moving around
a fix center, given by r = 0 in the Schrödinger equation, the barycenter. The radius in
the Schrödinger equation of gravitation describes the distance from this center and not
the distance between center and center of two particles as in center of mass coordinates.

As we have seen an immobile center corresponds to a huge mass. If this mass
furthermore is invisible it often is interpreted as a black whole.

Attractors result from a feature of 6d space. Their strength expressed in the metric
coefficients is defined essentially by a parameter with the unit of a mass. Its value is
not given by the symmetry. By measurement it has exactly the strength to stabilize the
surrounding arrangement of matter. (For the generation of mass and gravity see also
section cosmology in part 4 of the series.)

It is helpful to consider separately the universal effects derived from the 6d symmetry
and the secondary effects arising due to the gravity of the mass generated in 4d.

Universal is the attractor and a unique time. Their action allows explaining celestial
structures.

By the transition to 4d matter is generated that also exerts gravity which generates
secondary effects (see section 5). Over time the matter is not homogeneous but forms
individual bodies. These bodies interact with each other according to the same law of
force as the attractor. Each of these bodies generates its own local metric but this does
not influence in the larger scale the original one.

The strength of the attractor is not given by the theory. So the value of its mass can
be understood as an adaption parameter selectable to explain the compensatory effects
of 4d physics.

4.2 Particles without rest mass

Some effects to proof the validity of GR are related to the behavior of particles without
rest mass – what usually means light. In the following it is demonstrated that also
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UR describes these effects – light deflection, Shapiro effect, redshift and time dilation –
correctly.

4.2.1 Light deflection

To describe the deflection of light moving in the gravitational field e.g. of a star the
relativistic equation (37) has to be used. No rest mass means a = 0 what gives

r2

A

∂2ψ

∂T 2
− ∂

∂r

(
r2A

∂ψ

∂r

)
+ l(l + 1)ψ = 0. (75)

Separating equation (75) with an ansatz

ψ = e−i
E
h̄ R(r) (76)

gives a radial part

A

r2
d

dr

(
Ar2

dR

dr

)
+

(
E2

h̄2c2
−A

l (l + 1)

r2

)
R = 0 (77)

with an effective potential

Veff =
E2

h̄2c2
−
(
1− rS

r

) l (l + 1)

r2
. (78)

Introducing as in the last section instead of h̄2l (l + 1) the square of the classical angular
momentum this effective potential is equal to the potential found with the Schwarzschild
solution and describes the trajectories of a massless particle i.e. light deflection.[18]

4.2.2 Shapiro effect

Using the coefficients given in equation (42) and keeping in mind that for massless parti-
cles κ = k for large r the solution of equation (37) is given by

ψ =

(
1

r
+
z2
r2

+ . . .

)
e
i
(
kct+kr+krSln

(
r
r0

))
. (79)

r0 is an arbitrary phase term introduced by dimensional reasons.
For light speed and phase velocity are the same. This allows deducting the speed of

light in a gravitational field by examining the exponent of this equation.
Introducing wavelength λ and oscillation period ∆ we find

kc∆ = 2π and k
(
λ+ rS ln

(
1 +

λ

r

))
≈ kλ

(
1 +

rS
r

)
= 2π

resulting in

cS =
λ

∆
≈ c

1 + rS
r

(80)

The so found reduction of the speed of light in a gravitational field is as Shapiro effect
experimentally confirmed. [20, 21]

4.2.3 Redshift and time dilation

Gravitational redshift and time dilation are not effects of GR. They already follow from
special relativity and the equivalence principle. Nevertheless they are often introduced
with the experimental proofs of GR.

For UR it can be be deducted as follows: Equation (38) with a = 0 describes light
moving in radial direction in the gravity field of a spherical body. It is formulated in a
Riemannian metric.
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Introducing a local time

cdtl(r) =
√
AdT =

√
1− rS

r
dT

its first term can be written as ∂2ψ
c2∂t2l

.

Introducing ρ as in equation (52) in the second term ∂
∂r

(
r2A∂ψ

∂r

)
and noting that

with equation (54) ∆ρ ≈ ∆r shows that the effect of A is negligibly small.
With these measures equation (75) simplifies to an equation in an Euklidean space

with the variable time tl. This means that clocks located at fixed positions, but not too
far apart, run at different speeds depending on the radius of their position.

The effect is known as gravitational time dilation.
Comparing to the run of time without gravity – what is equal to a position far away

from the center – it holds dtr = dt∞
√
1− rS/r. This means dT = cdt∞.

Introducing the frequency ν = 1/T gives νr = ν∞/
√

1− rS/r.
Relating the frequency of a signal in two distances r1 and r2 from the center with

r2 > r1 we get ν2
ν1

=
√

1−rS/r1
1−rS/r2 . This variation of frequency is known as gravitational

redshift, as the color of light with increasing distance to the center of a star is shifted to
lower frequencies.

5 Particles interacting by gravity

There are two ways to express interaction by gravity in UR.
The exact way to describe for example a double star is looking for a symmetry in 6d

which in 4d produces a metric that generates the effects on a planet particle expected by
a double star. The found metric coefficients then allow drawing conclusions how the two
stars interact.

As it is difficult to imagine such a 6d symmetry an inverse approach might be more
advantageous. It means assuming promising symmetries of the 6d space and comparing
their consequences in 4d with observation results.

An easier way to handle interaction is a generalization of the found interaction be-
tween central and planet particle with spherical symmetry.

Mass enters the 4d Lagrangian in two different ways. The metric coefficients define
the mass of a gravitational center. It occurs only for special 6d symmetries. In contrast
the mass of a planet particle is given by its Compton wavelength and stands for the two
6d momenta not accessible in 4d.

But both types of mass have the same characteristics. To show this the center of
symmetry is to be positioned in the center of the planet particle that is assumed to
be spherical. As the mass of the planet particle in the Schrödinger equation does not
influence the gravitational field of the central particle there is no feedback of the mass of
the new planet particle – that in this situation is much larger than the central one – on
the force it feels of the central particle. Therefore a calculation gives the same equation
of motion with the two masses interchanged and describes correctly the trajectory of the
new planet particle. It is the situation that the sun orbits the earth.

Equation (67) respective (68) show that the potential of the interacting force between
the two particles is given by m0c

2

2
rS
r = Gm0M

r i.e. is proportional to the product of the
two masses. The proportionality expresses Newton’s third law actio = reactio.

This allows an extended interpretation of the interaction up to now understood as
the influence of the metric characterized by a central attractor on a planet particle. The
generation of entities with mass in 4d leads also to an interaction between these entities.
This gravitation can be understood as a force between any two particles. If the two
particles are spherical and far enough separated from each other the force is given by
K = −Gm0M

r2 and acts from center to center. Regarding equation (53) an additional
term proportional r2S/r

2 could make sense.
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If there are several particles the force field of each of them is not affected by the
masses of the other particles. Each particle sees these undisturbed fields of all other
particles. So not only two but any number of particles can interact in this way.

This description of particles interacting by gravitation in some way is a justification
of Newton’s approach. But there are differences. In Newton’s law the dependence of
gravitation on distance is fixed whereas here if the particles are coming closer together
more terms of the series describing gravitation can become active. So gravitational
interaction between large masses and/or on short distances is different.

The approach neglects the impact of the metric on the angular momentum. It is
therefore not exact but the neglects usually are small.

A galaxy can be understood as a collection of disjoint particles. The unique time of
the last section and the description of interaction given here can serve as a relativistic
justification of the often used Newtonian theory in calculating its behavior.

In section 8 will be described how starting with a wave function we can find the
quasi-classical particles of Rydberg atoms and their interacting. We can reverse this
concatenation from interacting classical particles to interacting quasi-particles to a wave
function of interacting particles. The result is a Schrödinger equation with a structure
known from interacting electrically charged particles (see e.g. [22])

ih̄
∂X

∂t
=
∑
i

− h̄2

2mi
∆X −G

∑
i<j

mimj

rij
X (81)

6 The UR counterpart to the energy-momentum tensor

The distinction in GR between internal and external solution with a defined boundary
between the two areas of validity contradicts the behavior of a wave function and can
hold only by approximation. In UR the difference between the two solutions must be
justified by other arguments.

The symmetry of the 6d space in UR or of the energy-momentum tensor in GR
define the structure of the fundamental equations (6d Lagrangian respective Einstein’s
equation). Solving Einstein’s equation or adapting a 4d to the 6d Lagrangian defines the
structure of the inherent metric, the metric coefficients and for UR also the wave function.

For the Schwarzschild solution e.g. the structure is expressed by two metric coeffi-
cients at their specific places. This structure defined by symmetry cannot be changed by
choosing another energy-momentum tensor (with the same symmetry). The tensor can
only modify the metric coefficients and the character of the gravitational center that is
defined by the parameters of the metric coefficients.

The same holds for UR assuming spherical symmetry. It results the same structure
with two metric coefficients. As for the Schwarzschild solution they are equal in the
S-type solution but have to be different for a general solution.

To get more information about the gravitational center than only its mass in UR
nothing like an energy-momentum tensor exists. Like mass also the other features must
be generated by the transition from 6d to 4d. The possibility to do this is given by
using eigenfunctions of higher order of the 6d equation of motion in generating the
non-interpretable Lagrangian L̂4.

This means not to consider only the limit of large r but also the behavior for finite
r with eigenfunctions depending also on the angular part of equation (13). As no matter
how the angular term in 6d looks like the solutions of the angular part in 4d will be
spherical harmonics to achieve adaption spherical harmonics of higher order must be
used. (This is different to the procedure given in section 4. There external particles in
the modified isotropic Klein-Gordon equation are considered, here the metric coefficients
are modified.) The metric coefficients necessary to adapt an interpretable 4d Lagrangian
then are more differentiated what gives more detailed information about the gravitational
center.

Choosing eigenfunctions of higher order of the 6d equation of motion also does not
change the symmetry of the spacetime considered and therefore the structure of the 4d
metric.
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The entire equation of motion given in equation (37) is equivalent to Einstein’s equa-
tion with an energy-momentum tensor (at least in the case of spherical symmetry). This
can be shown implementing the metric of the internal Schwarzschild solution (metric co-
efficients called g11 and g22) in a Lagrangian of the type used in UR. The two originally
different metric coefficients by multiplication with the factor

√
−g11g22 coming from the

Jacobian will become equal as in the external Schwarzschild solution. The other parts
will be multiplied with the factor. This is just equation (37).

This procedure could also be helpful in solving the double star problem.

7 Some conclusions

7.1 Absence of feedback

The Schrödinger equation shows that the mass of the (satellite) particle does not influence
the gravitational field of the central particle. This behavior known also of two electrically
charged particles where each particle sees only the uninfluenced field of the other is
classically hard to explain. UR offers an explanation: The gravitational field and the
particle together are the 4d realization of a 6d symmetry and cannot disturb the deducted
symmetry. That not the combined field is acting is not caused by any smallness of the
(satellite) particle ("test particle") but is based on the derivation of force and particle.

7.2 Principle of equivalence

Basic to GR is the equivalence principle i.e. the postulate of equality of inertial and
gravitational mass. For UR this equality must not be postulated but is a result. It is

based on the use of the mass term a =
m2

0c
2

h̄2 of equation (23) to characterize the satellite
particle. It is its only mass. As A and f do not depend on the mass of the (satellite)
particle this unique mass enters the Schrödinger equations (64) or (65) in accord to the
definition of inertial and gravitational mass in the terms of kinetic and potential energy.

7.3 Classical mechanics

Newton’s second law of mechanics "force equals mass times acceleration" has the problem
that the quantities “force” and “mass” are not defined independently but both together
by this law. Introducing a gravitational force enabled him to calculate the orbits of the
solar satellites. Inverting Newton’s argumentation and using gravity as deducted from
6d symmetry to define an entity "force" solves the problem in defining the second law.
The Hamilton function describing satellite orbits then can be used to deduct the whole
of Newton’s mechanics.

8 Macroscopic effects of quantum gravitation

In section 4.1.1 it is shown that the Schrödinger equation of gravitation describes the
behavior of elementary particles in a gravitational field. But from the quantum character
of gravity also macroscopic effects result. To find a starting point to examine how grav-
itation can describe these macroscopic effects it is necessary to analyze the meaning of
"particle" in quantum mechanics.

There are two types of wave functions that come close to particles.

1. A vivid approach is given for a Schrödinger equation with a parabolic potential.
The wave function is bell shaped. This is the only situation in which in Heisenberg’s
uncertainty principle the equal sign holds. The wave function is maximally concen-
trated so that it could be understood as something like a particle, a quasi-particle,
oscillating around the minimum of the parable.

2. A more sophisticated approach are quasi-particles as they occur in Rydberg atoms.
It is based on the correspondence principle formulated by Bohr at the very be-
ginning of quantum physics: For effects with an action in the order of magnitude
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of Planck’s quantum of action quantum mechanics i.e. the wave function gives
the right answer, for much larger action classical mechanics with its trajectories of
particles.[23]
In the transition area a mixed form between wave function and particle should

exist. Large action usually means high quantum numbers. So highly excited quan-
tum systems should show elements of convergence to classical behavior.
And indeed in actual experiments it is demonstrated that this transient area be-

tween the two approaches exists. The behavior of highly excited quantum systems
approaches that of classical systems and the behavior of its wave function approxi-
mates that of a particle.
This can be shown with Rydberg atoms, atoms in which one or more electrons

are highly excited but still bound. The behavior of such an electron shows many
aspects of a localized classical electrically charged particle orbiting the nucleus.[24]
Position and momentum can be measured simultaneously with sufficient exactness.
"Particles" of this type ("Rydberg-particles") are another link between the particles

of GR and the wave functions of UR. On the one hand the Schrödinger equation
describes their behavior and on the other hand it can be attributed to a classical
particle.

Both types are regarded in the following.

8.1 Planet orbits II

Planets are moving on ellipses. This can be shown with quasi-particles of the first type by
examining the radial part of the Schrödinger equation nearby the minima of its effective
potential, the positions where classical particles move.

8.1.1 Eccentricity and perihelion rotation

Considering at first the simplified effective potential given in equation (72) we find minima
for

rminl
= rBl (l + 1) . (82)

A series expansion around a minimum Vminl
gives in second order

V̄effl (r) =
1

2
m0ω

2
Cl
r̄2l (83)

with

V̄effl (r) = Veffl (r)− Vminl
, r̄l = (r − rminl

) and ωCl
=

h̄

r2Bm0

√
1

l3 (l + 1)
3 .

It is known that the solution of a Schrödinger equation with this parabolic potential
can be understood as describing the oscillation of a quasi-particle with frequency ωCl

.
Introducing the oscillation period by TCl

= 2π
ωCl

we find

T 2
Cl

rmin3l
=

4π2

GM
. (84)

This period is identical with the known orbital period of a planet with distance rminl
from the sun given by Kepler’s third law. As oscillation period and orbital period are
equal closed orbits result.

Combining the circular orbit and the radial oscillation in first order of the oscillation
amplitude it results according to Kepler’s first law an ellipse with the sun being placed in
one of the focal points and the eccentricity being defined by the oscillation amplitude.

As the effective potential is not affected by the oscillation eccentricity depends only
on the mass of the planet and not on the mass of the central star. Because the effect
of distortions is greater on a small object this could explain why eccentricity in cosmic
dimensions is a fast changing parameter.

Oscillation period and orbital period are identical only for a Newtonian style gravita-
tional force. If there occur additional terms in the effective potential not only the minima
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will shift but also the shape of the minima and hence the width of the parable and the
frequency of oscillation. By this the accord between orbital and oscillation period gets
lost, the ellipses no longer close and rosettes are produced. As the aberration in our
solar system proceeds very slowly it can be interpreted as a rotation of the apsides of the
planet orbits.

Starting with the effective potential of the full Schrödinger equation given in equation
(74) and calculating like above the oscillation period ωRl

(the index R means "relativistic")
we get

ω2
Rl

ω2
Cl

= 1 +
3rS

rBl (l + 1)
. (85)

By this nonsynchronous oscillation the perihelion angle advances during each orbit of
the planet by an angle

∆ϕ =
3rSπ

rBl (l + 1)
=

3rSπ

rminl

. (86)

A result that coincides with that of GR.

8.1.2 Disk structure

A similar approach as in the last section when the effective potential was used to calculate
the radial behavior can be employed on the polar angle.

The part depending on the polar angle in the Schrödinger equation given in equation
(64) can be written as

∂

∂µ

((
1− µ2

) ∂P
∂µ

)
+

(
l (l + 1)− m2

(1− µ2)

)
P = 0 . (87)

The second term can be understood as an effective potential. Its minimum is µ =
cos (θ) = 0 i.e. θ = π

2 and m = 0. This means that for all l the planets orbit in a plane
going through the center of the central body.

8.1.3 Structure of a solar system

Using Rydberg-particles means mixing features of particle- and gravity-physics. This
approach is new, so new results can be expected.

In section 4.1 it was found that Laguerre functions are a good approximation of the
solution of the Schrödinger equation for bound particles. Examining their behavior in
highly exited states i.e. for large main quantum numbers n should give this information.

With increasing n the Laguerre polynomials contain increasing powers of r. The
exponential damping factor nevertheless allows the Laguerre functions to be normalized.
The damping effect however occurs for larger and larger r. The limit is reached for the
asymptotic approximation Rn,las (r)

Rn,las (r) = (−1)
l n

l+1

√
π

(rB
2r

) 3
4

cos

(
2

√
2r

rB
− 3π

4

)
(88)

when the polynoms are able to neutralize the damping factor.[25]
The probability dW (r) to find a particle in a spherical shell with radius r then is

given by

dW (r) = 4π|Rn,las (r) |
2r2dr

= r2Bn
2(l+1)

√
2r

rB
cos2

(
2

√
2r

rB
− 3π

4

)
dr. (89)

This probability is divergent what means that the asymptotic wave function describes no
quantum physical state.

As the asymptotic wave function is the limit of convergent wave functions it can be
assumed that for large but limited n wave functions exist that in the area of interest are
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Figure 1: Matter density in the surrounding of a central star depending on distance from
center

described by the asymptotic wave function only marginally influenced by the damping
factor. Outside of this area the damping factor acts stronger and stronger and ensures
convergence.

The factor r2Bn
2(l+1) then can be implemented in the normalization constant.

This modified asymptotic approximation shows that single quantum numbers in the
transition area are no longer appropriate to characterize a state. The wave function is
the same for all n and l. The emerging particles are to be understood as the result of a
superposition of many wave functions.

Table 1: Correlation between planet radii and maxima of radial mass density

Planets Maxima of matter density

Mercury 2nd maximum
Venus 3rd maximum
Earth 4th maximum
Mars 5th maximum
Jupiter 10th maximum
Saturn 13th maximum
Uranus 19th maximum
Neptune 19th maximum

The graph of dW (r)/dr of equation (89) as shown in figure 1 demonstrates in the sur-
rounding of a gravitational center for the probability density a sequence of areas with
slowly increasing maxima separated by areas with vanishing probability. Introducing a
running index ν = 1, 2 . . . counting the radii of maximal density rmaxν

starting at the
center the distance between two maxima increases roughly with the square of ν.

Summing over many particles probability density can be understood as matter den-
sity. So the graph means that in the surrounding of a central star by quantum physical
reasons there are areas where matter cannot stay permanently and areas where matter ac-
cumulates. The maxima therefore are the areas where planets could evolve. The minima
can be seen in the gaps of ring systems as e.g. that of Saturn.
As mentioned in section 2 introducing fictive particles the mass of these entities is un-
defined and must be defined by experiment. This allows using the mass dependent
parameter rB here as an adaption parameter.

Correlating the (numerically calculated) positions of the maxima of the matter density
with the positions of the planets Mercury till Neptune for rB = 5.83 ∗ 109 m as shown in
table 1 for the inner planets Mercury till Mars generates perfect coincidence in sequence
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and radius. Also the outer planets can be aligned but there are many unoccupied maxima
so that it is not quite clear, why a planet is just in a specific maximum.

The forbidden areas can be used to argue why the peripheral parts of the cloud our
solar system once arose out of did not vanish in space but could built up a structure.

The exponential damping factor allowing the wave function to be normalized can
help to argue why the trans-Jupiter planets become smaller.
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