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Abstract

In this brief note, we discuss projective morphisms of perfect categories
which are fully faithful, i.e., totally lossless.
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1 Prologue

In some sense, the notion of an object, say perhaps a space, being totally
adherent to the object from which it is the projection, is in effect a statement
of the invertibility. That is to say, for the map

A
Perf−−−→ C∞

• ∋ J∞
n

n
⊗ Rn

where J∞
n is the nth jet of an infinitary bundle, and

n
⊗ is the n-fold symmetric

product of a topological space homeomorphic to Rn, the op-map

A
Perfop

←−−−−− C∞
•

is also perfect.
We shall refer the reader to [1] for information about A in the case where

it is a stack. For the infinite jet bundle, we refer the reader to [2]. One of the
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aims of the paper at hand is to extend the map (of a perfect subspace of) A to
the more general notion of a perfect map, say, of rings, or perhaps more general
objects yet.

So, let □P be a perfect subspace relative to the classifying stack S . Let

there be a flat embedding □P
∼
↪→ O for some O in an arbitrary category C.

Further, let the following diagram

□P O

□P′ O′

∼

∼

pr0 pr1P♯

be commutative, where P♯ right-lifts against ∼. As is seen here, □P
prop0←−−−

□P′ is a retract of O
prop1←−−− O′. Let us suppose for concreteness that O is a

measurable metric space. Then the map P♯ induces either a measure or a
metric onto P ′. Recall that a measurable metric space consists of the following
data:

1. A space, X

2. A notion of distance, d(x, y), between any two points x, y in X.

3. A measure, µ, over the metric space (X, d) such that µ(d(x, y)) = |d(x, y).

Therefore, a measurable metric space is a triple Xµ
d = (X, d, µ), but we shall

simply write X for the space when all other information is understood from
context.

For the strongest sort of equivalence, warranting the “ = ” sign, i.e. X = X,
we mean a perfectly lossless, bijective immersion X ↪→ X, where for any point
x ∈ X, d(x, prn(x)) = 0.

Let us assume that every path P : x → y ∈ Aut(X) is infinitesimally
generated by an Abelian group object G . Then, the map

G × G −→ Aut(X)

is a bijection on fibers. Thus, we may safely write

G × G = Aut(X)

as an equivalence of the strongest kind. Sketching a proof of this lemma
may involve attaching a sub-object identifier, ρ, to every map G × G −→ G ,
and constructing a commutative diagram such that an element x ∈ X is the
push-out of all of these maps.
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2 Differentiability

2.1 C1 spaces

We begin our inquiry into the differentiability of spaces when they are subject
to totally lossless maps, which we have yet to define, by considering spaces of
first-order differentials. Without yet generalizing, consider the following:

Lemma 1. If the map X ∈ C1 → Y is totally lossless, then Y is a C>0 space.

Proof. Consider a map X ∈ C1 → Y , where Y is a C0-space. Then, the map is
not totally lossless, because the map is not a monomorphism. To show this, for
every path P : x→ y ∈ X, consider the derivative dP . Thus, the cardinality of
the set X is twice as large as the cardinality of the set Y , and the elements of
the form dP fail to biject.

Thus, by contradiction, Y must be C>0.

Even stronger, it suffices to show that if we require bijectivity for all, and
only all, of the elements of X, then Y must be exactly C1.

2.1.1 Curvature

Let there be two curves P : x→ y and P ′ : x′ → y′ in X, such that the metric
d(x, y) varies at a point x0 from the metric d(x′, y′) at the point x′

0. Then, we
have the inequality

dP ̸= dP ′

and we can therefore obtain the curvature of each path by calculating the
distance

|P |ci = d((dP, dP ′), avg(dP, dP ′))

Sections of the aforementioned paths form connections, which are isometries
under all totally lossless maps. Here, |P | is the class of all curves in X, and
lim
i→∞
|P |ci = 0 for sufficiently many samples.

In other words, curvature is calculated by comparing the distance travelled
along a fiber with the average distance across the equivalence class of all fibers
after an equal amount of time. For a space X, we denote the comparison space
by Xcomp, and when

Xcomp = X

then zero average sectional curvature will be detected, and thus the space is
said to have curvature 0.

Proposition 1. For a totally lossless projective map X → Y ,

|Y |c = ±|X|c
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If the chirality of the space is reversed under the map, then the orientation
of the fibers are reversed as well. So, if hoX is the homology of X, then

cohoY = hoX

means the spaces are of opposite sign. This is semiotically meaningful, as we
can consider a superposition

{X,Y |cohoY = hoX} X + Y = 0

to be the meaningless state, or the neutral and trivial state under the
consideration of the total fuzzy truth space of a particular “logical world,” say
W∞.

Warning 1. While the superposition of two opposing spaces, with perfectly
lossless maps between the two, is zero, each is to be observed individually as
physically meaningful; that is, they will both present with their inherent sectional
curvature relative to some comparison manifold

Z = (X ∧ Y )comp

Remark 1. Any group of n spaces may be compared to a common index Z by
way of the formula

Z = (X ∧ ... ∧ ω)comp

with n-2 spaces omitted by the ellipses. This allows us to write a configuration
space as (Z, |p|, C,U), where |p| is a class of point-like objects, C is the category
of p, and U() is the neighborhood operator.

Definition 1. Let p0 be a point object in a given category C. The neighborhood
operator, U(p0) is a restriction of the set of outward morphisms p0 → p>0, |p||r,
where r is the radius of the neighborhood.

Therefore, any configuration space C has a built-in notion of sectional curvature,
as well as “connections,” which are defined as curved sections of fibrations.

3 Invariance

What sort of property are we imagining when we think of “invariance?” A couple
of possibilities may spring to mind: Lorentz invariance, gauge invariance, etc.
Here, invariance is defined as follows:

Definition 2. Let there be some object p0 traveling along a path P over time.
If the maps id : p0 → p0@t = 0 and id′ : p0 → p0@t = n, where t is the
elapsed time, are identical in form, then p0 is an invariant object with respect
to identity.
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To say that an object, in the real world, is invariant, is to say that it is “the
same thing” as it was earlier, and so mathematically this would mean that the
identity function behaves exactly the same across time. This would mean that
the map t −→ t+ n is totally lossless for said object.

To say that a map is totally lossless is stronger than to say it is invertible.
It is, also, to say that it is perfect, in the most blatant sense. Thus, consider the
class

|p|

of possible |p|n. We have, for all n, trivn = trivn±k. That is to say, the
function which kills the data under consideration, i.e. trivializes the object,
is stable over time. Thus, the class of objects then represents a meta-identity
which determines, at each moment, the invariant identity on p.

Proposition 2. If an object is invariant, it will be of the same type T at the
times t = 0 and t = n.

A proof of the above proposition would essentially be trivial, but we shall
provide one nonetheless. It follows from the very definition of invariance; if an
object i has type T , then iid must obviously also have type T . Thus, if there is
a sequence

i→ iid → j → jid

,
then ker(jid) = im(iid), and so the type of every object is transitive.
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