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Abstract

In this paper we firstly use a new method–the invariance of space-time inter-
val and some simple linear algebra knowledge to derive Lorentz transformations
and four-dimensional vectors. Finally we discuss and prove how to define the
force and the momentum in relativity which has not been discussed and proved
in textbooks and scientific literature.

The first three dimensions of a four-dimensional momentum are defined as
momentum and the derivative of momentum with respect to time is defined as
force. But there is a problem that the rationality of the definition of momentum
is not discussed and proved. Force and momentum cannot be arbitrarily defined.
Because if our senses are sensitive and sophisticated enough, only a correct
definition can guarantee that when we accelerate an object with a constant
force, the momentum will increase at a constant rate. It is not necessary to
be discussed in classical mechanics, because in classical mechanics the force is
proportional to the acceleration and the force comes before the momentum. But
it is just the opposite that the momentum comes before the force in relativistic
mechanics, so it’s important to discuss and prove how to define the force and
the momentum in relativity.

In addition the fact that the same physical process does not depend on
the space-time point means that the Lorentz transformations must be linear
transformations, so we can derive Lorentz transformations and four-dimensional
vectors by using the invariance of space-time interval and some simple linear
algebra knowledge.

Keywords: Force, Monmentum, Relativity Theory, Space-time Interval
Invariance, Energy, Mass-energy Equation

1. Introduction

In classical physics, time and space are independent of each other. In d-
ifferent reference frames, space interval invariance is satisfied, and time does
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not matter. For example, the length of a rod is fixed no matter what reference
frame you measure it in. However, due to the development of electrodynamic-
s, Maxwell put forward four differential equations related to electromagnetism,
forming a system of equations in which time and space are equally weighted.
Therefore, from the view of the classical time-space, the system of equations is
no longer satisfied with covariance from one reference frame to another. The
so-called covariance is intuitively explained by the fact that the laws of physics
will not change because of the switching of the reference frame. Mathematically,
it means that the forms of kinematic equations are consistent in different refer-
ence frames. So the special and general relativity were proposed by Einstein in
1905 and 1915 respectively [1, 2].

As we all know, physics textbooks and scientific literature usually define
forces in the following way

F =
dP

dt
=

d(m0
υ√

1− υ2
c2

)

dt
=

m0d( υ√
1− υ2

c2

)

dt
(1)

where P represents the first three dimensions of the four-dimensional momen-
tum of an object; m0 represents the proper mass of an object, namely the rest
mass; υ represents the velocity of the object; υ represents the speed of the
object, i.e. the magnitude of the velocity; c represents the speed of light.

But there is a problem that the rationality of the definition of momentum is
not discussed and proved. Force and momentum cannot be arbitrarily defined.
Because if our senses are sensitive and sophisticated enough, only a correct
definition can guarantee that when we accelerate an object with a constant
force, the momentum will increase at a constant rate. But historical literature
and textbooks fail to justify the rationality of this definition.

It is not necessary to be discussed in classical mechanics, because in classical
mechanics the force is proportional to the acceleration and the force comes
before the momentum. But it is just the opposite that the momentum comes
before the force in relativistic mechanics, so it’s important to discuss and prove
how to define the force and the momentum in relativity.

In addition, the derivation of Lorentz transformations and four-dimensional
vectors can also have a simpler method, because the fact that the same physical
process does not depend on the space-time point means that the Lorentz trans-
formations must be linear transformations, so we can derive these conclusions
by using the invariance of space-time interval and some simple linear algebra
knowledge

In Section 2 and 3 we firstly use a new method–the invariance of space time
interval to derive the conclusions of special relativity, which is much easier and
more natural. In Section 4 we discuss and prove how to define the force and the
momentum in relativity.
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2. Derive Lorentz Transformation by Using Space-time Interval In-
variance

In this section use a new method–the invariance of space time interval and
some simple linear algebra knowledge to derive the conclusions of special rela-
tivity.

In classical mechanics the space interval invariance is satisfied. Because time
and space are equally weighted in relativity, the space-time interval invariance
of two events should be satisfied–that is, the space-time interval of two events
remains unchanged under different reference frames. In the inertial frame, the
space-time interval is defined as follows

c2(∆τ)2 = −[(∆x)2 + (∆y)2 + (∆z)2 − c2(∆t)2] (2)

where c is the speed of light. On the one hand, strictly speaking, space-time
interval invariance already implies the principle of constancy of light velocity.
Because when ∆τ = 0, no matter in which inertial frame, we have

v =

√
(∆x)2 + (∆y)2 + (∆z)2

∆t
= c (3)

which implies the propagation speed of light does not change in any inertial
frame.

It is precisely because of the invariance of space and time interval that the
cause and effect structure of space-time can be guaranteed. Otherwise, in one
reference frame, two things happen in different places at the same time, that is,
the space-time interval is no more than zero, the photon cannot establish the
connection between the two events. Originally, there is no causal relationship,
but when it changes to another reference frame, the space-time interval is smaller
than zero, the photon can establish the connection between the two things. That
is, the photon starts from the place and at the time of occurrence of the one
event and propagates to the place of occurrence before the time of occurrence of
the occurrence of the other event, which makes the two things establish a causal
relationship and destroys the causal structure of space-time, thus producing a
contradiction.

In special relativity the space time interval can be represented by a matrix,
namely

(
∆x ∆y ∆z c∆t

)
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




∆x
∆y
∆z
c∆t

 (4)

where

G =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (5)
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is the metric matrix of the inertial space-time. This space is called Minkowski
space. In Euclidean spaces, the orthogonal transformation keeps the length of
the vector constant. Minkowski spaces are indefinite spaces, but there are corre-
sponding pseudo-orthogonal transformations that keep the length of the vector
constant, that is, the space-time interval constant. Similarly to the Euclidean
spaces, in order to ensure that the length of the vector does not change after
switching from one inertial frame to another, the metric matrix does not change
after the transformation, which is obviously equivalent to the transformation
matrix A satisfies

ATGA = G (6)

For simplicity, we assume that a moving reference frame is moving in a
straight line with uniform velocity υ along the x axis of the rest reference frame,
then the y and z directions are not affected by anything, then we can get

A =




cosh θ 0 0 sinh θ

0 1 0 0
0 0 1 0

sinh θ 0 0 cosh θ


cosh θ 0 0 sinh θ

0 1 0 0
0 0 1 0

− sinh θ 0 0 − cosh θ


− cosh θ 0 0 − sinh θ

0 1 0 0
0 0 1 0

sinh θ 0 0 cosh θ



(7)

where

cosh θ = γ =
1√

1− υ2

c2

≥ 1, sinh θ = ±
√
γ2 − 1 (8)

The latter two forms are not feasible, because in combination with physical
reality, only false rotation can occur in space-time, and no time or space inversion
can occur. Therefore, only the first form can be taken. By writing the (7) as
an equation we can get

∆x′ = γ(∆x± υ

c
c∆t) (9)

c∆t′ = γ(±υ
c

∆x+ c∆t) (10)

which is the transformation between different inertial frames, known as the
Lorentz transformation.

Now we define τ as mentioned above as proper time which is the time interval
between two events in the reference frame in which the two events occur at the
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same place, or it can be viewed as the time interval of a clock bound to a moving
particle.

On the basis of

c2(∆τ)2 = −[(∆x)2 + (∆y)2 + (∆z)2 − c2(∆t)2] (11)

we can get

∆τ

∆t
=

√
1− υ2

c2
=

1

γ
≤ 1 (12)

3. Derive Four-dimensional Invariants by Using Space-time Interval
Invariance

With the Lorentz transformation, we find the relativity of time and space.
For example, if a train is moving forward along the x axis at speed υ, for
two events happen at different times and at the same place on the train, the
relationship between the two time intervals is

∆t′ = γ∆t (13)

where t′ is the time in ground inertial reference frame and t is the time in the
train inertial reference frame. The time interval measured on the ground is
longer than that measured by people on the train. People on the ground will
feel that all physical processes on the train, including people’s mind metabolism,
will slow down, which is the famous clock slowing effect. Of course, motion is
relative, so people on the train also feel that physical processes on the ground
slow down.

And for the same time on a train, measuring a bar relative rest to the ground
on the ground put in the direction of motion, there is

∆x′ = γ∆x (14)

That is, the person on the train measure the length of the bar on the ground
to be shorter than the person on the ground themselves, which is known as the
scale effect. This is because the actions of the person on the train reading the
two coordinates of the two ends of the bar at the same time are at different
times for the person on the ground, which results in the larger space interval on
the ground.

The second formula of the expression of the Lorentz transformation can be
written as

c∆t′ = γ(±υ
c
V∆t+ c∆t) (15)

where

V =
∆x

∆t
(16)
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is the velocity of the object relative to the train. We divide the first formula by
(15)

υ′ =
υ + V

1 + υV
c2

(17)

which is the relativistic velocity synthesis formula, that is, the velocity of the
second object relative to the first object is υ, the velocity of the third object
relative to the second object is V , then the velocity of the third object relative
to the first object is υ′. Of course, this is the case in which the two velocities
are collinear. The case in which two velocities are non-collinear can be solved
by vector decomposition and synthesis.

Of course, there’s another way to derive the relativistic velocity synthesis
formula. Since the vector

(∆x,∆y,∆z, c∆t)T (18)

is a vector whose length does not change under the lorentz transformation and
∆τ is proper time interval is invariant too,

(
∆x

∆τ
,

∆y

∆τ
,

∆z

∆τ
, c

∆t

∆τ
)T (19)

is also a vector with constant modulus length, therefore according to

(
∆x′

∆τ
,

∆y′

∆τ
,

∆z′

∆τ
, c

∆t′

∆τ
)T = A(

∆x

∆τ
,

∆y

∆τ
,

∆z

∆τ
, c

∆t

∆τ
)T (20)

the synthesis formula can also be derived.
Because

(
∆x

∆τ
,

∆y

∆τ
,

∆z

∆τ
, c

∆t

∆τ
)T (21)

has a constant length under the Lorentz transformation. Therefore, for a particle
whose proper mass is m0, its four momentum is defined as

P = (m0
∆x

∆τ
,m0

∆y

∆τ
,m0

∆z

∆τ
,m0c

∆t

∆τ
)T (22)

= (m0γ
∆x

∆t
,m0γ

∆y

∆t
,m0γ

∆z

∆t
,m0γc

∆t

∆t
)T (23)

= (
m0υx√
1− υ2

c2

,
m0υy√
1− υ2

c2

,
m0υz√
1− υ2

c2

,
m0c√
1− υ2

c2

)T (24)

Since m0 is invariant, the length of the modulus of the four-momentum is also
constant under the Lorentz transformation, and this invariance is called the
four-momentum conservation.

6



4. The Derivation of Force and Momentum

We can define the force as the accelerated velocity of the object measured
in the inertial reference frame which is instantaneous relative rest to the object
times the proper mass of the object. And the reason why it’s defined this way
is very simple, because this definition is equal for every inertial reference frame,
and no inertial reference frame is special. We can then restore this expression
to the general inertial reference frame to obtain a reasonable definition of the
force.

When we accelerate objects from velocity υ to υ′, for the purpose of sim-
plicity, the υ and υ′ are assumed to be collinear. According to the relativistic
velocity synthesis formula, the observed velocity change in the inertia reference
frame which is instantaneous relative rest to the object is

∆ῡ =
υ′ − υ

1− υ
c ·

υ′

c

=
∆υ

1− υ
c ·

υ′

c

=⇒ dῡ =
dυ

1− υ2

c2

(25)

And according to the Lorentz transformation expression, there is

∆t =
υ∆x′

c2
√

1− υ2

c2

+
∆t′√
1− υ2

c2

=
∆t′√
1− υ2

c2

(26)

where t is the time in the rest reference and t′ is the time in the inertial reference
frame with υ velocity. Therefore, in the inertial system with the object moving
at the instantaneous speed, the object has zero velocity, and the acceleration is

a =
dῡ

dt′
=

dυ√
(1− υ2

c2 )3dt
=

d υ√
1− υ2

c2

dt
(27)

So we can get the force in general coordinates

F = m0a = m0
dῡ

dt′
=

m0d
υ√

1− υ2
c2

dt
=

d m0υ√
1− υ2

c2

dt
=
dP

dt
(28)

So far we have proved the first three dimensions of four-dimensional momentum

P =
m0υ√
1− υ2

c2

(29)

is really a reasonable definition of momentum.

5. The Derivation of Energy and Mass-energy Equation

The kinetic energy

dEk = F · ds =
dP

dt
· υdt = υdP = m0υd

υ√
1− υ2

c2

(30)
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Thus, the kinetic energy of an object with velocity υ

Ek =

∫ Ek

0

dEk =

∫ υ

0

m0υd
υ√

1− υ2

c2

(31)

= m0
υ2√

1− υ2

c2

|υ0 −
∫ υ

0

m0
υ√

1− υ2

c2

dυ (32)

= m0
υ2√

1− υ2

c2

|υ0 −
1

2

∫ υ

0

m0
dυ2√
1− υ2

c2

(33)

= m0
υ2√

1− υ2

c2

|υ0 +
1

2

∫ υ

0

m0c
2 d(−υ2

c2 )√
1− υ2

c2

(34)

= m0
υ2√

1− υ2

c2

|υ0 +m0c
2

√
1− υ

2

c2
|υ0 (35)

=
m0c

2√
1− υ2

c2

−m0c
2 (36)

Usually we define the motion quality as

m =
m0√
1− υ2

c2

, (37)

so we can rewrite the kinetic energy as

Ek = mc2 −m0c
2 (38)

When the velocity is much less than the speed of light, i.e., υ << c, we can
obtain according to Taylor expansion

Ek =
1

2
m0υ

2 (39)

Naturally the total energy of the object is

E = mc2 (40)

This is the famous mass-energy equation. The energy is proportional to its
mass, and the ratio is very large. This is why the nuclear fusion and fission
reactions of atomic and hydrogen bombs can release huge amounts of energy
with even a small loss of mass.

6. Conclusions

In this paper, the reasonable definitions of momentum and force in relativity
theory are derived, which has not been discussed and proved in textbooks and
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scientific literature. It is a huge contribution to special relativity. In addition,
the Lorentz transformation and four-dimensional invariants are derived by using
the invariance of space-time interval and some simple linear algebra knowledge,
which is a simpler method.

We have come to the conclusion that the first three dimensions of a four-
dimensional momentum are indeed a reasonable definition of momentum. It
satisfies invariance in different inertial reference frames.
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