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Abstract. Based on the quaternion domain Fourier transform (QDFT)
of 2016 and the quadratic-phase Fourier transform of 2018, we introduce
the quadratic-phase quaternion domain Fourier transform (QPQDFT)
and study some of its properties, like its representation in terms of the
QDFT, linearity, Riemann-Lebesgue lemma, shift and modulation, scal-
ing, inversion, Parseval type identity, Plancherel theorem, directional un-
certainty principle, and the (direction-independent) uncertainty princi-
ple. The generalization thus achieved includes the special cases of QDFT,
a quaternion domain (QD) fractional Fourier transform, and a QD linear
canonical transform.

Keywords: Fourier transforms · quaternion algebra · quaternion do-
main functions · linear canonical transform · fractional Fourier transform
· uncertainty

1 Introduction

Quaternions were introduced in the 19th century [10] and soon applied in physics,
e.g. by J.C. Maxwell to electro-magnetism [18]. Nowadays, in theory and appli-
cations they are widely known and applied, e.g. in aero-space engineering [17],
color image and signal processing [6], crystallography and material science [2, 20],
and machine learning [22]. Quaternion analysis for holomorphic functions in the
plane and space may be found in [9]. Quaternion based Fourier transforms are
reviewed in [4] and [14]. In particular we refer to the quaternion domain Fourier
transform (QDFT) introduced in 2016 [13] also described in Section 4.3.3 of
[14]. A generalization to a special a�ne quaternion domain Fourier transform
(SAQDFT) was undertaken in [15]. Independently, in 2018 the classical Fourier
transform has been generalized to the quadratic-phase Fourier transform [5],
with favorable new convolution identities. Most recently, the quadratic-phase
Fourier transform (QPFT) has been extended to a new quaternion quadratic-
phase Fourier transform (Q-QPFT) [3] for two-dimensional quaternionic signals
in L2(R2;H), with the well-known QFT [6, 11] as a special case. Following up on
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these recent developments we extend in our current work the QPFT to quater-
nion domain function signals in L1(H;H) resulting in a quadratic-phase QDFT
(QPQDFT).

The paper is organized as follows. Section 2 gives a brief introduction to
quaternions and the QDFT, introducing some of its properties needed later in
this work. Then Section 3 de�nes the QPQDFT and studies its basic prop-
erties, including its representation in terms of the QDFT, linearity, Riemann-
Lebesgue lemma, shift and modulation, scaling, inversion, Parseval type identity
and Plancherel theorem. Next, Section 4 investigates uncertainty relationships
for (directed) e�ective spatial- and spectral (obtained from the QPQDFT) width
of a quaternion domain signal. The paper concludes with Section 5, acknowledg-
ments and references. Some proofs are given explicitly while others are only
outlined.

2 Quaternions and the Quaternion Domain Fourier

Transform

Gauss, Rodrigues and Hamilton's four-dimensional (4D) quaternion algebra H
is de�ned over R with three imaginary units:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (1)

Every quaternion can be written explicitly as

q = qr + qii+ qjj + qkk ∈ H, qr, qi, qj , qk ∈ R, (2)

and has a quaternion conjugate

q̃ = qr − qii− qjj − qkk, p̃q = q̃p̃. (3)

This leads to the norm of q ∈ H

|q| =
√
qq̃ =

√
q2r + q2i + q2j + q2k, |pq| = |p||q|. (4)

The inverse of a non-zero quaternion q ∈ H is

q−1 =
q̃

|q|2
. (5)

The (symmetric) scalar part of a quaternion is de�ned as

⟨q⟩0 = Sc(q) = qr =
1

2
(q + q̃), Sc(pq) = Sc(qp) = Sc(p̃q̃), (6)

Sc(pqr) = Sc(qrp) = Sc(rpq). (7)
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Every quaternion a ∈ H, a ̸= 0, can be written as scalar part plus (pure) vector
part

a = ar + aii+ ajj + akk = ar + a = |a|(cosα+
a

|a|
sinα) = |a|eâα, (8)

with â = a/|a|, cosα = ar/|a|, α ∈ [0, π).
A scalar product of quaternions can be de�ned for x, y ∈ H as

x · y = Sc(x̃y) = xryr + xiyi + xjyj + xkyk, x · x = x̃x = |x|2. (9)

Every quaternion valued quaternion domain function f maps H → H, and its
four coe�cient functions fr, fi, fj , fk, are in turn real valued quaternion domain
functions:

f : x 7→ f(x) = fr(x) + fi(x)i+ fj(x)j + fk(x)k ∈ H. (10)

Quaternion valued quaternion domain functions have been historically studied
in [23, 8, 24, 21], and applications are described in [9].

We de�ne for two functions f, g : H → H the following quaternion valued
inner product1

(f, g) =

∫
H
f(x)g̃(x)d4x (11)

with d4x = dxrdxidxjdxk ∈ R.
Let S be the Schwartz space, and C0(H) the Banach space of all continuous

quaternion domain functions that vanish at in�nity, with the supremum norm
|| · ||∞. In L1(H;H) we use the norm de�ned by

||f ||1 :=
1

(2π)2

∫
H
|f(x)|d4x, (12)

where 1/(2π)2 is for convenience later on. For 1 < p < ∞ the space Lp(H;H)
has the norm

||f ||p =
(∫

H
|f(x)|pd4x

) 1
p

. (13)

De�nition 1 (Quaternion Domain Fourier Transform (QDFT)[13]). The
quaternion domain Fourier transform2 (QDFT) for h ∈ L2(H;H) is de�ned as

FQDFT {h}(ω) = ĥ(ω) =
1

(2π)2

∫
H
h(x)e−Ix·ωd4x, (14)

1 We note that (11) is quaternion valued, but by construction (f, f) = ||f ||22 is real
valued and positive for f ̸= 0.

2 We also assume always that
∫
H |h(x)|d4x exists as well. But we do not explicitly

write this condition again in the rest of the paper. Strictly speaking, the integral
de�nition of Def. 1 only works for h ∈ L1(H;H). But one can �rst de�ne the QDFT
on the dense subset L1(H;H)

⋂
L2(H;H), and then use the continuity of the Fourier

transform on L1(H;H)
⋂

L2(H;H), due to Plancherel's theorem for the QDFT, see
equations (4.19) to (4.201) in [13], to de�ne the QDFT on L2(H;H), see e.g. [7].
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with x, ω ∈ H, and some constant pure unit quaternion3 I ∈ H, I2 = −1.

The QDFT has the following inverse transform [13].

Lemma 1 (Inverse QDFT). For h,FQDFT ∈ L2(H;H), we obtain the inverse
transform as

h(x) =
1

(2π)2

∫
H
FQDFT {h}(ω)e+Ix·ωd4ω, d4ω = dωrdωidωjdωk. (15)

We will also need the directional uncertainty principle for the QDFT of (4.24)
in [13].

Theorem 1 (Directional QDFT Uncertainty Principle). For unit norm
signals f ∈ L2(H;H), ||f || = 1, and constant quaternions a, b ∈ H, we have

∆xa∆ωb ≥
|a · b|
2

, (16)

with (directed) e�ective spatial and spectral widths

∆xa = ||(x · a)f ||2 =

√∫
H
(x · a)2|f(x)|2d4x,

∆ωb = ||(ω · b)FQDFT {f}||2 =

√∫
H
(ω · b)2|FQDFT {f}(ω)|2d4ω. (17)

3 The Quadratic-Phase Quaternion Domain Fourier

Transform

Generalizing (1.1) of [5] to quaternionic variables, for parameters a, b, c ∈ R
(with b ̸= 0) and d, e ∈ H, we de�ne the quadratic phase function for x, ω ∈ H,

Q(x, ω) := a|x|2 + bx · ω + c|ω|2 + d · x+ e · ω. (18)

Remark 1. Note that in (18) the entities d, e need to be quaternions and not
scalars in order to construct a scalar phase function Q(x, ω). This means the pa-
rameter dimension of Q(x, ω) consists of three real and two quaternionic degrees
of freedom corresponding to a total of 11 real degrees of freedom.

De�nition 2. The quadratic-phase quaternion domain Fourier transform4 (QPQDFT)
for h ∈ L2(H;H) is de�ned as

F{h}(ω) = ĥ(ω) =
1

(2π)2

∫
H
h(x)e−IQ(x,ω)d4x, (19)

3 The QPQDFT of Def. 2 inherits this choice of constant pure unit quaternion I ∈ H,
I2 = −1. We thank one of the reviewers to draw our attention to [1], which appears
to allow for another use of pure quaternions in the kernel factor of (14).

4 We refer the reader to footnote 2 for the density argument that also applies for
the QPQDFT, where we note also the computation of the QPDFT in terms of the
QDFT according to Lemma 2.
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with x, ω ∈ H, some constant pure unit quaternion I ∈ H, I2 = −1, and phase
Q(x, ω) of (18).

Remark 2 (Special QPQDFT Cases).

(i) For the parameter values a = c = d = e = 0 and b = ±1 we obtain the
QDFT and its inverse transform.

(ii) For parameters d = e = 0, the QPQDFT includes linear canonical trans-
forms and fractional Fourier transforms for quaternion domain functions,
up to constant factors, like

√
−i for the linear canonical transform, and√

(1− i cot(α)/2π for the fractional Fourier transform.

De�ning the function

g(x) := h(x)e−I(a|x|2+d·x), (20)

it is possible to compute the QPQDFT of h ∈ L1(H;H) in terms of the QDFT
of g.

Lemma 2.
F{h}(ω) = FQDFT {g}(bω)e−I(c|ω|2+e·ω). (21)

Then we obtain the following lemmata.

Lemma 3. The L2-norms of F{h} and FQDFT {h} are related by

||F{h}||2 =
1

b2
||FQDFT {h}||2. (22)

Proof.

||F{h}||2 =
[ ∫

H
|F{h}(ω)|2d4ω

] 1
2

=
[ ∫

H
|FQDFT {h}(bω)|2d4ω

] 1
2

=
[ ∫

H

1

b4
|FQDFT {h}(ω′)|2d4ω′

] 1
2

=
1

b2

[ ∫
H
|FQDFT {h}(ω)|2d4ω

] 1
2

=
1

|b|2
||FQDFT {h}||2, (23)

Lemma 4 (Riemann-Lebesgue lemma). If h ∈ L1(H;H) then F{h} ∈
C0(H), and ||F{h}|| ≤ ||h||1.

Proof. Because |e−IQ(x,ω)| = 1, we have

||F{h}||∞ = sup
ω∈H

|F{h}(ω)| = sup
ω∈H

1

(2π)2

∣∣∣ ∫
H
h(x)e−IQ(x,ω)d4ω

∣∣∣
≤ sup

ω∈H

1

(2π)2

∣∣∣ ∫
H
|h(x)||e−IQ(x,ω)|d4ω

∣∣∣ = ||h||1. (24)
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Furthermore, the function g(x) of (20) is in L1(H;H) if and only if h ∈ L1(H;H).
Hence the classic Riemann-Lebesgue lemma results in

|F{h}(ω)| = |e−I(c|ω|2+e·ω)|
(2π)2

∣∣∣ ∫
H
e−Ibx·ωg(x)d4x

∣∣∣ = 1

(2π)2

∣∣∣ ∫
H
e−Ibx·ωg(x)d4x

∣∣∣ → 0,

(25)
as |ω| → ∞, completing the sketch of the proof.

The QPQDFT has the following linearity properties.

Theorem 2 (Linearity). The QPQDFT is left linear with respect to coe�-
cients α1, α2 ∈ H for h1, h2 ∈ L1(H;H)

F{α1h1 + α2h2}(ω) = α1F{h1}(ω) + α2F{h2}(ω). (26)

It is right linear for coe�cients β1, β2 ∈ H that commute with the unit pure
quaternion I of De�nition 19.

F{h1β1 + h2β2}(ω) = F{h1}(ω)β1 + F{h2}(ω)β2,

∀β1, β2 ∈ H : β1I = Iβ1, β2I = Iβ2. (27)

The QPQDFT has the following shift-, modulation-, and scaling properties ob-
tained by straightforward computation.

Theorem 3 (Shift). For h ∈ L1(H;H), x, ω ∈ H and constant quaternion
s ∈ H we have

F{h(x− s)}(ω) = F{h(x)}(ω − 2a

b
s)e−I( 4ac

b ω·s− 4a2c
b2

|s|2+ 2a
b e·s). (28)

Remark 3. Alternative ways of expressing the shift property are

F{h(x− s)}(ω) = F{h(x)e−2Iax·s}(ω) e−I(bs·ω+a|s|2+d·s) (29)

or

F{h(x− s)}(ω) = 1

(2π)2

∫
H
h(x) e−IQ′(x,ω)d4xe−I(a|s|2+d·s), (30)

with

Q′(x, ω) := a|x|2+bx ·ω+c|ω|2+d′ ·x+e′ ·ω, d′ = d+2as, e′ = e+bs. (31)

Theorem 4 (Modulation). For h ∈ L1(H;H), x, ω ∈ H and constant quater-
nionic frequency µ ∈ H we have

F{h(x)eIx·µ}(ω) = F{h(x)}(ω − µ

b
)e−I

(
2 c

bω·µ+ 1
b e·µ−

c
b2

|µ|2
)
. (32)

Theorem 5 (Quaternionic Scaling). For h ∈ L1(H;H), x, ω ∈ H and con-
stant quaternionic scaling factor p ∈ H, hp(x) = h(px), we have

F{hp(x)}(ω) =
1

(2π)2|p|4

∫
H
h(x)e

−I 1
|p|2

Q′(x,pω)
d4x, (33)

with

Q′(x, ω) = a|x|2 + bx · ω + c|ω|2 + d′ · x+ e′ · ω, d′ = pd, e′ = pe. (34)
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Corollary 1 (Real Scaling). For h ∈ L1(H;H), x, ω ∈ H and constant real
scaling factor r ∈ R, hr(x) = h(rx), we have

F{hr(x)}(ω) =
1

(2π)2r4

∫
H
h(x)e−I 1

r2
Q′(x,rω)d4x, (35)

with

Q′(x, ω) = a|x|2 + bx · ω + c|ω|2 + d′ · x+ e′ · ω, d′ = rd, e′ = re. (36)

The QPQDFT has the following inverse.

Theorem 6 (Inverse QPQDFT). For h,F ∈ L2(H;H), we obtain the inverse
QPQDFT transform as

h(x) =
b4

(2π)2

∫
H
F{h}(ω)e+IQ(x,ω)d4ω. (37)

Proof.

b4

(2π)2

∫
H
F{h}(ω)e+IQ(x,ω)d4ω

=
b4

(2π)2

∫
H
FQDFT {g}(bω)e−I(c|ω|2+e·ω)e+I(c|ω|2+e·ω)eI(a|x|

2+bx·ω+d·x)d4x

=
b4

(2π)2

∫
H
FQDFT {g}(bω)eIbx·ωd4ωeI(a|x|

2+d·x)

=
b4

(2π)2b4

∫
H
FQDFT {g}(µ)eIx·µd4µeI(a|x|

2+d·x)

= h(x)e−I(a|x|2+d·x)eI(a|x|
2+d·x) = h(x), (38)

where in the �rst equality we used Lemma 2 with g given by (20), and for the
third we substituted µ := bω, d4µ = b4d4ω, and in the fourth we used the inverse
QDFT of Lemma 1 and (20).

Theorem 7 (Parseval-Type Identity, Plancherel Theorem). (i) For any
f, h ∈ L2(H;H), the following identity holds

(F{f},F{h}) = 1

b4
(f, h). (39)

In the special case of f = h, we have

||F{f}||22 =
1

b4
||f ||22. (40)

(ii) Plancherel Theorem. If b = ±1, then F de�nes a unitary operator in L2(H;H).
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Proof. By simple computations we have

(F{f},F{h})

=
1

(2π)4

∫
H

∫
H

∫
H
f(x)e−IQ(x,ω)e+IQ(y,ω)g̃(y)d4xd4yd4ω

=
1

(2π)4

∫
H

∫
H

∫
H
f(x)e−I(c|ω|2+e·ω)eI(c|ω|2+e·ω)e−Ibx·ωe+Iby·ωd4ω

e−I(a|x|2−d·x)e+I(a|y|2−d·y)g̃(y)d4xd4y

=
1

b4

∫
H

∫
H
f(x)δ(x− y)e−I(a|x|2−d·x)e+I(a|y|2−d·y)g̃(y)d4yd4x

=
1

b4

∫
H
f(x)g̃(x)d4x =

1

b4
(f, g), (41)

where we have applied that (see Appendix A for more details)

1

(2π)4

∫
H
e−Ibx·ωe+Iby·ωd4ω = δ(b(x− y)) =

1

b4
δ(x− y). (42)

This proves proposition (i). For f = g we have (40), and for b = ±1 we obtain
proposition (ii).

4 QPQDFT and Uncertainty

Theorem 8 (Directional Uncertainty). Let h ∈ L2(H;H) with QPQFT
F{h}. Assume that ||h||2 < ∞, then the following inequality holds for arbitrary
constant quaternions v, w ∈ H:

||(x · v)h||2 ||(ω · w)F{h}||2 ≥ 1

|b|
|v · w|

2
||h||2 ||F{h}||2. (43)

Proof. By direct computation we obtain

||(ω · w)F{h}||2 =
[ ∫

H
(ω · w)2|F{h}(ω)|2d4ω

] 1
2

=
[ ∫

H
(ω · w)2|FQDFT {h}(bω)|2d4ω

] 1
2

=
[ ∫

H

1

b4
(ω′ · w′)2|FQDFT {h}(ω′)|2d4ω′

] 1
2

=
1

b2

[ ∫
H
(ω · w′)2|FQDFT {h}(ω)|2d4ω

] 1
2

=
1

|b|3
[ ∫

H
(ω · w)2|FQDFT {h}(ω)|2d4ω

] 1
2

=
1

|b|3
||(ω · w)FQDFT {h}||2, (44)
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where for the second equality we applied Lemma 2, for the third we substituted
ω′ = bω, d4ω′ = b4d4ω, w′ = 1

bw (then ω ·w = ω′ ·w′), for the fourth equality we
renamed ω′ → ω, for the �fth we inserted w′ = bw again, and the last equality
applied the de�nition of || · ||2 of (13) for p = 2. According to the directional
uncertainty principle for the QDFT of Theorem 1 we have (not assuming unit
norm signals)

||(x · v)h||2 ||(ω · w)FQDFT {h}||2 ≥ v · w
2

||h||2 ||FQDFT {h}||2, (45)

and with the norm relation of Lemma 3 we �nally obtain

||(x · v)h||2 ||(ω · w)F{h}||2 ≥ 1

|b|
|v · w|

2
||h||2 ||F{h}||2. (46)

Remark 4. For b = ±1 and unit norm signals, i.e., ||h||2 = ||F{h}||2 = 1, we
obtain the familiar form of the directional uncertainty principle, relating the
(directed) e�ective spatial and spectral widths by

∆xv∆ωw ≥ |v · w|
2

, (47)

where

∆xv = ||(x · a)h||2 =

√∫
H
(x · v)2|h(x)|2d4x,

∆ωw = ||(ω · a)F{h}||2 =

√∫
H
(ω · w)2|F{h}(ω)|2d4ω. (48)

Corollary 2 (Uni-directional Uncertainty Principle). For the single direc-
tion w = ±v, |v| = 1, we get the following uni-directional uncertainty principle

||(x · v)h||2 ||(ω · v)F{h}||2 ≥ 1

2|b|
||h||2 ||F{h}||2. (49)

Remark 5. In (49) equality holds for Gaussian wave packets

G(x) = Ae−k|x|2 , (50)

with x ∈ H, and constants A ∈ H, k ∈ R, k > 0.

Corollary 3 (Uncertainty and Orthogonal Directions). For orthogonal v
and w, i.e., v · w = 0, the uncertainty can be zero

||(x · v)h||2 ||(ω · w)F{h}||2 ≥ 0. (51)

Finally, we can extend the directional uncertainty principle to the direction-
independent QPQDFT uncertainty principle

Theorem 9 (QPQDFT Uncertainty Principle). Let h ∈ L2(H;H) with
QPQFT F{h}. Assume that ||h||2 < ∞, then the following inequality holds:

||xh||2 ||ωF{h}||2 ≥ 1

|b|
||h||2 ||F{h}||2. (52)
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5 Conclusion

This paper �rst gave a brief introduction to quaternions and the quaternion do-
main Fourier transform (QDFT). Then the quadratic-phase QDFT (QPQDFT)
was de�ned and its basic properties established, including its representation in
terms of the QDFT, linearity, Riemann-Lebesgue lemma, shift and modulation,
scaling, inversion, Parseval type identity and Plancherel theorem. Finally, the
uncertainty relationships for (directed) e�ective spatial- and spectral (obtained
from the QPQDFT) width of a quaternion domain signal were investigated.

Following [5], it may be interesting to see how far the favorable convolution
properties of the scalar quadratic-phase Fourier transform can be extended to
the quaternion domain function case, to study related Young type inequalities,
the asymptotic behavior of quaternionic oscillatory integrals and solvability of
quaternionic convolution integral equations. Future research should also look
into establishing quadratic-phase quaternion domain wavelets and their appli-
cation in science and technology. Rich applications are expected in �elds like
physics, electro-magnetism, aero-space engineering, color image and signal pro-
cessing, crystallography and material science, and machine learning, and quater-
nion analysis for holomorphic functions in the plane and space, etc.
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A Quaternion Domain Intergration and Dirac Delta

Function

We want to look at equation (42) in some more detail:

1

(2π)4

∫
H
e−Ibx·ωe+Iby·ωd4ω = δ(b(x− y)) =

1

b4
δ(x− y). (53)

We do have the variables b ∈ R, b ̸= 0, and the three quaternion variables
x, y, ω ∈ H. But they only appear in the scalar product, i.e.

x · ω = Sc(x̃ω) = xrωr + xiωi + xjωj + xkωk ∈ R, (54)

y · ω = Sc(ỹω) = yrωr + yiωi + yjωj + ykωk ∈ R. (55)

Furthermore we have the pure unit quaternion I ∈ H, I2 = −1. This means
that the arguments of the exponential functions commute and therefore we can
rewrite the product of the two exponential factors as

e−Ibx·ωe+Iby·ω = e−Ib[(x−y)·ω]

= e−Ib(xr−yr)ωre−Ib(xi−yi)ωie−Ib(xj−yj)ωje−Ib(xk−yk)ωk . (56)

We further note that
d4ω = dωrdωidωjdωk. (57)

Therefore the integral has simpli�ed to

1

(2π)4

∫
H
e−Ibx·ωe+Iby·ωd4ω

=
1

(2π)4

∫
H
e−Ib(xr−yr)ωre−Ib(xi−yi)ωie−Ib(xj−yj)ωje−Ib(xk−yk)ωkdωrdωidωjdωk

=
( 1

2π

∫
R
e−Ib(xr−yr)ωrdωr

)( 1

2π

∫
R
e−Ib(xi−yi)ωidωi

)
×
( 1

2π

∫
R
e−Ib(xj−yj)ωjdωj

)( 1

2π

∫
R
e−Ib(xk−yk)ωkdωk

)
= δ(b(xr − yr)) δ(b(xi − yi)) δ(b(xj − yj)) δ(b(xk − yk)). (58)
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