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Abstract: This paper introduces a non-conventional model within the framework of N=1 

supersymmetric Yang-Mills theory, providing a visual explanation for the mass gap problem and 

the topological transformations of the supersymmetric atomic nucleus. The model is a 

supersymmetric topological manifold based on two intersecting fields that vibrate in either the 

same or opposite phases, forming four subfields. The bosonic or fermionic characteristics of 

these subfields are determined by the pushing forces generated by the intersecting fields’ 

hyperbolic or parabolic curvatures during their contraction or expansion. 

The model employs a group of 2x2 complex rotational matrices of eigenvectors with eigenvalues 

1 and –1 to represent these interactions and explores their implications for strong, weak, and 

electromagnetic interactions. It also introduces fractional derivatives to provide an interpretation 

of superposition and the exclusion principle in terms of mirror symmetry or anti-symmetry. 
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The model proposed in this unconventional paper is based on two intersecting fields vibrating 

with same or opposite phases that synchronize and desynchronize periodically. Their 

intertwinement gives rise to a composite manifold of 3 subfields in the hyperbolic side of the 

composite system and 1 subfield in its parabolic side. 

The shape, mass, charge, inner kinetic energy, and spatial displacements of the 4 subfields will 

be determined by the pushing forces that the negative or positive curvatures of the intersecting 

fields generate while contracting or expanding respectively.  

 When the phases of vibration of the intersecting fields are opposite, the left and right-handed 

transversal subfields will be mirror symmetric at different times but mirror antisymmetric at the 

same time: when the left transversal subfield expands the right one will contract and conversely. 
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The top vertical subfield will move right to left, getting a negative sign, or left to right, getting a 

positive sign, towards the side of the intersecting field that contracts; moving in a pendular way 

left or right, this subfield will be its own anti-subfield at different times. 

The mirror transversal subfields are characterized by an antiphase relationship with each other, 

yet each of them maintains phase coherence with the intersecting space that encompasses it.”  

  

Owing to their mirror anti-symmetry, the states of the left and right transversal subfields are 

mutually exclusive: when the left transversal subfield contracts, thereby increasing its density 

and inner kinetic energy, the right-handed transversal subfield will expand, leading to a decrease 

ins density and inner kinetic energy. In this sense, their states can be said to be governed by an 

“Exclusive” principle.  

The opposite states of the left and right transversal subfields are not superposed because they are 

different spaces that reflect each other with a delay of time.   

Within the framework of a dual composite system such as the one proposed in this model, both 

“superposition” and “exclusion” must be interpreted in terms of mirror symmetry or anti-

symmetry. 

In contrast, when the phases of vibration of the intersecting fields are equal, the transversal 

subfields will exhibit mirror symmetry simultaneously. Their states will be “entangled”. And, 

although they share the same phase, they will exhibit a phase opposition relative to the 

intersecting fields. 
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Once the system exhibits mirror symmetry, the top vertical subspace aligns with the phase of the 

intersecting fields: when both intersecting fields contract, the top vertical subfield also contracts, 

ascending upwards while emitting a pulsating force. Subsequently, when both intersecting fields 

expand, the previously ascending subfield decays while expanding. When such a decay occurs, 

an inverted pushing force is generated on the convex side of the system by the parabolic 

curvatures of the expanding intersecting fields. 

The pushing forces created by the contracting or expanding fields, with their inner negative 

curvature or their outer positive curvature, can be represented with 4 vectors.  

Two vectors compressing a subfield imply a stronger force experienced by the subfield whose 

volume decreases while its density increases, and its inner orbital motion accelerates. The 

increased inner kinetic energy represents a greater bond that intertwines the intersecting fields in 

a stronger way.  

Two vectors decompressing a subfield represent a weaker force experienced by the subfield, 

which expands in volume, decreases in density, and decelerates in inner kinetic energy. The 

decreased inner kinetic energy implies a weaker bond between the intersecting fields. 

When considering the vibration of the intersecting fields, it’s important to note that the force of 

pressure that produces the parabolic curvature of an expanding field will be weaker than the 

pushing force caused by the hyperbolic curvature of a contracting field, because the density of 

the expanding field will be lower than the density of the contracting field.  

Alongside these strong and weak interactions, we are going to consider electromagnetic to the 

force caused by the vertical subspace when moving left or right in the antisymmetric system, and 

upwards or downwards in the symmetric system. The electric charge will have the pushing force 

that produces the displacements of those subfields. And we are going to consider gravitational 

the curvatures of the intersecting fields.  

In addition to these strong and weak interactions, we will consider electromagnetic the force that 

the vertical subspace produces when moving left or right in the antisymmetric system and 

upwards or downwards in the symmetric system. The electric charge will be the pushing force 

that produces the displacements of those subfields. We will also consider as gravitational the 

curvatures of the intersecting fields.  

The symmetric and antisymmetric manifolds can be considered either as two separate and 

independent systems, as two systems related by supersymmetric partners, or as two topological 

systems that are periodically transformed into each other by the synchronization or 

desynchronization of the phases of vibration of the intersecting fields, forming a single 

supersymmetric manifold. Here we only consider the latter case. 

The system gets an additional complexity if it’s a rotational structure. Let’s examine the rotation 

of the system around its axis by means of a group of complex 2x2 rotational matrices with a 90-

degree rotation operator. The elements of the matrices are four eigenvectors, that is, vectors that 

can change their sign but remain invariant in direction. 
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The eigenvectors will have an eigenvalue equal to 1 or –1.    

 

The four vectors change their direction each time the whole plane rotates 90-degrees, but we can 

only distinguish a change in their position when their sign changes. A change in sign here 

implies a multiplication of the eigenvector magnitude by 1 or –1, being flipped or reflected 

across its origin, or being permuted 180 degrees. 

 

The identity matrix A1 represents the position of the eigenvectors of the symmetric system when 

the two intersecting fields, in phase, contract simultaneously. 

 

Rotating A1 by 90 degrees gives us the transpose matrix A2, whose eigenvectors represent the 

forces of pressure in the antisymmetric system when the left intersecting field expands and the 

right one contracts. 

Rotating A2 by 90 degrees gives us the negative of A1, or A3. The A3 eigenvectors represent the 

forces of pressure in the symmetric system when the two intersecting fields expand with the 

same phase. 

Rotating A3 by 90 degrees gives us the negative of A2, or A4. The A4 eigenvectors represent the 

forces of pressure in the antisymmetric system when the left intersecting field contracts and the 

right one expands. 

Completing a 360-degree rotation by rotating A4 by 90 degrees gives us the inverse of A1, 

which represents the initial situation when both intersecting fields simultaneously contract. 

These operations can also be expressed in terms of differential equations, considering that those 

eigenvectors are tangent to a point of a unit circle of radius 1. The slope of the tangent vector 

will represent a derivative. 

 

 

Each of the two sign-changing eigenvectors of A2, the top right and the bottom left eigenvectors, 

represents a derivative. A2 therefore contains a fractional number of derivatives: ½ 

If the rotated eigenvectors with changed signs represent the spin of the subfields in the 

antisymmetric system, the subfields represented by A2 will have a noninteger spin. In this case, 

their mirror counterparts will be governed by an exclusion principle.   
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A2 is a partial 1/2 conjugate solution of the complex matrix A1. 

A3, the negative reflection of A1, represents an integer number of derivatives with respect to A1, 

4/4=1, although it only encodes a fractional number of derivatives with respect to A2, the ones 

related to the upper left and bottom right eigenvectors with eigenvalue -1.  

Therefore, to obtain the complete derivation of A1, it is necessary to rotate the matrix 90 degrees 

twice. 

If the rotated eigenvectors with changed signs represent the spin of the subfields in the 

symmetric system, the subfields represented by A3 will have an integer spin. In this case, the 

transversal mirror symmetric subfields are not governed by an exclusion principle. 

However, the top vertical subfield with integer spin and its reflection counterpart located at the 

convex side of the system will be ruled by an exclusion principle because when it contracts at the 

hyperbolic side of the manifold, its mirror reflection subfield will expand at the convex side.  

For a detector placed in the concave side of the system, the mass and energy that occurs in the 

convex side of the intersection of the curved fields will be "dark" as directly undetectable. 

A4 encodes two positive eigenvectors with eigenvalue +1. They are two antiderivatives with 

respect to A3. A4 also represents the negative of A2, and together they form a whole conjugate 

with respect to A1. Therefore, to obtain the complete conjugation of A1, it is necessary to rotate 

the matrix 90 degrees three times. 

A1 represents the antiderivative of A3 and the half-antiderivative of A4. Therefore, to revert A1, 

the matrix must be rotated 90 degrees four times. 

The rotational dynamic of the eigenvectors represented in this group of complex matrices, seems 

to imply that the smooth evolution of the symmetric system represented by A1 (when the 

intersecting fields contract) and A3 (when a moment later the intersecting fields expand), loses 

its continuity by being interpolated in between of A2 and A4. 

In this sense, if the symmetric system is described by a complex ordinary differential equation 

and the antisymmetric system is described by the conjugate solution of the differential equation, 

then those separate equations can only describe the evolution and states of half of the system. In 

that case, the system may be incompletely described as discrete and could only be defined by 

statistical methods. 

The next diagram represents the rotational eigenvectors in the rotational nucleus of subfields 

shared by the intersecting fields. 

The subfields in the picture would change their shape while the 90-degree rotation is performed, 

as they contract or expand, move left or right, or ascend or descend, as a consequence of the 

vibration of the intersecting fields, while the system rotates. 

However, we will discuss later the conformal or nonconformal nature of the model. 
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The levels of energy of the four subfields can be inferred from the position of the vectors in the 

rotational matrix. In this sense, the supersymmetric set of matrices A1, A2, A3, and A4, with a 

90-degree rotation operator, can represent the Hamiltonian of the supersymmetric system.  

A1 and A3 symbolize the states of energy of the symmetric system described by a complex 

function, which can be considered a complex algebra. A2 and A4 symbolize the states of energy 

of the antisymmetric system described by the complex conjugate function, which can be 

considered a conjugate algebra. 
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In that sense, A1 and A3 will be modular Hamiltonian matrices of the complex algebra, and A2 

and A4 will be modular matrices of the conjugate algebra. The addition of the moduli matrices of 

the modular Hamiltonians will form the full modular Hamiltonian for the system. 

The complex and conjugate Hermitian matrices are harmonically related and express the 

complete energy levels of the symmetric, antisymmetric, and supersymmetric systems. 

The matrix A1 is Hermitian, as it is equal to its conjugate transpose. The conjugation of all the 

elements of the self-adjoint A1 matrix is obtained at A4 after three 90-degree rotations (adding 

the 1/2 conjugation of A2 and the 1/2 conjugation of A4). The transpose of A4 is A1.  

The interpolation between the symmetric and the antisymmetric systems may be related to 

Sobolev interpolations (1), where “spaces of functions that have a noninteger number of 

derivatives are interpolated from the spaces of functions with integer number of derivatives”. 

  

 

 

 

The combination of a complex ordinary function, represented by matrices A1 and A3, and a 

complex conjugate function, represented by matrices A2 and A4, can be also described as a 

convolution.  

Adding the products of the four transformation matrices, their fractional derivatives or 

antiderivatives that represent partial conjugate functions, the identity matrix that represents the 

complex function is obtained.    
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The conjugate function is a conjugate harmonic function, as it is the conjugate partial derivative 

of a first-order complex ordinary function. 

In the rotational context, the symmetric system of mirror subspaces (described by the complex 

ordinary function represented by matrices A1A3) becomes antisymmetric (in A2) when 

performing a partial conjugation (rotating A1 90 degrees) that generate transposition by means of 

a fractional differentiation.  

Antisymmetry arises in the mirror system by introducing a change of phase in one of the sides of 

the reflection, while the other side keeps following the unchanged phase. That change of phase 

can occur by a gradual desynchronization, or suddenly, when a rotation occurs changing the sign 

of ½ eigenvectors or spinors.  

The addition of the main and harmonic phases can be performed with a Fourier transform, 

obtaining a third combinatory frequency.   

The symmetric and antisymmetric systems can also be described as two independent groups of 

cyclic eigenvectors that form two von Neumann algebras: an antisymmetric automorphic algebra 

and a symmetric automorphic algebra, which imply antisymmetric and symmetric mirror 

reflection algebras, respectively.  

However, both independent algebras can be related by means of modular combinations, which, 

in the context of our rotational matrices, are the combinations of the transform matrices with 

fractional derivatives or antiderivatives.  

Modular combinations of von Neumann algebras are studied by Tomita-Takesaki (TT) theory. 

In TT theory two intersecting algebras form two shared “modular inclusions” (with + - “half 

sided” subalgebras) and a “modular intersection” (with an “integer sided” subalgebra).  

The left and right half handed subalgebras will be the image of each other, when they are 

commutative, or they will not be their image when they are noncommutative. Mapping the 

modular inclusion to its reflection image, the left and right subalgebras will be the opposite 

image of each other (reverting their initial signs) if they are commutative; if they are 

noncommutative, the initial left sided subalgebra will be the image of the right sided mapped 

subalgebra, and the initial right handed  subalgebra will be the image of the left sided mapped 

subalgebra.  

TT theory decomposes a linear transformation into its modular building blocks, revealing the 

hidden automorphisms. Decomposing the bounded operator, it obtains the modular operator and 

the modular conjugation (or modular involution) which is a transformation that reverses the 

orientation, preserving distances and angles).  

Translating the abstract algebraic terms to our present model, we can say that the two TT 

intersecting algebras represent our two intersecting fields vibrating with same or opposite phase. 

The half handed subalgebras (or “modular inclusions”) will be the transversal subfields of the 

nucleus shared by the intersecting fields, while the integer handed subalgebra (or “intersection 
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inclusion”) will be our vertical subfield. In this context, we identify commutativity and 

noncommutativity with mirror symmetry and mirror antisymmetry respectively. 

The bounded operator that is decomposed will be the 90 degrees rotational matrix; The modular 

building blocks are the set of matrices that are obtained when applying the operator. The modular 

operator will be the ½ partial conjugate A2 matrix; And the modular conjugation will be the 

conjugate matrix A4 (which forms the whole conjugation by adding the fractional conjugations 

½+½).  So, separating the conjugate matrix from the complex one the automorphism of the 

antisymmetric conjugate system is found.           

The half sided algebras that form a modular inclusion are noncommutative, it means we are in 

the antisymmetric system where the left intersecting field contracts while the right one contracts 

and vice versa; in that system, the left transversal subfield will be the mirror symmetric image (it 

will be the mapped image) of the right transversal subfield when, later, the left intersecting field 

expands and the right one contracts. In that sense we are mapping here a past half handed 

subalgebra with its future image. A time delay will exist between both subalgebras.      

Related to this delay of time in the antisymmetric system, we can also mention a property that all 

unitary quantum field theories are expected to hold: “Reflection positivity” (RP).  

The positive increasing energy that appears on one side of the mirror system should be reflected 

as well in the other side. But in the context of the antisymmetric system, we find that positive 

energy of the contracting right transversal subfield is not simultaneously reflected in the 

expanding left transversal subfield, which has a negative energy.  

Because of that, to obtain a positive energy reflected at the left side, making the sides of the 

system virtually symmetric, a time reverse operation will be needed.  

To see the positive energy reflected at the left side we will need to go back in time to the moment 

where the left transversal subfield was contracting having a positive energy. That operation is 

performed by a type of Wick rotation.      

We can represent the main time phase of the symmetric system with the Y coordinate.  

Performing from there a partial conjugation that involves a fractional derivative, the time 

coordinate rotates to the complex plane. At that moment the mirror system becomes 

antisymmetric as one side of the system keeps following the imaginary time of Y while the other 

side follows a harmonic phase.  

A positive or negative time lag has been introduced.   

To go back in time on side of the system is a way of virtually making the time phases symmetric 

again.  To achieve that time reverse we make a reverse rotation of the complex time axis X+iY to 

complete a whole complex conjugation at –X –IY.  

That time backwards rotation represents an antiderivative. (If it were forward it would represent 

a derivative).    
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When the time reverse has been symbolically completed, we will presence in the left side of the 

mirror system how the left subfield contracts having an increased positive energy; it is a past 

reflection of the future positive energy that there will be a moment later in right side.  

In this past time, at the right side of the system the right subfield will be expanding having a 

decreased negative energy.   

 

When it comes to the symmetric system, positivity is reflected between the right and left 

transversal subfields at same time. In that sense, it’s not necessary to use the Wick operation to 

reverse time. Both left and right transversal subfields will be mirror reflection of each other at 

the same time.  

However, in the case of the strong interaction in the symmetric system, when the contracting 

vertical subfield has an increased positive energy while ascending to emit a pushing force, it will 

be necessary to virtually visit a past moment to look for a previous state where positivity could 

be reflected. Going back in time, we will find that the vertical subfield is losing its energy while 
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expanding and moving downwards. So, at that moment of time the vertical subfield will not 

display a positive energy. 

Reflection positivity, however, can be found at that past moment in the parabolic side of the 

system of the two intersecting fields, where an inverted hyperbolic subfield will be experiencing 

an increased energy. That inverted subfield can be mirroring related to the vertical subfield that 

in a future state will be ascending in the concave side of the system. 

      

The missing reflection positivity in the concave side of the system in the strong interaction can 

be related to a mass gap problem when it comes to the weak interaction.     

There will be a mass gap in the system when the two intersecting fields simultaneously expand, 

and the vertical subfield experiences a decay of energy.  

This case represents the ground state with the lowest possible energy of the vertical subfield, 

which is going to be always greater than 0 because the highest rate of expansion of the 

intersecting fields prevents them from having zero curvature. 

The zero point of the vacuum where there is no energy and mass is placed at the point of 

intersection of the XY coordinates, and that point is never reached by the descending and 

expanding subfield that decays.  

An “upper” mass gap would be referred to the highest possible mass of a particle in the strong 

interaction. Its limit would be given by the greatest rate of contraction of the intersecting spaces. 

Let us represent it graphically: 
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The above graphic represents the bosonic symmetric system; in a similar way it could be 

represented for the fermionic antisymmetric system, related to the transversal decompressed 

subfield (for the lower gap) and the transversal compressed subfield (for the upper gap).  

The zero point is represented with a yellow point on the above diagram when the intersecting 

fields expand.  

The bottom of the descending subfield with the weakest level of density and inner kinetic energy 

is represented with a black point. An arrow points out the distance between those critical points.  

However, in this model the zero point does not represent a vacuum place where no energy and 

mass exist. The zero point at the moment of the weakest energy in the convex side of the 

symmetric system is where a double pushing force caused by the parabolic curvature of the 

expanding intersecting fields arises.  

That inverted “dark” pushing force will be equivalent to the force lost by the decaying subfield. 

In the antisymmetric system, the lowest energy level occurs when a transversal subfield 

experiences a double decompression due to the displacement of the hyperbolic curvature of the 

contracting intersecting field and the displacement of the parabolic curvature of the expanding 

intersecting field.  

The corresponding double compression is then experienced by its mirror antisymmetric 

transversal subfield. 
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The symmetric and antisymmetric subfields can be described as cobordant subspaces. The 

vertical subspaces share borders with the left and right transversal subspaces, and they all share 

borders with the two intersecting spaces.  

Those borders can be thought of as the unidimensional line that describes the curvatures of the 

intersecting fields. 

Once this model has been presented in a general way, we will try to describe it in terms of an 

atomic nucleus using a hypothetical approach as no numerical calculations have been developed 

for this model yet. 

Our atomic antisymmetric nucleus will be formed by a proton, a positron and a neutrino, or by an 

antiproton, an electron and an antineutrino, depending on the moment we observe the system:    

1. Antisymmetric system, the left intersecting field expands while the right one contracts: 

The right contracting transversal subspace will represent a proton. 

The left expanding transversal subspace will represent a neutrino. 

The vertical subspace moving towards right will represent a positron.     

2. Antisymmetric system, the left intersecting field contracts while the right one expands: 

The right contracting proton will expand becoming a right expanding antineutrino.  

The left expanding neutrino will contract becoming a left-handed contracting antiproton.  

The vertical positron will move towards left becoming an electron. 
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According to that, the right-handed proton will decay into an antineutrino in the right side of the 

mirror system, while in the left side an antiproton and an electron arise; The left-handed 

antiproton will decay into a left neutrino while in the right side of the mirror system a proton and 

a positron arise.  

Proton and antiproton, and neutrino and antineutrino, will be Dirac antiparticles at different 

times; positron and electron, being their own antimatter as they are the same subfield, will be 

Majorana antiparticles.  

In the antisymmetric nucleus, matter and antimatter are mutually exclusive, and their mirror 

reflections operate at different moments. They are all fermions having a noninteger spin and 

being ruled by the Pauli Exclusion principle, and they should obey Fermi-Dirac statistics, 

although this aims to be a causalist and deterministic model.  

Considering an antisymmetric Schrodinger cat as a figurative example, it could be said that the 

right alive contracting cat will be the delay reflection of the left dead expanding cat, and vice 
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versa. It can be discussed if they are the future or the passed reflection of each other, but that will 

only be a way to speak.  

Anyways, there will not be a single alive and dead cat, but two identical cats with opposite state 

and position. And their simultaneous states of being “alive” and “dead” only can be considered 

“superposed” in the context of their mirror antisymmetry. 

It can be visually represented in this way:  

  

The increased or decreased level of energy of the subfields is a scalar magnitude represented by 

the product of two vectors pointing in the same direction for double compression, or by the 

division of two vectors pointing in opposite directions for double decompression.  

When a parity transformation is applied to the fermionic system, Flipping the signs of all spatial 

coordinates, all vectors change sign preserving the antisymmetry. Scalars do not change signs, so 

the term "pseudoscalars" is used in this case.    

3. Symmetric system, when the left and right intersecting fields contract: 

The right and left expanding transversal subspaces represent a right positive and a left negative 

gluon. 

The top vertical ascending subspace that contracts receiving a double force of compression will 

be the electromagnetic subfield that will emit a photon, while pushing upwards.  

The inverted bottom vertical subspace at the convex side of the system will represent the dark 

decay of a previous dark antiphoton .     

4. Symmetric system, when the left and right intersecting fields expand: 

The right and left expanding transversal subspaces may represent -W and +W bosons. 

The top vertical descending subspace will be the electromagnetic subfield losing its previous 

energy, after having emitted a photon.  

The bottom vertical subspace at the convex side of the system will be the dark anti 

electromagnetic subfield that is going to emit a dark anti-photon. 
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According to that, the left and right transversal subspaces will be mirror symmetric antimatters at 

the same time. Photon and dark antiphoton will be Dirac antimatter at different times. 

But with respect to the bosonic transversal subfields, it seems necessary to have some more 

clarifications. In this model we are considering two mirror transversal subspaces that are 

identical reflections of each other at the same present time, i.e., when both intersecting fields 

contract; a moment later, when the intersecting fields expand, the transversal subfields still will 

be mirror reflection of each other, but they have been transformed with respect to their previous 

shape.  

In this sense, from the perspective of this model, the transversal subspaces are the same 

topological subfields that contract when the intersecting fields expand in the weak interaction or 

expand when the intersecting fields contract in the strong interaction. The strong and weak 

interactions, then, would be related by the same mechanism. And the mirror transversal subfields 

that mediate the strong and weak interactions would be the same topological subspaces that are 

transformed through time.               
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The model is N=1 because it relates in a supersymmetric way each fermionic subfield with a 

bosonic subfield.  

In that sense, the fermionic electron-positron subfield will be the superpartner of the bosonic 

vertical subfield that emits the photon when ascending. The fermionic proton-antineutrino 

subfield, and the fermionic antiproton-neutrino subfields will be the superpartners of the 

symmetric transversal right and left subfields respectively, when they contract or expand.  

The identity of the symmetric transversal subfields, labelled before as W bosons and gluons 

would require more clarification. Each of those subfields receives a bottom upwards pushing 

force and a top upwards decompression (in the strong interaction), or a top downwards pushing 

force and a bottom downward decompression (in the weak interaction).  

In the strong interaction, the forces of pressure or decompression of the contracting or expanding 

intersecting fields will be different, as the contracting fields will have stronger density.  

The EM photonic subfield receives a double pushing force from right to left and from left to 

right caused by the displacement of the hyperbolic curvatures of the intersecting fields. Those 

pushing forces are the same that act decompressing the transversal subfields that expand (labeled 

as gluons). The emitted photon would have a double helix spin.    

Those EM pushing forces are the same that receive the moving right positron and the moving left 

electron in the antisymmetric system.   

On the other hand, the curvatures of the intersecting spaces in this model are gravitational in both 

the symmetric and the antisymmetric systems. This implies that gravitational fields fluctuate or 

vibrate. Electromagnetic charges arise from the interaction of those intersecting spaces. 

These interacting gravitational fields may be considered as "gauge bosons" in the terminology of 

field and string theories, while the part where they intersect and form the nuclear subfields could 

be considered as "gluons." 

The physical pushing forces created by the displacement of the intersecting fields when 

contracting or expanding may be interpreted as “quarks”. 

It can be observed that when applying the 90 degrees rotation operator, only two eigenvectors 

change their sign, and the symmetric system becomes antisymmetric (and vice versa).  

These terms would be different ways of referring to the same mechanism. In this sense, it also 

could be said the supersymmetry of the system would be provided by the way quarks change 

their sign through time. 

The next diagram shows the way the fermionic and supersymmetric bosonic “quarks” are 

transformed through time by changing their sign. 
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The two possible signs of the vectors may be related to a Hilbert space of dimension 2.  

The space we have described for the bosonic symmetric and the fermionic antisymmetric 

systems can be considered as a Minkowski space of 4 coordinates for two different frames of 

reference: x, y, z, t, for a real frame of reference, and x’, y’, z’, t’, for a complex frame of 

reference whose coordinates are rotated 45 degrees relative to the real ones. 

The 45-degree rotation of the coordinate system implies a partial conjugation that introduces the 

antisymmetry in the system, as we said before. 

A different time dimension for the bosonic and fermionic frames maybe necessary to describe 

the different dynamics of those systems, either because the subfields have an opposite phase 

between them, introducing a time delay in their mutual reflection, or because the subfields have 

an opposite phase with respect to the vibrations of the intersecting fields. 

The present model suggests that the bosonic system is also antisymmetric when it comes to the 

different phases of the transversal subfields with respect to the vertical subfields (which follow 

the phase of the intersecting fields).  

Different mathematical transformations, such as Fourier transforms and Wick rotations, are 

being used to make antisymmetric systems operationally symmetric.  Mathematical 

transformations will also be required to relate the two sets of coordinates associated with the 

fermionic and bosonic systems.  

The main difficulty is that the YX coordinates and the diagonal axis that divides the complex 

plane are referenced by different metrics. A point at Y cannot be rotated to X + iY without 

increasing the spatial distances.  
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The same thing happens with the hypotenuse of a right triangle when one tries to measure it with 

the reference metric of the sides. If the hypotenuse were a rotated side, it would not only be 

longer than the unrotated sides, but it also could not be precisely determined because of the 

infinite decimals of irrationality. Two different frames of reference are being measured with the 

same gauge. 

The metric issues between the two reference frames can be managed by adding additional spatial 

dimensions to separately describe each space-time system or subsystem (in the case of the 

transversal subfields).  

However, a type of mathematical transformation is needed to relate the coordinates of the two 

reference frames. This is the subject of Lorentz transformations in special relativity, which are a 

type of Möbius transformation. 

Möbius transformations can be used to project the Y and X coordinates to the imaginary points at 

X’ and Y’, virtually removing the complex plane while preserving the angles. 

We can superpose on a same picture the real and complex planes of the symmetric and 

antisymmetric systems, representing the result of convolving the complex and conjugate 

functions, as if the four partial conjugations were taking place at the same time. 

The complex plane can therefore be treated as a real plane.  

A diagram that shows simultaneously all the possible states the vectors get through time will 

show the left and right displacements of the fermionic nucleus (from a central axis Y towards a 

projected + Y’ or – Y’), and the upwards and downwards displacements of the bosonic nucleus 

(from a central axis X towards a projected + X’ or – X’), which can be interpreted as a nuclear 

precession. 

By means of the vectors in the diagram, also can be shown the symmetry of both bosonic and 

fermionic systems is reached over time. The supersymmetric topological transformation of the 

nuclear subfields, which may take place by means of phase synchronization, the rotation of the 

whole system, or both, is a spatial and temporal gauge transformation. 

The next picture illustrates the diagram where the eigenvectors of the four transformational 2x2 

matrices that combine the bosonic symmetric and the fermionic antisymmetric moments are all 

superposed as happening simultaneously in the same space. 
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In the context of operational algebras, in Tomita-Takesaki theory, the change of phase of a half 

sided modular inclusion can be performed by applying a twist operator, which can be a partial 

conjugation.  

Changing the modular operator, the modular conjugate will be changed in the same degree, 

creating a different algebraic structure that is not isometric with respect to the untwisted one.  
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So, changing the modular operator from the A2 matrix to the A3 matrix, the modular conjugate 

will be A1 (instead of A4). In that way, we can change from the antisymmetric system to the 

symmetric system and vice versa, in a supersymmetric way, through time. 

In Tomita-Takesaki theory, the notion of time is modular. It can be considered as property that 

emerges or is derived from the dynamics of the modular automorphisms, which represent the 

evolution of the system over time. In contrast to classical physics, in TT theory time does not 

exist independently of the system. 

Considering time as a real axis tY in the symmetric modular group A1 A3, the partial 

conjugation operated by a 90 degrees rotation introduces in the system a new time coordinate ti, 

that is purely imaginary. The sides of the modular operator (and its automorphic modular 

conjugate) become antisymmetric because the state of half side of the system is going to follow 

the real time tY, while the state of the mirror side is going to follow the new imaginary time ti, 

creating a gap time between both sides of the modular operator (and, later, of the automorphic 

modular conjugate as well). 

It’s not only a symbolic formalism, but a mathematical way to describe the dynamics of the 

rotational system that needs a second time dimension to refer to the harmonic ti phase introduced 

in the modular group by the partial conjugation.  

Commuting the sign of half of the eigenvectors while leaving the other half unchanged implies a 

partial differentiation that can be interpreted as a fractional derivative, as we saw before. It is that 

fractional derivation what creates the harmonic or fractional imaginary time and the fractional 

spins in the modular antisymmetric (anticommutative) group. Fractionality is responsible for the 

break of symmetry that exhibited the commutative group, introducing anticommutativity.    

It is in the context of transforming the commutative modular group into the noncommutative 

modular group (and vice versa) by means of the partial conjugation given by the rotation that 

fractionality makes sense. And it's in that rotational and discontinues frame where Tomita-

Takasaki modularity seems to fit. 

The position of the eigenvectors alone does not determine per se the physical properties of the 

subfields they are associated with. The eigenvectors serve as a symbolic representation of the 

pressure forces caused by the intersecting fields during expansion or contraction, determining the 

curvature, shape, density, and internal kinetic energy of the subfields and their associated time. 

It’s necessary to mention that the direction of the eigenvectors of a 90 degrees clockwise rotated 

symmetric system of intersecting fields that simultaneously contract, is going to be identical to 

the direction they would have in an unrotated antisymmetric system of two intersecting fields 

vibrating with opposite phases (when the left field expands while the right one expands).  

Rotation seems necessary to quantize the classical system of intersecting fields, causing the 

apparent discontinuity that breaks symmetry and antisymmetry, giving place to modularity.     
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But it’s not clear enough if the rotation would actually transform the physical properties and 

times of the subfields or it would only transform the sign of their symbolic formalism. 

Misinterpreting the physical meaning given by the eigenvectors’ directions seems to be an 

inquietant possibility in this model.  

To conclude, we can relate the atomic model to other theories and developments, using a visual 

approach as well. 

In the context of string theories, the border of the positive and negative curvatures of the 

intersecting fields, or of parts of them, may be saw as one-dimensional strings: 
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As well in the context of string theories, the intersecting fields that interact to form the nucleus of 

subfields may be related to the parabolic curvature of de Sitter vacuum spaces, when expand 

causing an outward pushing force, or to the hyperbolic curvature of anti de Sitter vacuum spaces, 

when they contract causing an inward pushing force. 

The symmetric and antisymmetric systems may also be related to the Ramond-Ramond or the 

Kalb-Ramond fields. The Ramond-Ramond fields (3) are antisymmetric tensor fields with two 

spacetime indices, which is a mathematical way to refer to two fields in a dual system.   

The transversal subfields of the symmetric and antisymmetric manifolds could be related in some 

ways to Calabi-Yau transversal spaces. Calabi-Yau however demands smaller sizes for the 

spatial higher dimensions and a compactification. 

The elliptic orbits inside of the transversal subfields, caused by their periodical expansion and 

contraction, can be visually related to the notion of elliptic fibrations used in String theories. 

The next diagrams show a visual representation of the elliptic orbits in the antisymmetric and the 

symmetric systems.  
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On the other hand, the shape of the nuclear transversal subfields, on the symmetric or 

antisymmetric diagrams, reminds the shapes drawn by Lobachevsky when explaining his 

imaginary geometry (2).  

Note that the inner curvature of the transversal subfields is half hyperbolic and half parabolic: 

their hyperbolic region curves inwards, and its parabolic region curves outwards. The top vertical 

subfield in the symmetric and antisymmetric system will have an inner hyperbolic curvature, 

while the bottom inverted vertical subfield will have a double region of parabolic curvatures.  

Quantum mechanics, field and string theories have been developed mainly as abstract 

mathematical models with no visual spatial references. However, tori geometry is generally used 

in different ways by many theories to aid visualization and simplify calculations. 

The intersecting spaces can also be thought of as intersecting tori.  

The outer parabolic and the inner hyperbolic curvatures of the torus will be the simultaneous 

representation of the expanding or contracting moments of a vibrating field when looking at it 

from above in an orthographic projection. 
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The intersecting spaces also may be interpreted as parallel universes or multiverses that interact 

by means of their mutual intersection to form a composite manifold. 

The presented model can also be expressed in terms of emitter-absorber transactional models that 

correlate advanced and retarded waves, taking place a transactional “handshaking” between them 

when interchanging energy. In that context there are some similarities as well with the reflection 

positivity property that we saw before.  

 

 

 Additional images: 

 

Image 1/9. Gauge coupling point unification 

 

 

 
Image 2/9. Frames of reference, antisymmetric 

system 
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Image 3/9. Fermionic and bosonic representation 

 

Image 4/9. Transactional interpretation 

 

Image 5/9. Transactional interpretation 
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Image 6/9. Symmetric system 

 

Image 8/9. Fourier transform. Fourier inverse 
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Image 9/9: Modular matrices.  

Complex and complex conjugate interpolation. Visual distribution. 
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