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The Collatz algorithm is rewritten to remove divisions by two and to trans-
form it from a hailstone to a steadily growing value. In contrast with the
original problem this new sequence becomes reversible and it is reverted in
combinatorial way to find all integers leading to the sequence end. Computer
programs are available for demonstrations and experimenting.

1 Collatz differently

1.1 Notations

In the original formulation for any integer number X; > 0 to obtain X;;; we either
multiply X; by 3 and add 1 if it is odd, or divide it by 2 until the result remains even.
Such an algorithm leads to a, so called, hailstone behaviour of X;.

For any integer number X; > 0 represented in base-2 we will use H; (Head) to designate
the most significant bit position and 7T;(T'ail) the least significant bit position (number
of trailing zeros). For example for a binary number

10001010101000
HO00000000TO00

H=13and T = 3.
1.2 Key statement
The new sequence will be
Xip1 =3X; 4 2% (1.1)

and Collatz states it will eventually lead to H,, = T},
X, =2t = 9Tn (1.2)

In other words to a single 1 shifted left by T;, bits.



Remark 1. T, is exactly the number of divisions by 2 we would accomplish with the
regular Collatz algorithm.

Any additional step for ¢ > n will merely multiply X; by 4

Xip1 =3X; 4+ 20 =3. 2T 4 2Ti — 4. 9T — oTi+2

or shift it left by two positions.
Example for 49:

’ i ‘ binary X; | decimal X; | original X;
0 110001 49 49
1 10010100 148 37
2 111000000 448 7
3 10110000000 1408 11
4 1000100000000 4352 17
5 11010000000000 13312 13
6 10106000000000000 40960 5
7 100000000000000000 131072 (end) 1
8 | 10000000000000000000 524288 | (useless)1

Let us demonstrate in details a step for Xy = 448 = 111000000. After multiplication by
3 instead of dividing the result by 2 we add 26 = 1000000:

‘ 1 ‘ binary X; | decimal X; | original X;
2 111000000 448 7
10101000000 448%3
+1000000 +20
3 10110000000 1408 11

With this new formulation the recursion will be:
X, =3X, 4 270
Xo=3X, +2" =3 (3Xy +27) + 27 =32. X + 31 . 270 + 30. 2T

X, =3"-Xo+3"1.2T0o 4 ... 4 31.9Tn—2 4 30 9Tn1 (1.3)

1.3 Sequence properties

Fact 2. The number of steps to complete the sequence is exactly the number of odd values
in the original Collatz.



Fact 3. For a step i the new value is exactly the original Collatz value multiplied by T;.

Fact 4. For any j > @

T; > T, (1.4)
One could say: the problem is no longer a hailstone.
Fact 5. On a side note, between two neighbour steps:
Hi+1 — Hz =1lor2

and in average the head speed before it meats the tail is Sy = Av (H;+1 — H;) = log, 3.
Meanwhile the tail moves with average speed St = 2 (for H; —T; > 2).

So, intuitively, we would expect the tail to catch and substitute the head (this is exactly
what Collatz is about).

2 Proof or not ?

For a given sequence end X,, = 27 there are generally many starting points Xy leading
to X,,. For instance, both Xy = 26 and Xy = 85 end with X,, = 256 = 28.

2.1 Key moment

Instead of generating values according to Eq.1.2 we will look for all possible paths back
from 27" =1 <« T),.

Reverting Eq.1.2 yields

Xi= (Xip1 —2") /3 (2.1)
where
0<T; < Tiys (2.2)
and
mod (X1 —2",3) =0 (2.3)



This means that starting from a X,, = 27» we can find all possible values for X,,_; by
testing T,,—1 against Eq.2.2 and Eq.2.3. Then repeat for each T,,_1. And so on we will
discover all values leading to X,,.

For example, observing closer a value 27» = 1000000...0000 one can see that the number
of suitable values for T,_; is T}, /2 (number of zero pairs). Moreover, the lowest acceptable
T,—1 = 1if T}, is even otherwise T),_1 = 2. While the highest is always T,,_1 =T,, — 2.

All child values of 27» with even T}, and odd T}, never overlap (see Example). Thus
picking up two large starting points 27» =1 and 27" will seed uniquely values situated
below 277 /3. Tending T}, to infinity then will fill the integers from 1 to oo.

Proof. If for any integer Xq there is always a way to reach it from a 27 according to
Eq.2.1 the same path can be followed back by means of Eq.1.2. O

3 Example

Values reverted from 27 and 28 with Eq.2.1:

128 10000000 odd Tn—=7
42 101010 = (10000000—10)/11 ~ 1111110/11
40 101000 = (10000000 —1000)/11 — 1111000/11
13 1101 = (101000—1)/11 ~ 100111/11
12 1100 = (101000—100)/11 — 100100/11
32 100000 = (10000000—100000)/11 = 1100000/11
10 1010 = (100000—10)/11 — 11110/11
3 11 = (1010—1)/11 ~ 1001/11
8 1000 = (100000—1000)/11 — 11000/11
2 10 — (1000—10)/11 ~ 110/11
256 100000000 even Tn—8
85 1010101 = (100000000—1)/11 — 11111111/11
84 1010100 = (100000000 —100)/11 — 11111100/11
80 1010000 = (100000000—10000)/11 = 11110000/11
26 11010 = (1010000—10)/11 — 1001110/11
24 11000 = (1010000—1000)/11 — 1001000/11
64 1000000 = (100000000 —1000000)/11 = 11000000/11
21 10101 = (1000000—1)/11 ~ 111111/11
20 10100 = (1000000—100)/11 — 111100/11
6 110 — (10100—10)/11 ~ 10010/11
16 10000 = (1000000 —10000)/11 — 110000/11
5 101 = (10000—1)/11 — 1111/11
4 100 = (10000—100)/11 ~ 1100/11
1 1 = (100—1)/11 — 11/11



4 Source code

This document and computer programs may be found here:

https://github.com /sashamakarenko/collatz



