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Abstract. Applying the pothole method on the factors of numbers of the

form 2n − 1, we prove that if 2n − 1 has carries of degree at most

κ(2n − 1) =
1

2(1 + c)
b

logn

log 2
c − 1

for c > 0 fixed, then the inequality

ι(2n − 1) ≤ n− 1 + (1 +
1

1 + c
)b

logn

log 2
c

holds for all n ∈ N with n ≥ 4, where ι(·) denotes the length of the shortest
addition chain producing ·. In general, we show that all numbers of the form

2n − 1 with carries of degree

κ(2n − 1) := (
1

1 + f(n)
)b

logn

log 2
c − 1

with f(n) = o(logn) and f(n) −→∞ as n −→∞ for n ≥ 4 then the inequality

ι(2n − 1) ≤ n− 1 + (1 +
2

1 + f(n)
)b

logn

log 2
c

holds.

1. Introduction

An addition chain producing n ≥ 3, roughly speaking, is a sequence of numbers
of the form 1, 2, s3, s4, . . . , sk−1, sk = n where each term is the sum of two earlier
terms- not necessarily distinct - in the sequence, obtained by adding each sum
generated to an earlier term in the sequence. The length of the chain is determined
by the number of entries in the sequence excluding the mandatory first term 1,
since it is the only term which cannot be expressed as the sum of two previous
terms in the sequence. There are numerous addition chains that result in a fixed
number n; In other words, it is always possible to construct as many addition chains
producing a fixed number positive integer n as n grows in magnitude. The shortest
among these possible chains producing n is regarded as the optimal or the shortest
addition chain producing n. There is currently no efficient method for getting the
shortest addition yielding a given number, thus reducing an addition chain might
be a difficult task, thereby making addition chain theory a fascinating subject to
study. By letting ι(n) denotes the length of the shortest addition chain producing n,
then Arnold Scholz conjectured and alfred Braurer proved the following inequalities
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Theorem 1.1 (Braurer). The inequality

m+ 1 ≤ ι(n) ≤ 2m

for 2m + 1 ≤ n ≤ 2m+1 holds for m ≥ 1.

Conjecture 1.1 (Scholz). The inequality

ι(2n − 1) ≤ n− 1 + ι(n)

holds for all n ≥ 2.

It has been shown computationally by Neill Clift, that the conjecture holds for
all n ≤ 5784688 and in fact it is an equality for all exponents n ≤ 64 [2]. Alfred
Brauer proved the Scholz conjecture for the star addition chain, a special type of
addition chain where each term in the sequence obtained by summing uses the
immediately subsequent number in the chain. By denoting with ι∗(n) as the length
of the shortest star addition chain producing n, it is shown that (See [1])

Theorem 1.2. The inequality

ι∗(2n − 1) ≤ n− 1 + ι∗(n)

holds for all n ≥ 2.

In relation to Conjecture 1.1, Arnold Scholz postulated that Conjecture 1.1 can
be improved in general. In particular, Alfred Braurer [1] proved the inequality

ι(n) <
log n

log 2
(1 +

1

log log n
+

2 log 2

(log n)1−log 2
)

for 2m ≤ n < 2m+1 for all sufficiently large n.
Quite a particular special cases of the conjecture has also be studied by many
authors in the past. For instance, it is shown in [4] that the scholz conjecture holds
for all numbers of the form 2n − 1 with n = 2q and n = 2s(2q + 1) for s, q ≥ 0. If
we let ν(n) denotes the number of 1′s in the binary expansion of n for m = 2n − 1,
then it is shown in [3] that the Scholz conjecture holds in the case ν(n) = 5.

In this paper, we combine the factor method and the newly introduced ”fill in
the pothole” method with the notion of carries to study the shortest or the optimal
addition chains producing numbers of the form 2n − 1 and the Scholz conjecture.
Given any number of the form 2n − 1, we obtain the general decomposition

2n − 1 = (2b
n
2 c − 1)(2b

n
2 c + 1) +

(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 )

which eventually yield the following decomposition 2n − 1 = (2
n
2 − 1)(2

n
2 + 1) in

the case n ≡ 0 (mod 2) and

2n − 1 = (2
n−1
2 − 1)(2

n−1
2 + 1) + 2n−1

in the case n ≡ 1 (mod 2). We iterate this decomposition up to a certain desired
frequency and apply the factor method on all the factors obtained from this de-
composition. We then apply the pothole method to obtain a bound for the shortest
addition chain producing the only factor of form 2v − 1. The length of the shortest
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addition chains of numbers of the form 2v+1 is easy to construct, by first construct-
ing the shortest addition chain producing 2v, adding the first term of the chain to
the last term and adjoining to the chain. That is, the chain

1, 2, 22, · · · , 2v, 2v + 1

is the shortest addition chain producing 2v+1 of length ι(2v+1) = ι(2v)+1 = v+1.
Earlier on, the author combined the method of filling the potholes and the factor
method to prove the improved inequality

Theorem 1.3.

ι(2n − 1) ≤ n+ 1−
b log n

log 2 c∑
j=1

ξ(n, j) + 3b log n

log 2
c

for all n ∈ N with n ≥ 4 for 0 ≤ ξ(n, j) < 1, where ι(·) denotes the length of the
shortest addition chain producing ·.

The following definitions and elementary properties of addition chains and the
shortest addition chain producing n are worth noting parsing the proof of the
inequalities in the sequel.

Definition 1.4. Let n ≥ 3, then by the addition chain of length k − 1 producing
n, we mean the sequence of positive integers

1, 2, . . . , sk−1, sk

where each term sj (j ≥ 3) in the sequence is the sum of two earlier terms in the
sequence, with the corresponding sequence of partition

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n

with ai+1 = ai + ri and ai+1 = si for 2 ≤ i ≤ k. We call the partition ai + ri
the ith generator of the chain for 2 ≤ i ≤ k. We call ai the determiners and
ri the regulator of the ith generator of the chain. We call the sequence (ri) the
regulators of the addition chain and (ai) the determiners of the chain for 2 ≤ i ≤ k.
The determiners are the terms produced by summing of previous terms, whereas
the regulators are chosen from previous terms in the sequence.

Definition 1.5. Let the sequence 1, 2, . . . , sk−1, sk = n be an addition chain pro-
ducing n with the corresponding sequence of partition

2 = 1 + 1, . . . , sk−1 = ak−1 + rk−1, sk = ak + rk = n.

Then, we call the sub-sequence (sjm) for 1 ≤ j ≤ k and 1 ≤ m ≤ t ≤ k a
sub-addition chain of the addition chain producing n. We say it is complete
sub-addition chain of the addition chain producing n if it contains exactly the first
t terms of the addition chain. Otherwise we say it is an incomplete sub-addition
chain.

Lemma 1.6. Let ι(n) denotes the length of the shortest addition chain producing
n. Then we have the inequality

b log n

log 2
c ≤ ι(n).
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Proof. The proof of this Lemma can be found in [1]. �

Lemma 1.7. Let ι(n) denotes the length of the shortest addition chain producing
n. If a, b ∈ N then

ι(ab) ≤ ι(a) + ι(b).

Proof. The proof of this Lemma can be found in [1]. �

2. The notion of carries

We devote this section to the study of the notion of carries and its number theo-
retic properties. It turns out that this notion plays an important role in controlling
the length of an addition for numbers of the form 2n − 1. Short addition chains
with small carries almost satisfy the Scholz conjecture . We launch the following
languages.

Definition 2.1. Consider the decomposition

2n − 1 = (2b
n
2 c − 1)(2b

n
2 c + 1) +

(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 )

for n ≥ 2. Then the non-zero remainder

η(2n − 1) :=
(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 )

is the level one carry of 2n − 1. We say that 2n − 1 is free of level one carries if
η(2n − 1) = 0. By letting

m = bn
2
c

then we obtain the decomposition

2m − 1 = (2b
m
2 c − 1)(2b

m
2 c + 1) +

(1− (−1)m)

2
(2m−(1−(−1)

m) 1
2 )

and we denote the carry with

η(2m − 1) =
(1− (−1)m)

2
(2m−(1−(−1)

m) 1
2 )

and we say it is the level two carry of 2n− 1 if η(2m− 1) 6= 0. In general, we denote
the level k carry of 2n − 1 as the remainder

η(2r − 1) =
(1− (−1)r)

2
(2r−(1−(−1)

r) 1
2 )

with

r = b n
2k
c.

We say that 2n−1 is free of level k carries if η(2r−1) = 0. The number of non-zero

levels of carry of 2n − 1 for all 1 ≤ k ≤ b lognlog 2 c is the degree of carry of 2n − 1.

Proposition 2.1. The number 2n − 1 (n ≥ 2) is free of level one carry if and
only if n ≡ 0 (mod 2).
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Proof. Suppose that 2n − 1 is free of level one carry, then

η(2n − 1) =
(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 ) = 0.

This is only possible with (1 − (−1)n) = 0 and when n ≡ 0 (mod 2). Conversely,
suppose that n ≡ 0 (mod 2) then n

2 ∈ N and we can write

2n − 1 = (2
n
2 − 1)(2

n
2 + 1)

and we see that

η(2n − 1) = 0.

�

Integers of the form 2n − 1 with high degrees of carry serve as an obstruction to
achieving the inequality

ι(2n − 1) ≤ n− 1 + ι(n)

[ι(n) is the shortest addition chain producing n] using our current method. At best
avoiding them can yield progress on the conjecture using the current method but
only for a specialized set of integers of the form 2n− 1 with low degrees of carry. It
turns out that the nature of the exponents in large part characterizes integers with
high degree (resp. low degree) carries. Encountering integers of the form 2n−1 with
exponents giving rise to high degree carries can be controlled in a way to minimize
the corresponding length of the addition chain. At the moment we prove that we
can obtain a chain of small length for numbers 2n− 1 with exponents giving rise to
low degree carries.

3. Improved inequality using the notion of carries

In this section, we prove an explicit upper bound for the length of the shortest
addition chain producing numbers of the form 2n− 1. We begin with the following
important but fundamental result.

Theorem 3.1. If 2n − 1 has carries of degree at most

κ(2n − 1) =
1

2(1 + c)
b log n

log 2
c − 1

for c > 0 fixed, then the inequality

ι(2n − 1) ≤ n− 1 + (1 +
1

1 + c
)b log n

log 2
c

holds for all n ∈ N with n ≥ 4, where ι(·) denotes the length of the shortest addition
chain producing ·.

Proof. For a fixed c > 0 let 2n − 1 has at most

1

2(1 + c)
b log n

log 2
c − 1

degrees of carries. Next decompose the number 2n−1 and obtain the decomposition

2n − 1 = (2b
n
2 c − 1)(2b

n
2 c + 1) + η(2n − 1)

where

η(2n − 1) :=
(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 )
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is the level one carry of 2n − 1. It is easy to see that we can recover the general
factorization of 2n− 1 from this identity according to the parity of the exponent n.
In particular, if n ≡ 0 (mod 2), then we have

2n − 1 = (2
n
2 − 1)(2

n
2 + 1)

and

2n − 1 = (2
n−1
2 − 1)(2

n−1
2 + 1) + 2n−1

if n ≡ 1 (mod 2). By combining both cases, we obtain the inequality

ι(2n − 1) ≤ ι((2bn2 c − 1)(2b
n
2 c + 1)) + η(2n − 1).

Applying Lemma 1.7, we obtain further the inequality

ι(2n − 1) ≤ ι(2bn2 c − 1) + ι(2b
n
2 c + 1) + η(2n − 1)(3.1)

Again let us set bn2 c = k in (3.12), then we obtain the general decomposition

2k − 1 = (2b
k
2 c − 1)(2b

k
2 c + 1) + η(2k − 1)

where

η(2k − 1) =
(1− (−1)k)

2
(2k−(1−(−1)

k) 1
2 )

is the carry of 2k− 1. It is easy to see that we can recover the general factorization
of 2k−1 from this identity according to the parity of the exponent k. In particular,
if k ≡ 0 (mod 2), then we have

2k − 1 = (2
k
2 − 1)(2

k
2 + 1)

and

2k − 1 = (2
k−1
2 − 1)(2

k−1
2 + 1) + 2k−1

if k ≡ 1 (mod 2). By combining both cases, we obtain the inequality

ι(2k − 1) ≤ ι((2b k2 c − 1)(2b
k
2 c + 1)) + η(2k − 1).

Applying Lemma 1.7, we obtain further the inequality

ι(2k − 1) ≤ ι(2b k2 c − 1) + ι(2b
k
2 c + 1) + η(2k − 1)

= ι(2b
1
2 b

n
2 cc − 1) + ι(2b

1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)(3.2)

so that by inserting (3.13) into (3.12), we obtain the inequality

ι(2n − 1) ≤ ι(2b 12 bn2 cc − 1) + ι(2b
1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)

+ ι(2b
n
2 c + 1) + η(2n − 1).(3.3)

Next we iterate the factorization up to frequency s to obtain

ι(2n − 1) ≤ ι(2bn2 c + 1) + η(2n − 1) + ι(2b
1
2 b

n
2 cc − 1) + ι(2b

1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)

+ · · ·+ ι(2
n
2s−ξ(n,s) − 1) + ι(2

n
2s−ξ(n,s) + 1) + η(2b

n

2s−1 c − 1)(3.4)

where 0 ≤ ξ(n, s) < 1 for an integer 2 ≤ s := s(n) fixed to be chosen later. For
instance,

ξ(n, 1) = (1− (−1)n)
1

4
< 1

and

ξ(n, 2) = (1− (−1)n)
1

8
+ (1− (−1)k)

1

4
< 1
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with

k := bn
2
c

and so on. Indeed the function ξ(n, s) for values of s ≥ 3 can be read from exponents
of the terms arising from the iteration process. It follows from (3.15) the inequality

ι(2n − 1) ≤
s∑

v=1

n

2v
+ s+ 2

s∑
j=1

∑
η(2m−1)6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)

= n(1− 1

2s
) + s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)(3.5)

where the term
s∑
j=1

∑
κ(2m−1) 6=0
m=b n

2j−1 c

1

counts the number of all non-zero carry of 2n − 1 up to level s and 0 ≤ θ(n, s) :=
s∑
j=1

ξ(n, j) and 2 ≤ s := s(n) fixed, an integer to be chosen later. It is worth noting

that

θ(n, s) :=

s∑
j=1

ξ(n, j) = 0

if n = 2r for some r ∈ N, since ξ(n, j) = 0 for each 1 ≤ j ≤ s for all n which are
powers of 2. It is also important to note that the 2s term is obtained by noting that
there are at most s terms with odd exponents under the iteration process and each
term with odd exponent contributes 2, and the other s term comes from summing
1 with frequency s finding the total length of the short addition chains producing
numbers of the form 2v+1. Now, we set k = n

2s −ξ(n, s) and construct the addition

chain producing 2k as 1, 2, 22, . . . , 2k−1, 2k with corresponding sequence of partition

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23 . . . , 2k−1 = 2k−2 + 2k−2, 2k = 2k−1 + 2k−1

with ai = 2i−2 = ri for 2 ≤ i ≤ k + 1, where ai and ri denotes the determiner and
the regulator of the ith generator of the chain. Let us consider only the complete
sub-addition chain

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23, . . . , 2k−1 = 2k−2 + 2k−2.

Next we extend this complete sub-addition chain by adjoining the sequence

2k−1 + 2b
k−1
2 c, 2k−1 + 2b

k−1
2 c + 2b

k−1

22
c, . . . , 2k−1 + 2b

k−1
2 c + 2b

k−1

22
c + · · ·+ 21.

Since ξ(n, s) = 0 if n = 2r and 0 ≤ ξ(n, s) < 1 if n 6= 2r, we note that the adjoined
sequence contributes at most

b log k

log 2
c = b

log( n2s − ξ(n, s))
log 2

c = b log n− s log 2

log 2
c = b log n

log 2
c − s
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terms to the original complete sub-addition chain, where the upper bound follows
by virtue of Lemma 1.6. Since the inequality holds

2k−1 + 2b
k−1
2 c + 2b

k−1

22
c + · · ·+ 21 <

k−1∑
i=1

2i

= 2k − 2

we insert terms into the sum

2k−1 + 2b
k−1
2 c + 2b

k−1

22
c + · · ·+ 21(3.6)

so that we have
k−1∑
i=1

2i = 2k − 2.

Let us now analyze the cost of filling in the missing terms of the underlying sum.

We note that we have to insert 2k−2 + 2k−3 + · · · + 2b
k−1
2 c+1 into (3.17) and this

comes at the cost of adjoining

k − 2− bk − 1

2
c

terms to the term in (3.17). The last term of the adjoined sequence is given by

2k−1 + (2k−2 + 2k−3 + · · ·+ 2b
k−1
2 c+1) + 2b

k−1
2 c + 2b

k−1

22
c + · · ·+ 21.(3.7)

Again we have to insert 2b
k−1
2 c−1 + · · ·+ 2b

k−1

22
c+1 into (3.18) and this comes at the

cost of adjoining

bk − 1

2
c − bk − 1

22
c − 1

terms to the term in (3.18). The last term of the adjoined sequence is given by

2k−1 + (2k−2 + 2k−3 + · · ·+ 2b
k−1
2 c+1) + 2b

k−1
2 c + (2b

k−1
2 c−1 + · · ·+ 2b

k−1

22
c+1) + 2b

k−1

22
c+

· · ·+ 21.(3.8)

By iterating the process, it follows that we have to insert into the immediately
previous term by inserting into (3.19) and this comes at the cost of adjoining

bk − 1

2j
c − bk − 1

2j+1
c − 1

terms to the term in (3.19) for j ≤ b lognlog 2 c− s, since we are filling in at most b log klog 2 c
blocks with k = n

2s − ξ(n, s). It follows that the contribution of these new terms is
at most

k − 1−
⌊
k − 1

2b
log k
log 2 c

⌋
− b log k

log 2
c(3.9)

obtained by adding the numbers in the chain

k − 1− bk − 1

2
c − 1

bk − 1

2
c − bk − 1

22
c − 1
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...
...
...
...
...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...
...
...
...
...

b k − 1

2b
log k
log 2 c

c − b k − 1

2b
log k
log 2 c+1

c − 1.

By undertaking a quick book-keeping, it follows that the total number of terms in
the constructed addition chain producing 2k − 1 with k = n

2s − ξ(n, s) is

δ(2k − 1) ≤ k + k − 1−
⌊

k − 1

2b
log k
log 2 c+1

⌋
− b log k

log 2
c+ b log n

log 2
c − s

≤ n

2s−1
− 1−

⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
− b log n

log 2
c+ s+ b log n

log 2
c − s

=
n

2s−1
− 1−

⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
.(3.10)

By plugging the inequality (3.21) into the inequalities in (3.16) and noting that
ι(·) ≤ δ(·), we obtain the inequality

ι(2n − 1) ≤
s∑

v=1

n

2v
+ s+ 2

s∑
j=1

∑
η(2m−1)6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)

= n(1− 1

2s
) +

n

2s−1
− 1 + s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s)−
⌊ n

2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋(3.11)

= n− 1 +
n

2s
+ s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s)−
⌊ n

2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋

where we note that
s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1

counts the number of non-zero carries up to the s level for the number 2n − 1. By
taking 2 ≤ s := s(n) such that s = b lognlog 2 c which is the maximum frequency of the

iteration, then ⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
= 0

and we obtained that
s∑
j=1

∑
η(2m−1)6=0
m=b n

2j−1 c

1 ≤ 1

2(1 + c)
b log n

log 2
c − 1
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and the inequality

ι(2n − 1) ≤ n− 1− θ(n, b log n

log 2
c) + b log n

log 2
c+ 2 +

1

(1 + c)
b log n

log 2
c − 2

for θ(n, b lognlog 2 c) :=
b log n

log 2 c∑
j=1

ξ(n, j) > 0 with n ≥ 4 and the claimed inequality follows

as a consequence. �

Now we show that numbers of the form 2n − 1 with low degree carries almost
satisfy the Scholz conjecture.

Theorem 3.2. If 2n − 1 has carries of degree at most

κ(2n − 1) := (
1

1 + log n
)b log n

log 2
c − 1

then the inequality

ι(2n − 1) ≤ n− 1 + (1 +
2

1 + log n
)b log n

log 2
c

holds for all n ∈ N with n ≥ 4, where ι(·) denotes the length of the shortest addition
chain producing ·.

Proof. let 2n − 1 has at most

1

(1 + log n)
b log n

log 2
c − 1

degrees of carries. Next decompose the number 2n−1 and obtain the decomposition

2n − 1 = (2b
n
2 c − 1)(2b

n
2 c + 1) + η(2n − 1)

where

η(2n − 1) :=
(1− (−1)n)

2
(2n−(1−(−1)

n) 1
2 )

is the level one carry of 2n − 1. It is easy to see that we can recover the general
factorization of 2n− 1 from this identity according to the parity of the exponent n.
In particular, if n ≡ 0 (mod 2), then we have

2n − 1 = (2
n
2 − 1)(2

n
2 + 1)

and

2n − 1 = (2
n−1
2 − 1)(2

n−1
2 + 1) + 2n−1

if n ≡ 1 (mod 2). By combining both cases, we obtain the inequality

ι(2n − 1) ≤ ι((2bn2 c − 1)(2b
n
2 c + 1)) + η(2n − 1).

Applying Lemma 1.7, we obtain further the inequality

ι(2n − 1) ≤ ι(2bn2 c − 1) + ι(2b
n
2 c + 1) + η(2n − 1)(3.12)

Again let us set bn2 c = k in (3.12), then we obtain the general decomposition

2k − 1 = (2b
k
2 c − 1)(2b

k
2 c + 1) + η(2k − 1)

where

η(2k − 1) =
(1− (−1)k)

2
(2k−(1−(−1)

k) 1
2 )
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is the carry of 2k− 1. It is easy to see that we can recover the general factorization
of 2k−1 from this identity according to the parity of the exponent k. In particular,
if k ≡ 0 (mod 2), then we have

2k − 1 = (2
k
2 − 1)(2

k
2 + 1)

and

2k − 1 = (2
k−1
2 − 1)(2

k−1
2 + 1) + 2k−1

if k ≡ 1 (mod 2). By combining both cases, we obtain the inequality

ι(2k − 1) ≤ ι((2b k2 c − 1)(2b
k
2 c + 1)) + η(2k − 1).

Applying Lemma 1.7, we obtain further the inequality

ι(2k − 1) ≤ ι(2b k2 c − 1) + ι(2b
k
2 c + 1) + η(2k − 1)

= ι(2b
1
2 b

n
2 cc − 1) + ι(2b

1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)(3.13)

so that by inserting (3.13) into (3.12), we obtain the inequality

ι(2n − 1) ≤ ι(2b 12 bn2 cc − 1) + ι(2b
1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)

+ ι(2b
n
2 c + 1) + η(2n − 1).(3.14)

Next we iterate the factorization up to frequency s to obtain

ι(2n − 1) ≤ ι(2bn2 c + 1) + η(2n − 1) + ι(2b
1
2 b

n
2 cc − 1) + ι(2b

1
2 b

n
2 cc + 1) + η(2b

n
2 c − 1)

+ · · ·+ ι(2
n
2s−ξ(n,s) − 1) + ι(2

n
2s−ξ(n,s) + 1) + η(2b

n

2s−1 c − 1)(3.15)

where 0 ≤ ξ(n, s) < 1 for an integer 2 ≤ s := s(n) fixed to be chosen later. For
instance,

ξ(n, 1) = (1− (−1)n)
1

4
< 1

and

ξ(n, 2) = (1− (−1)n)
1

8
+ (1− (−1)k)

1

4
< 1

with

k := bn
2
c

and so on. Indeed the function ξ(n, s) for values of s ≥ 3 can be read from exponents
of the terms arising from the iteration process. It follows from (3.15) the inequality

ι(2n − 1) ≤
s∑

v=1

n

2v
+ s+ 2

s∑
j=1

∑
η(2m−1)6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)

= n(1− 1

2s
) + s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)(3.16)

where the term
s∑
j=1

∑
κ(2m−1) 6=0
m=b n

2j−1 c

1
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counts the number of all non-zero carry of 2n − 1 up to level s and 0 ≤ θ(n, s) :=
s∑
j=1

ξ(n, j) and 2 ≤ s := s(n) fixed, an integer to be chosen later. It is worth noting

that

θ(n, s) :=

s∑
j=1

ξ(n, j) = 0

if n = 2r for some r ∈ N, since ξ(n, j) = 0 for each 1 ≤ j ≤ s for all n which are
powers of 2. It is also important to note that the 2s term is obtained by noting that
there are at most s terms with odd exponents under the iteration process and each
term with odd exponent contributes 2, and the other s term comes from summing
1 with frequency s finding the total length of the short addition chains producing
numbers of the form 2v+1. Now, we set k = n

2s −ξ(n, s) and construct the addition

chain producing 2k as 1, 2, 22, . . . , 2k−1, 2k with corresponding sequence of partition

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23 . . . , 2k−1 = 2k−2 + 2k−2, 2k = 2k−1 + 2k−1

with ai = 2i−2 = ri for 2 ≤ i ≤ k + 1, where ai and ri denotes the determiner and
the regulator of the ith generator of the chain. Let us consider only the complete
sub-addition chain

2 = 1 + 1, 2 + 2 = 22, 22 + 22 = 23, . . . , 2k−1 = 2k−2 + 2k−2.

Next we extend this complete sub-addition chain by adjoining the sequence

2k−1 + 2b
k−1
2 c, 2k−1 + 2b

k−1
2 c + 2b

k−1

22
c, . . . , 2k−1 + 2b

k−1
2 c + 2b

k−1

22
c + · · ·+ 21.

Since ξ(n, s) = 0 if n = 2r and 0 ≤ ξ(n, s) < 1 if n 6= 2r, we note that the adjoined
sequence contributes at most

b log k

log 2
c = b

log( n2s − ξ(n, s))
log 2

c = b log n− s log 2

log 2
c = b log n

log 2
c − s

terms to the original complete sub-addition chain, where the upper bound follows
by virtue of Lemma 1.6. Since the inequality holds

2k−1 + 2b
k−1
2 c + 2b

k−1

22
c + · · ·+ 21 <

k−1∑
i=1

2i

= 2k − 2

we insert terms into the sum

2k−1 + 2b
k−1
2 c + 2b

k−1

22
c + · · ·+ 21(3.17)

so that we have

k−1∑
i=1

2i = 2k − 2.

Let us now analyze the cost of filling in the missing terms of the underlying sum.

We note that we have to insert 2k−2 + 2k−3 + · · · + 2b
k−1
2 c+1 into (3.17) and this

comes at the cost of adjoining

k − 2− bk − 1

2
c
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terms to the term in (3.17). The last term of the adjoined sequence is given by

2k−1 + (2k−2 + 2k−3 + · · ·+ 2b
k−1
2 c+1) + 2b

k−1
2 c + 2b

k−1

22
c + · · ·+ 21.(3.18)

Again we have to insert 2b
k−1
2 c−1 + · · ·+ 2b

k−1

22
c+1 into (3.18) and this comes at the

cost of adjoining

bk − 1

2
c − bk − 1

22
c − 1

terms to the term in (3.18). The last term of the adjoined sequence is given by

2k−1 + (2k−2 + 2k−3 + · · ·+ 2b
k−1
2 c+1) + 2b

k−1
2 c + (2b

k−1
2 c−1 + · · ·+ 2b

k−1

22
c+1) + 2b

k−1

22
c+

· · ·+ 21.(3.19)

By iterating the process, it follows that we have to insert into the immediately
previous term by inserting into (3.19) and this comes at the cost of adjoining

bk − 1

2j
c − bk − 1

2j+1
c − 1

terms to the term in (3.19) for j ≤ b lognlog 2 c− s, since we are filling in at most b log klog 2 c
blocks with k = n

2s − ξ(n, s). It follows that the contribution of these new terms is
at most

k − 1−
⌊
k − 1

2b
log k
log 2 c

⌋
− b log k

log 2
c(3.20)

obtained by adding the numbers in the chain

k − 1− bk − 1

2
c − 1

bk − 1

2
c − bk − 1

22
c − 1

...
...
...
...
...
...
...
...
...
...
...
...

...
...
...
...
...
...
...
...
...
...
...
...

b k − 1

2b
log k
log 2 c

c − b k − 1

2b
log k
log 2 c+1

c − 1.

By undertaking a quick book-keeping, it follows that the total number of terms in
the constructed addition chain producing 2k − 1 with k = n

2s − ξ(n, s) is

δ(2k − 1) ≤ k + k − 1−
⌊

k − 1

2b
log k
log 2 c+1

⌋
− b log k

log 2
c+ b log n

log 2
c − s

≤ n

2s−1
− 1−

⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
− b log n

log 2
c+ s+ b log n

log 2
c − s

=
n

2s−1
− 1−

⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
.(3.21)
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By plugging the inequality (3.21) into the inequalities in (3.16) and noting that
ι(·) ≤ δ(·), we obtain the inequality

ι(2n − 1) ≤
s∑

v=1

n

2v
+ s+ 2

s∑
j=1

∑
η(2m−1)6=0
m=b n

2j−1 c

1− θ(n, s) + ι(2
n
2s−ξ(n,s) − 1)

= n(1− 1

2s
) +

n

2s−1
− 1 + s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s)−
⌊ n

2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋(3.22)

= n− 1 +
n

2s
+ s+ 2

s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1− θ(n, s)−
⌊ n

2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋

where we note that
s∑
j=1

∑
η(2m−1) 6=0
m=b n

2j−1 c

1

counts the number of non-zero carries up to the s level for the number 2n − 1. By
taking 2 ≤ s := s(n) such that s = b lognlog 2 c which is the maximum frequency of the

iteration, then ⌊ n
2s − ξ(n, s)− 1

2b
log n
log 2 c+1−s

⌋
= 0

and we obtained that
s∑
j=1

∑
η(2m−1)6=0
m=b n

2j−1 c

1 ≤ 1

2(1 + c)
b log n

log 2
c − 1

and the inequality

ι(2n − 1) ≤ n− 1− θ(n, b log n

log 2
c) + b log n

log 2
c+ 2 +

2

(1 + log n)
b log n

log 2
c − 2

for θ(n, b lognlog 2 c) :=
b log n

log 2 c∑
j=1

ξ(n, j) > 0 with n ≥ 4 and the claimed inequality follows

as a consequence. �

The proofs presented in Theorem 3.1 and 3.2 serves as model for obtaining
improved upper bound for the shortest length of addition chains producing numbers
of the form 2n − 1. Indeed, without using the notion of carries one can obtain the
weaker upper bound which holds for all exponents n ≥ 4.

Theorem 3.3.

ι(2n − 1) ≤ n+ 1−
b log n

log 2 c∑
j=1

ξ(n, j) + 3b log n

log 2
c

for all n ∈ N with n ≥ 4 for 0 ≤ ξ(n, j) < 1, where ι(·) denotes the length of the
shortest addition chain producing ·.
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It follows similarly from the proofs the following result which holds for numbers
of the form 2n − 1 with low degree of carries

1

(1 + log log n)
b log n

log 2
c − 1

Theorem 3.4. If 2n − 1 has carries of degree at most

κ(2n − 1) := (
1

1 + log log n
)b log n

log 2
c − 1

then the inequality

ι(2n − 1) ≤ n− 1 + (1 +
2

1 + log log n
)b log n

log 2
c

holds for all n ∈ N with n ≥ 4, where ι(·) denotes the length of the shortest addition
chain producing ·.

We obtain the more general theorem

Theorem 3.5. If 2n − 1 has carries of degree at most

κ(2n − 1) := (
1

1 + f(n)
)b log n

log 2
c − 1

where f(n) = o(log n) with f(n) −→∞ as n −→∞, then the inequality

ι(2n − 1) ≤ n− 1 + (1 +
2

1 + f(n)
)b log n

log 2
c

holds for all n ∈ N with n ≥ 4, where ι(·) denotes the length of the shortest addition
chain producing ·.

The following chain of results we have obtained illustrates that to make progress
on the Scholz conjecture, it suffices to study possible way of controlling numbers of
the form 2n − 1 with high carries. In other words, the degree of carries of numbers
of the form 2n − 1 determines the quality of the upper bound for its corresponding
length of the shortest addition using the current method.

1.
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