
GraphAM: Graph Database-Integrated Active Memory 
for Generative Language Models

2023.08

Donggyu Lee

ldg@takeup.cc

Hankuk Academy of Foreign Studies

 synapse, take up

 / 1 14

mailto:ldg@takeup.cc


Abstract
This study presents an active memory algorithm that generates responses in generative language 
models using graph databases. The development of generative language models has picked up pace 
recently, and there are many commercial services available. However, generative language models 
are limited by problems such as hallucination, low accuracy and reliability, and limitations in 
contextualizing and remembering. It is expensive and requires a lot of resources to develop pre-
training datasets or fine-tune the base model to address these problems. Instead, well-designed 
prompts can be used to achieve the desired response, but this requires prompt engineers or training, 
as well as a thorough understanding of generative language models.

All conversations are saved in a graph database to build a memory, and when a user asks a question, 
it proactively identifies the information it needs and pulls it and its neighbors from the graph 
database for reference as it generates an answer to the question. This approach streamlines the 
generation of natural language that disentangles complex and interconnected information in the real 
world. Research has shown that answering questions based on real-world information increases the 
efficiency and usability of generative language models in processing information and generating 
answers.

In addition, the memory assist algorithm of the graph database converts various text datasets, not 
only conversations, into property graph models that can be updated in real time, and provides 
diverse and accurate information to the generative language model, enabling it to generate accurate 
responses through diverse information while reducing the size of the language model, thereby 
increasing efficiency and speed.

 / 2 14



Table of contents

I. Theoretical Background

A. Generative Language Model

B. Model Tuning

C. Database

II. Methods

A. Environment

B. Algorithm

III. Results

A. Learning

B. Answering

IV. Discussion

 / 3 14



I. Theoretical Background

A. Generative Language Model

Generative Language Models are a type of artificial intelligence model that can generate natural 
language. These models are trained on large datasets of text, which allows them to learn the patterns 
and structures of natural language.

GPT

GPT (Generative Pre-trained Transformer) is a series of generative language models developed by 
OpenAI. These models are based on the transformer, which is a type of machine learning model 
developed by the Google Brain team. The GPT models are pre-trained on vast private datasets of 
text, such as Wikipedia, and then fine-tuned for specific tasks, including question answering or text 
completion. The most recent model, GPT-4, was released in 2023 and is now publicly available via 
the OpenAI API.

Compared to GPT-3, which was previously a high-performing generative language model based on 
zero-shot transformer technology, includes stricter guidelines for learning and answering questions. 
In addition to Reinforcement Learning from Human Feedback, which was fine-tuned in GPT-3.5 for 
generating answers to human questions, it is built to follow more rules and stricter guidelines by 
further censoring the user's prompt input and the language model's answers.

B. Model Tuning

Pre-training

The creation of a language model based on training with a large data set of text. This process 
requires the accumulation of the entire large dataset, and often involves labeling and cleaning to 
refine the data. Due to the use of large data sets, developing a model specialized for specific tasks or 
instructions is difficult, and it takes a lot of time and resources to retrain the model if the data set 
changes. This creates challenges for not only adding new information in real time but also on a 
regularly updated basis.

Fine-tuning

It is the process of additional training of a pre-trained model to improve its accuracy or efficiency 
on a specific task. This requires a large data set for the specific task to be fine-tuned, which requires 
intensive time and resources.

Therefore, while it might be a lighter task than building a model with pre-training, it still requires a 
lot of time and resources, and in some cases it is more difficult because it requires precise tuning for 

 / 4 14



a specific task. As a result, fine-tuning cannot memorize conversations or context that the user 
creates in real-time.

Prompt Engineering

This method does not directly affect the model through training as in the previous methods. Instead, 
it controls the information provided and the method of questioning and input through prompts and 
sentence structure. This necessitates efficient organization of information within limited tokens, 
minimizing unnecessary questions or information and requiring precise input that matches intent. 
Through this, the accuracy of responses can be improved while reducing the cost and time wasted 
on inaccurate results.

C. Database

Graph Database

A graph database stores and processes data in a property graph model consisting of nodes and 
edges. This structure is ideal for handling complex and close interrelationships in various fields, 
including social media, networks, and geographic information systems. The efficient retrieval of 
information surrounding world through node relationships makes it a valuable.

 / 5 14



II. Methods

A. Environment

Language

This research was implemented using Javascript. Generative language models like GPT-4, which 
have 1 trillion parameters and train on massive language datasets, take a long time to process 
prompts and output results. This involves multiple processing steps, such as reading and writing 
information, and requires a language capable of asynchronous processing. Through asynchronous 
processing, the main thread can continue to operate without being interrupted while handling I/O 
operations.

The study was developed using Node.js. Node.js is a Javascript runtime based on Chrome V8 and 
forms the foundation for most Javascript frameworks.

DB

Neo4j is the most commonly used graph database, exhibiting excellent performance in querying 
complex relationships based on its high performance graph database capabilities. As an open-source 
project, it provides a large community and resources, as well as various third-party drivers and 
languages, allowing the use of diverse clients or languages.

By using the Cypher query language, it is possible to query, analyze or store property graph data. It 
shows superior performance in queries that require JOIN operations compared to traditional 
RDBMSs. It has flexibility with a flexible schema that can store data in different forms.

B. Algorithm

Understand

This is the stage of understanding the question input by the user. The user's question is analyzed 
actively to determine necessary information and specific elements for answering, extracting 
keywords and properties from the graph database. An query can be written actively to find nodes 
and relationships that match, include, or are associated with these keywords, properties, or labels.

Input is prompt that user write for question. You need to extract or create keyword, label, 
relationship or properties and make cypher query that will search database to assist ai for 
answering. Must not create new data in this step. To avoid repetition and to group the 
relationships and related nodes under separate keys. If you can't assist of question, just answer 
QUIT without explanation. You can answer only in cypher query language.

System prompt

 / 6 14



In this study, we use OpenAI's generative language model GPT-4 to generate Neo4j's query 
language - Cypher Query Language - using the prompts provided above.

Additionally, this prompt is controlled to only output the Cypher Query Language in response to the 
user's question, and if an answer is not possible, it returns only a designated separate word to 
prevent any impact on the next function call. Also, because the return value of a query includes not 
only the requested information but also surrounding information, we use a separate key to group 
different relationships and nodes to avoid the same information from being returned multiple times.

Think

The query returned through the Understand stage is input into the graph database to acquire 
information for answering the question. At this point, the data returned from the database is 
formatted as a list of key-value pairs to efficiently reference when the generative language model 
generates an answer to the user's question.

Answer

The user's question and the information obtained in the Think stage for answering the question are 
input into the generative language model to generate an answer to the question. Since answers are 
generated based on additional information obtained in the Think stage, accurate answers that 
include this information can be made possible due to related data located within the input prompt.

This process can be conducted by selecting a generative language model that one wishes to receive 
an answer from. In this study, we used OpenAI's GPT-4 model to generate answers to questions 
through the prompt below.

Memorize

answer user message refer prompt & memories/Pre written prompt=${preprompt}/Related 
memories from chat history=${think}

System prompt

extract or create keyword, label, relationship or 
properties from question & answer which need 
to memorize for future answers. Each node has 
relationship with general keyword. Use 
MERGE to avoid duplicate data & do not use 
same variable for avoid error. If refer exist data, 
increase weight properties and update scarce 
data, but if new data, weight properties will be 
essential & data from question increase weight 
double. Answer in only cypher query language.

question=${user_msg}/answer=${answer}

System prompt user input

 / 7 14



The language model proactively extracts keywords, labels, relationships or properties that are 
deemed necessary for generating future answers, based on the user's question and the generative 
language model's answer, and stores them in the graph database. It generates a query that can store 
information in the graph database by inputting the user's question and the language model's answer. 
The generated query is input into the graph database for storage.

Beyond simple information storage, it updates importance or access frequency of information to use 
as an indicator for fetching and utilizing information through priority during future Understand 
stages. For example, if an answer is generated using already stored information, it increases the 
weight attribute of this information so it can be fetched first during future Understand stages and 
serves as an indicator for understanding importance of information when generating answers with a 
generative language model.

Furthermore, because it continuously creates and updates relationships with all nodes, utilization 
and value of existing information continues to rise. Even without directly fetching this specific 
piece of data, its utility increases as it can be fetched as surrounding information due to formed 
relationships.

 / 8 14



III. Results

A. Learning

Active transfer text to property graph

Remember this text for future answers. Generative Pre-trained Transformer 4 (GPT-4) 
is a multimodal large language model created 
by OpenAI, and the fourth in its series of GPT 
foundation models.[1] It was initially released 
on March 14, 2023, and has been made publicly 
available via the paid chatbot product ChatGPT 
Plus, and via OpenAI's API. As a transformer-
based model, GPT-4 uses a paradigm where 
pre-training using both public data and data 
licensed from third-party providers is used to 
predict the next token. After this step, the model 
was then fine-tuned with reinforcement learning 
feedback from humans and AI for human 
alignment and policy compliance. Observers 
reported that the iteration of ChatGPT using 
GPT-4 was an improvement on the previous 
iteration based on GPT-3.5, with the caveat that 
GPT-4 retains some of the problems with earlier 
revisions. GPT-4 is also capable of taking 
images as input, though this feature has not 
been made available since launch. OpenAI has 
declined to reveal various technical details and 
statistics about GPT-4, such as the precise size 
of the model.

Pre prompt user input

MATCH (m:Model {name: 'Generative Pre-trained Transformer 4', alias: 'GPT-4'})-
[:CREATED_BY]->(o:Organization {name: 'OpenAI'}), (m)-[:RELEASE_DATE]->(d:Date 
{date: 'March 14, 2023'}), (m)-[:AVAILABLE_THROUGH]->(p:Product {name: 'ChatGPT 
Plus'}), (m)-[:USES]->(t:Technique {name: 'Transformer-based model'}), (m)-
[:PRE_TRAINED_ON]->(pd:Data), (m)-[:FINE_TUNED_WITH]->(ft:Technique {name: 
'Reinforcement learning'}), (m)-[:IMPROVEMENT_ON]->(prev:Model {name: 'GPT-3.5'}), (m)-
[:HAS_ISSUE]->(i:Issue), (m)-[:CAPABLE_OF]->(f:Feature {name: 'Taking images as input'}) 
RETURN m, o, d, p, t, pd, ft, prev, i, f

Query for Think stage (generated @ Understand stage)

 / 9 14



I have stored the information about Generative Pre-trained Transformer 4 (GPT-4). I understand 
that it is a multimodal large language model created by OpenAI, released on March 14, 2023. It's 
available via the paid chatbot product ChatGPT Plus, and OpenAI's API. It uses a transformer-
based model, pre-training using both public data and data licensed from third-party providers to 
predict the next token. It was then fine-tuned with reinforcement learning feedback from humans 
and AI. It's an improvement on the previous iteration based on GPT-3.5, but still retains some of 
the problems with earlier revisions. GPT-4 can take images as input, but this feature has not been 
made available since launch. OpenAI has not revealed various technical details and statistics 
about GPT-4, such as the precise size of the model.

Answer (generated @Answer stage)

MERGE (gpt4:Model {name: 'Generative Pre-trained Transformer 4 (GPT-4)’})
ON CREATE SET gpt4.created_by = 'OpenAI', gpt4.release_date = 'March 14, 2023', 
gpt4.available_via = ['ChatGPT Plus', 'OpenAI API'], gpt4.model_type = 'transformer-based', 
gpt4.pre_training_data = ['public data', 'data licensed from third-party providers'], 
gpt4.fine_tuning = 'reinforcement learning feedback from humans and AI', gpt4.previous_version 
= 'GPT-3.5', gpt4.image_input_capability = 'Yes', gpt4.image_input_availability = 'No', 
gpt4.technical_details_revealed = 'No', gpt4.weight = 2
ON MATCH SET gpt4.weight = gpt4.weight + 2

MERGE (openai:Company {name: ‘OpenAI'})
ON CREATE SET openai.weight = 1
ON MATCH SET openai.weight = openai.weight + 1

MERGE (chatgpt_plus:Product {name: 'ChatGPT Plus’})
ON CREATE SET chatgpt_plus.weight = 1
ON MATCH SET chatgpt_plus.weight = chatgpt_plus.weight + 1

MERGE (gpt3_5:Model {name: ‘GPT-3.5'})
ON CREATE SET gpt3_5.weight = 1
ON MATCH SET gpt3_5.weight = gpt3_5.weight + 1

MERGE (gpt4)-[:CREATED_BY]->(openai)

MERGE (gpt4)-[:AVAILABLE_VIA]->(chatgpt_plus)

MERGE (gpt4)-[:IMPROVEMENT_ON]->(gpt3_5)

Query @ Memorize stage

 / 10 14



As described above, when information is given to the generative language model, it actively 
understands the content and user's intent and stores it in the graph database. Information delivered 
in natural language sentences is converted into nodes and relationships of many property graph. If 
this information already exists in the database, it creates relationships between existing nodes and 
new different pieces of information, recording that they are related. Additionally, nodes and 
relationships that are read or written repeatedly have their weight attribute values increased, 
identifying them as priority references for future information searches.

B. Answering

Answer compare

Part of graph database after example memorize query

Do you know about gpt-4?

Question for answer compare

 / 11 14



Through the memory assistance algorithm using the graph database, it immediately finds the 
information needed according to the question and assists in generating answers for the generative 
language model. This research shows that if a graph database is used as a memory assistance 
algorithm for generative language models, it can update latest data in real time without any 
modifications to the generative language model. Additionally, by storing information as an property 
graph model through a graph database, it can fetch related information along with natural language 
sentences or of information similar to human thinking patterns, thereby providing actual data for 
answers.

As an AI developed by OpenAI, I'm based on 
the GPT-3 model. As of my last update, GPT-4 
has not been released or detailed. However, it's 
expected that GPT-4 would be an even more 
advanced version of the current model, with 
improved capabilities in language 
understanding and generation. Please check 
OpenAI's official announcements for the most 
accurate and up-to-date information.

Yes, GPT-4 is a multimodal large language 
model created by OpenAI. It's the fourth in the 
series of GPT foundation models. It was 
released on March 14, 2023, and is available via 
the paid chatbot product ChatGPT Plus, and 
OpenAI's API. It uses a transformer-based 
model where pre-training is done using both 
public data and data licensed from third-party 
providers to predict the next token. The model 
is then fine-tuned with reinforcement learning 
feedback from humans and AI for human 
alignment and policy compliance.

Pure GPT-4 (temperature: 0) GPT-4 with GraphAM (temperature: 0)

 / 12 14



IV. Discussion
For generative language models, it is difficult to include all the information and perform all the 
tasks you want. However, through the memory assistance algorithm using a graph database, it can 
improve accuracy and performance for specific tasks more simply than fine-tuning across all 
domains. Additionally, continually updating data can be persistently maintained in real-time with 
fewer resources. Generative language models focus only on generating language, while algorithms 
take over for specific tasks or information, leading to higher performance of efficient language 
models with fewer parameters.

Through the memory assistance algorithm of this study, the generative language model can receive 
related information from all past conversation data relevant to the current question, enabling more 
personal-friendly or purpose-driven answers. Also, it can reduce hallucination problems of 
generative language models since it can reference not only past conversations but also other data 
stored by property graph.

The current study only includes content about storing and fetching conversations with a language 
model as an property graph model. However, if various natural language text data are converted into 
property graph containing relationship and property information and connected to generative 
language models through this study's graph database memory assistance algorithm, we believe that 
it could increase accuracy of information by linking existing diverse information with artificial 
intelligence and decrease hallucinations.

 / 13 14



V. References
[1] OpenAI, “GPT-4 Technical Report”, Mar, 2023.

[2] Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit and Llion Jones and 
Aidan N. Gomez and Lukasz Kaiser and Illia Polosukhin, “Attention Is All You Need”, Jun, 2017.

[3] Long Ouyang and Jeff Wu and Xu Jiang and Diogo Almeida and Carroll L. Wainwright and 
Pamela Mishkin and Chong Zhang and Sandhini Agarwal and Katarina Slama and Alex Ray and 
John Schulman and Jacob Hilton and Fraser Kelton and Luke Miller and Maddie Simens and 
Amanda Askell and Peter Welinder and Paul Christiano and Jan Leike and Ryan Lowe, “Training 
language models to follow instructions with human feedback”, Mar 2022.

 / 14 14


