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Abstract

The boundary control problem is a non-convex optimiza-
tion and control problem in many scientific domains, includ-
ing fluid mechanics, structural engineering, and heat transfer
optimization. The aim is to find the optimal values for the
domain boundaries such that the enclosed domain adhering
to the governing equations attains the desired state values.
Traditionally, non-linear optimization methods, such as the
Interior-Point method (IPM), are used to solve such problems.
This project explores the possibilities of using deep learning
and reinforcement learning to solve boundary control prob-
lems. We adhere to the framework of iterative optimization
strategies, employing a spatial neural network to construct
well-informed initial guesses, and a spatio-temporal neural
network learns the iterative optimization algorithm using pol-
icy gradients. Synthetic data, generated from the problems
formulated in the literature, is used for training, testing and
validation. The numerical experiments indicate that the pro-
posed method can rival the speed and accuracy of existing
solvers. In our preliminary results, the network attains costs
lower than IPOPT, a state-of-the-art non-linear IPM, in 51%
cases. The overall number of floating point operations in the
proposed method is similar to that of IPOPT. Additionally, the
informed initial guess method and the learned momentum-
like behaviour in the optimizer method are incorporated to
avoid convergence to local minima.

Introduction
Optimal control problems arise in a plethora of applications,
many requiring accurate and fast solution methods. Using
traditional solution methods is time-consuming; some sim-
ulations often take days. Performance improvement of such
solvers leads to reduced time consumption, enabling more
opportunities to fine-tune parameters.

Boundary control problems involve controlling the values
at the boundaries while adhering to control and state con-
straints. The objective is to find the optimal boundary values
such that the values in the domain are as close as possible to
their desired values, with the closeness defined using resid-
ual sum of squares. For simple desired profiles, matching the
domain values may be attainable, as in Figure 1a, while for
complicated ones, the best achievable could be far from the
desired, as in Figure 1b.

Many classical approaches and tools use Interior-point
method (IPM), a non-linear optimization method, to solve
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Figure 1: Governing function of the desired profile and op-
timal solution obtainable

such an optimization problem. IPMs typically require fac-
torization and the solution of a linear system involving the
Hessian matrix in each iteration. For large-scale problems,
computation of the factorization can be computationally ex-
pensive and requires excessive storage, thus dominating the
overall complexity of the algorithm. Additionally, as non-
convex optimization problems can have multiple local min-
ima, IPMs are not guaranteed to find a global minimum as
these are sensitive to the starting point. These limitations
serves as the motivation for exploring methodologies in deep
learning and reinforcement learning to solve such problems.

Literature review
The paper by Maurer and Mittelmann (Maurer and Mit-
telmann 2000) presents control problems for semi-linear
elliptic equations subject to control and state constraints.
They approached the problem by transforming the control
problem into a non-linear programming problem and used



the interior-point method to solve the same. An analyti-
cal setting for optimal boundary control of one-dimensional
heat equations is described by Lang and Schmitt (Lang and
Schmitt 2023). Non-elliptic boundary control problems us-
ing the Cahn-Hilliard equation as governing PDE exist in
literature (Colli, Gilardi, and Sprekels 2015).

A plethora of studies on using deep learning and rein-
forcement learning to expedite numerical computing tasks
exist. Scientific simulations involving solving partial differ-
ential equations (PDEs) can be solved using neural networks
(Lagaris, Likas, and Fotiadis 1998; Jiang et al. 2023; Brand-
stetter, Worrall, and Welling 2022; Chamberlain et al. 2021;
Cai and Diagne 2021). Fawzi et al. (Fawzi et al. 2022) used
reinforcement learning to arrive at a matrix multiplication
method that improves upon Strassen’s algorithm, which was
considered the most optimized for the past fifty years. Deep
reinforcement techniques are used on optimization and con-
trol problems (Williams 1992; Zhu 2018). Attempts to ana-
lyze and improve optimizer methods following gradient de-
scent are researched (Bello et al. 2017; Liu et al. 2023). A
few papers describing the use of graph neural networks in
control are of interest (Chen et al. 2021; Shen et al. 2019;
Meirom et al. 2021; Rozemberczki et al. 2021; Gama and
Sojoudi 2021). Observe a combination of Q-learning with
policy-gradients with soft actor-critic method in the work by
Haarnoja et al. (Haarnoja et al. 2018). These methods are
combined to solve real-world problems (Bonny, Kashkash,
and Ahmed 2022).

Control and optimization studies without deep learning
or reinforcement learning also exist. Zafar and Manch-
ester (Zafar and Manchester 2023) discusses a precondi-
tioned conjugate gradient method for solving finite-horizon
linear-quadratic optimal control problems. Several studies
and tools using the interior-point method can be observed
in the literature (Tasseff et al. 2019; Kardoš, Kourounis,
and Schenk 2020; Kardoš et al. 2022; Pacaud et al. 2023;
Wächter and Biegler 2006).

Methodology
High-level architecture
Copious iterative optimization algorithms have a common
feature of starting with an initial guess and iteratively updat-
ing the current point until reaching the best-fitting solution.
As depicted in Figure 2, the proposed method first makes an
informed initial guess after considering problem parameters
using deep learning, and subsequently, it iteratively updates
the solution using an optimizer created using policy gradient
reinforcement learning. From this point forward, the part of
the proposed method that makes an informed intial guess is
referred to as initial guess method and that which performs
iterative update is called optimizer method.

Defining cost and reward
Mathematically, the boundary control problem is defined as:

Minimize
y,u

1

2

∫
Ω

(y(x)− yd(x))
2 dx+

α

2

∫
Γ

(u(x)− ud(x))
2 dx

Subject to ∇2y = c, ymin < y < ymax, umin < u < umax

Figure 2: High-level solution architecture

where Ω is the domain, Γ is the boundaries, yd is the de-
sired values for the domain, ud is the desired values for the
boundaries, y is the values for the domain, u is the values
for the boundaries, α is a non-negative constant that deter-
mines how much weight must be given to the cost for the
boundaries, c is a constant sourcing term, ymin and ymax

are upper and lower bound of y, and, umin and umax are
upper and lower bound of u.

There are constraints associated with the objective func-
tion. To deal with the governing PDE, structure the proposed
method to output the boundary values and calculate the do-
main values using a numerical PDE solver. Along with the
objective function, the bound constraints are incorporated
into the cost function using a barrier function. The cost func-
tion is mathematically defined as:

F = Fo + βFv

Fo =
1

2

∫
Ω

(y(x)− yd(x))
2 dx+

α

2

∫
Γ

(u(x)− ud(x))
2 dx

Fv =

∫
Ω

fΩ(x)dx+

∫
Γ

fΓ(x)dx

fΩ(x) =


(y(x)− ymin)

2 if y(x) ∈ (−∞, ymin)

(y(x)− ymax)
2 if y(x) ∈ (ymax,∞)

0 otherwise

fΓ(x) =


(u(x)− umin)

2 if u(x) ∈ (−∞, umin)

(u(x)− umax)
2 if u(x) ∈ (umax,∞)

0 otherwise

where β is the penalty factor for constraint violation, which
should have a large positive value.

The reward could be any strictly monotonous decreasing
function of the cost function, as maximizing it leads to min-
imizing the cost. For simplicity, the reward function shall be
the negative of the cost function.

Data generation
We scope our study to boundary control problems with
Dirichlet boundary conditions. Due to the unavailability of



a ready-to-use dataset containing real-world information, an
equation generator is created based on four boundary control
problems with Dirichlet boundary condi- tions presented in
the literature (Maurer and Mittelmann 2000). To randomly
create reasonable problems, it must be ensured that the pa-
rameters and coefficients can only vary within a well-defined
range, as detailed below.

• Domain size: A random integer between 10 and 100.
• Alpha factor: Set to 0.01 for all problems.
• Target profile equation: The desired values in the do-

main are calculated using this equation. It shall have
quadratic and sine-squared terms in both directions; the
coefficients for each of the quadratic terms are integer
values between −5 and 5 and the frequency and the phase
angles of the sine squared terms are respectively set to be
an integral multiple of π between −5 and 5, and, an inte-
gral fraction of π between 1 and 6. Examples:

– x2
2 − x2 + sin2(2πx1 +

π
5 )

– sin2(3πx1 +
π
6 ) + sin2(πx2 + π)

– 2x2
2 + x2

• Desired boundary values: Set to zero for all problems.
• Bounds: The domain lower bound in all of the problems

in the original set of problems was −1020, which signi-
fies negative infinity, which is used in the problems gen-
erated here as well. The rest of the bound values are cho-
sen based on the target profile equation; by generating
the desired domain profile by solving the target profile
equation for the domain size. The maximum, minimum
and median values in the desired domain are used.
The following are the specifications of the Bounds

– Lower bound for domain is set to −1020 for all prob-
lems.

– Upper bound for domain is a uniformly sampled ran-
dom number between the median and the maximum
values.

– Lower bound for boundary is the minimum value plus
half of uniform random value generated between pos-
itive and negative difference between maximum and
minimum values.

– Upper bound for boundary is the maximum value plus
half of uniform random value generated between pos-
itive and negative difference between maximum and
minimum values.

• Sourcing term: A random value chosen from the set
{0,−10,−20,−30,−40,−50}.

• Additional filters: Once the problem is generated, there
are two additional sets of filters based on certain thresh-
olds that were incorporated to improve the quality of the
equations generated. The first one is a threshold for the
maximum and minimum values observed in the domain;
a difference of less than 0.3 is discarded. The second one
is a threshold on the cost that IPOPT predicts for the gen-
erated problem; a problem with a cost of more than 0.2
per cell is discarded.

Experimental setup
Setting up the baselines
Two separate sets of baselines are defined to assess the ef-
fectiveness of the initial guess and optimizer methods.

Baselines for initial guess method Three baselines for
initial guess are created with the boundaries set to the mean,
the median or the values at the edges of the desired domain,
and calculating the cost. This is done for all the generated
problems, and the information is stored to make it easier for
analysis later.

Baselines for optimizer method Two baselines are used
to evaluate the optimizer method.

1. Comparison against solvers previously tried and tested
to work for boundary control problems. The state-of-the-
art large-scale nonlinear optimization problem solver,
IPOPT (Wächter and Biegler 2006), is used to create this
baseline.

2. Comparison against optimizers used in deep learning.
On a network with only a single bias layer with the size
of the boundaries, backpropagation is performed using
the gradients computed from cost calculation. After sev-
eral iterations, the bias layer is expected to achieve an
optimal boundary value. Two different baselines are gen-
erated using this approach with Stochastic gradient de-
scent (SGD) and adaptive moment estimation (Adam) as
optimizers, and running for 100 optimizer steps.

Note that the former baseline method is computationally
less expensive and can run for all the generated problems.
However, since the latter is computationally expensive, the
baseline is generated with only 400 problems.

Performing the experiments
For both initial guess and optimizer methods, neural net-
works are designed based on intuition, which may involve
some feature engineering. The dataset is divided in the ratio
80:10:10 for training, validation and testing. The best model
for a given network design is chosen based on the lowest val-
idation cost, while the overall best network design is selected
based on the lowest testing cost. The idea is to iteratively de-
sign, train, validate and test different networks until models
that outperforms the baselines are found.

Initial guess method Inputs to the initial guess method
are the desired domain profile, bound constraints and the
sourcing term, and the output is the guessed boundary val-
ues. While designing the network, ensure that the input and
output dimensions are variable and the output dimension is a
function of input dimensions. If the target profile array is of
size N × N , then the output boundary value size would be
4×N . Intuitively, one could use convolution, graph convo-
lution and different pooling layers in the network. Indeed,
there may be other layers that could work with this con-
straint. A fully connected layer, a.k.a. linear layer, can not
work with such a constraint as it requires the input and out-
put dimensions to be known beforehand to work.



Optimizer method Inputs to the optimizer method are the
boundary values and the calculated gradients with respect
to the cost, and the output is updated boundary values. All
of these have size 4 × N . Inspired by several widely used
optimizers, the network may have the ability to work with
both spatial and temporal information. The temporal fea-
tures would help in taking the previous iteration into con-
sideration. Hence, layers like convolution, graph convolu-
tion, recurrent and other layers that can work with spatial
and temporal information shall be employed.

Results
Initial guess method
Architecture After designing and evaluating several net-
works, the architecture of the best one obtained is shown
in Figure 3. Starting with the desired domain profile (a 2-

Figure 3: Network architecture for initial guess method

dimensional array), the values are clamped to the domain’s
upper and lower bounds. From this, the sourcing term ef-
fect is subtracted. Following this, to ensure that all the val-
ues are greater than or equal to zero, the minimum value in
the array is determined, and all the elements are subtracted
with this minimum value. The resulting array passes through
four convolution layers with rectified linear unit activations,
following which the previously subtracted minimum value
is added back. The boundaries of the resulting array are
extracted and clamped to the boundary’s upper and lower
bounds. The result forms the guessed boundary values.

Quantitative Table 1 summarizes the comparison be-
tween the baselines and the initial guess method filtered for
the problems for which IPOPT found feasible solutions.

A cumulative histogram plot with information from the
baselines and the network is shown in Figure 4. The plot
depicts the count of problems with costs less than or equal to
the value in the X-axis at any given point. Observe that there
are about 4000 problems for which using edge values may be
more advantageous than the other three. However, after the
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Figure 4: Cumulative plot comparing cost for different meth-
ods for making initial guess

cost value mark of about 0.42, the method appears to have
the upper hand. From the sub-plot for larger cost values, it
is evident that the edge method performs significantly worse
than the other three methods at later points as it goes slowly
into the regions with more and more cost.

Although it is evident that the proposed initial guess
method performs better than baselines by mean and median
values of the desired profile, it is inconclusive as to whether
it is better than that of the edge values. However, it can be
argued that using the edge values as a starting point is unre-
liable as it could be the best or the worst in different situa-
tions; therefore, the use of the more consistent initial guess
method is advisable.

Optimizer method
Architecture Figure 5 shows the architecture of the best
method obtained after several iterations. The method en-

Figure 5: Network architecture for optimizer method



Initial guess Iterative optimization
Mean Median Edge Method IPOPT SGD Adam Method

Mean cost 4.5059 5.6269 87.1563 1.0591 0.1223 8378.6 0.1808 0.1721 0.1223
Median cost 0.4422 0.4572 0.2010 0.2709 0.1252 0.3439 0.1672 0.1469 0.1181
Lowest cost 0.0087 0.0091 0.000023215 0.0081 0.0097 0.0093 0.0164 0.0100 0.0034
Highest cost 388.7509 1642.7 3478.2 125.8895 0.1995 126160 0.5770 1.0894 0.6616

Iterations 43∗ 100 100 8 32
∗ The number of iterations for IPOPT is the rounded mean value

Table 1: Summary of method costs compared with the baselines

capsulates the Adam optimizer, RMSProp optimizer and a
custom spatio-temporal network. The gradient is the input
to these three, and the outputs are some intermediary val-
ues, which are scaled using three separate learnable learning
rates and used to update the boundaries.

The spatio-temporal part begins by concatenating the gra-
dients, and their squared and cubed values, which is passed
through a couple of custom temporal convolution layers
with rectified linear unit activation and, finally, a convolu-
tion layer with rectified linear unit activation. This interme-
diary output is multiplied with the sign of the original gradi-
ent values. Note that the custom temporal convolution layer
encapsulates convolution and LSTM layers.

Quantitative Out of the 400 problems selected, IPOPT
found feasible solutions for 252. The costs corresponding to
these problems by IPOPT, SGD and Adam are used as base-
lines. Comparison between the baselines and the optimizer
method run for 8 and 32 steps are summarized in Table 1.
During training and validation, the network ran for 8 steps.
The results show that the method achieves lower cost after
32 iterations, indicating it is indeed iteratively minimising
the cost.

A cumulative histogram plot comparing the baselines
with the optimizer method is shown in Figure 6. Observe the
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Figure 6: Cumulative plot comparing cost for different opti-
mizers with proposed optimizer method

fiece competition between IPOPT and the optimizer method
running 32 iterations; the lines corresponding to these inter-
set quite a few times.

In a head-to-head comparison between the optimizer
method and the baselines, it beats IPOPT, SGD and Adam-
based baselines 127, 226 and 244 times, respectively, out of
252 cases, which means that the network beats the respec-
tive baselines 50.40%, 89.68% and 96.83% of the times. The
method arrived at is indeed quite good.

Analysis
A detailed analysis is performed using all 10000 problems
and comparing exclusively against IPOPT.

Simple statistics
Out of the 10000 problems generated, IPOPT found feasible
solutions in 5907 cases. Among these cases, the cost pre-
dicted by the proposed method is lower than IPOPT in 3011
cases, which is 50.97% cases. However, we use a slightly
relaxed barrier function for cost calculation. The maximum
and mean absolute constraint violation for a particular cell in
the domain or the boundary is 0.1033 and 8.3 × 10−4. The
total number of cases wherein the method predicted a feasi-
ble solution with zero constraint violation is 2127, which is
36.01% cases.

Iteration at which the network finds the best
solution
Figure 7 shows histograms that help visualize the iteration at
which the network finds the lowest cost for different prob-
lems. Observe the general trend of obtaining lowest cost

(a) With/without constraint vi-
olation

(b) Without constraint viola-
tion

Figure 7: Histograms depicting the number of problems for
which the method achieved the lowest cost at which iteration

at later iterations. The median number of iterations for the
lowest cost is 28 and 26, respectively, for with and without
constraint violation. Furthermore, the tremendous increase
in the bar size at iteration number 32 may suggest that lower
costs are obtainable with more iterations for some problems.

Iteration at which the network beats IPOPT
Histograms that help in visualizing the iteration at which the
network achieves lower cost than IPOPT are shown in Fig-
ure 8. There are two peaks in both histograms. The former



(a) With/without constraint vi-
olation

(b) Without constraint viola-
tion

Figure 8: Histograms depicting the number of problems for
which the method first surpassed IPOPT’s cost at which it-
eration

peak attributes the contribution of the initial guess method to
the overall results, while the latter shows the prowess of the
optimizer method. The median number of iterations to beat
IPOPT’s cost is 13 and 12, respectively, with and without
constraint violation. Note that this plot is not informative in
cases where the network has a higher cost than IPOPT.

Comparing cost and violation with IPOPT
A semi-transparent scatter plot with the cost by IPOPT in
one axis and cost by proposed method in the other is shown
in Figure 9. The line of equality (in orange) coincides with

Figure 9: A scatter plot comparing costs

many scatter plot points, indicating the cost by IPOPT and
method to be equal. 4607 points lie between two parallel
lines to the line of equality with X and Y intercepts of 0.02,
respectively, which is nearly 78% of all the points.

Figure 10 shows a scatter plot for the violations made by
IPOPT and the method. The violation is zero in 1581 cases

(a) Standard axes (b) Log-log axes

Figure 10: Scatter plots comparing constraint violations

for the proposed method, which are not visible in the loga-
rithmic version of the plot. However, there are cases wherein
the violations made by the optimizer method are orders of
magnitude larger than what is by IPOPT; much of that by
IPOPT is in the range between 10−15 and 10−14, whereas
the same by the optimizer method is in the range between
10−8 and 10−6.

Performance comparison with IPOPT
Comparing the performance is a bit tricky for two reasons.

1. There are cases where the method achieves lower cost at
very early iterations, and there are cases where it does not
accomplish the same even after the maximum number of
iterations.

2. The proposed method and IPOPT are implemented in
Python and C++, respectively. C++ is between 10 to 100
times faster than Python.

Therefore, take the following analysis with a pinch of salt.

Timing The execution time for initial guess and optimizer
methods for varying domain sizes are shown in Figure 11.
Python’s built-in‘time’ module was used for this. Observe
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Figure 11: Execution time for the initial guess method and
32 iterations of the optimizer method

that the initial guess method takes in the order of 10−3 sec-
onds to execute, which is negligible compared to the execu-
tion time of the optimizer method, which is in the order of
102 seconds.

A comparison between the execution time by the pro-
posed method and IPOPT for 32 iterations is shown in
Figure 12. If implemented in a lower-level language, the
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Figure 12: Comparing execution time for the proposed
method with IPOPT

method’s execution time would be between 0.1 and 0.01



times the current. These are shown in the plot as well. Even
the optimistic scaled version would be slower than IPOPT
for the same number of iterations.

Floating point operations The number of floating point
operations involved in the computation of the initial guess
and the optimizer methods are shown in Figure 13. This
is calculated using PyTorch’s profiler. Observe a quadratic

0 2 4 6 8 10

Domain size

0

0.5

1

1.5

2

T
o

ta
l 
F

L
O

P
s

10
4

(a) For initial guess method

0 20 40 60 80 100

Domain size

0

0.5

1

1.5

2

2.5

T
o

ta
l 
F

L
O

P
s

10
9

1 Step

2 Steps

3 Steps

4 Steps

(b) For optimizer method

Figure 13: FLOPs for the initial guess method and the opti-
mizer method

increase in the FLOPs for increasing domain size for both
the initial guess and the optimizer methods. The number of
FLOPs for the initial guess method is negligible compared
to that for the optimizer method; the former is in the order
of 104 while the latter is in the order of 109.

The comparison of the number of floating point opera-
tions between the proposed method and IPOPT for 32 it-
erations is shown in Figure 14. Observe that the proposed
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posed method with that for IPOPT

method has slightly more floating point operations than
IPOPT for the same number of iterations and hence, will
likely be slower even if implemented in C++.

Effect of larger domain sizes on accuracy
The data generated has domain sizes varying between 10 and
100. Figure 15 shows the cost calculated by the method and
IPOPT for selected problems for domain sizes beyond this
range. Although the method may work till about a domain
size of 150, it fails miserably for larger domain sizes.

Conclusions and discussions
This study applies deep learning and reinforcement learn-
ing to boundary control problems by following an architec-
ture framework, similar to most iterative optimization algo-
rithms, containing two parts: one for making an initial guess,
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Figure 15: Cost for larger domain sizes

called the initial guess method, and the other, for making it-
erative improvement, called the optimizer method. The ini-
tial guess method is predominantly a convolution neural
network. The optimizer method is a policy-gradient rein-
forcement learning method with the policy represented by a
spatio-temporal neural network. Experimentation and anal-
ysis suggest that both initial guess and optimizer methods
are effective. The initial guess method successfully outper-
forms trivial methods of generating an initial guess value for
a given problem. The optimizer method achieves similar ac-
curacy and performance to IPOPT, arriving at a lower cost
solution in 50.97% cases.

However, further research and exploration are required to
provide additional conclusions and address the limitations
of this research. These are summarized below.

• Evaluating the method on real-world problems is in or-
der. In future work, we aim to tackle problems from fluid
mechanics, structural engineering and heat transfer do-
mains by creating a dataset with real-world conditions
and retraining the model to study its performance.

• Explore additional model extensions addressing the sub-
optimal performance on larger domain sizes and employ
mitigation strategies.

• Strategies to reduce the computations per iteration and
the overall number of iterations without affecting the ac-
curacy need investigating. Some potential avenues are:

1. Faster PDE solvers: Currently, the governing PDE is
solved using the finite difference method. Improve-
ments here could expedite the solver’s performance.
Neural network methods could perhaps be employed
for this purpose as well.

2. Faster gradient computation: Currently, the gradients
are computed using PyTorch’s autograd. Explore ways
to calculate or approximate it between the cost and the
boundary values faster.

Overall, approaching boundary control problems with
deep learning and reinforcement learning has merits. Further
research may enable arriving at initial guess and optimizer
methods that can achieve lower costs with fewer computa-
tions. The idea followed in this project may extend to opti-
mization problems beyond boundary control problems; for
instance, optimal power flow problems.
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Kardoš, J.; Kourounis, D.; Schenk, O.; and Zimmerman, R.
2022. BELTISTOS: A robust interior point method for large-
scale optimal power flow problems. Electric Power Systems
Research, 212: 108613.

Lagaris, I. E.; Likas, A.; and Fotiadis, D. I. 1998. Artificial
neural networks for solving ordinary and partial differen-
tial equations. IEEE transactions on neural networks, 9(5):
987–1000.

Lang, J.; and Schmitt, B. A. 2023. Exact Discrete Solutions
of Boundary Control Problems for the 1D Heat Equation.
Journal of Optimization Theory and Applications, 1–13.

Liu, H.; Li, Z.; Hall, D.; Liang, P.; and Ma, T. 2023. Sophia:
A Scalable Stochastic Second-order Optimizer for Language
Model Pre-training. arXiv:2305.14342.

Maurer, H.; and Mittelmann, H. D. 2000. Optimization tech-
niques for solving elliptic control problems with control and
state constraints: Part 1. Boundary control. Computational
Optimization and Applications, 16(1): 29–55.

Meirom, E.; Maron, H.; Mannor, S.; and Chechik, G. 2021.
Controlling graph dynamics with reinforcement learning
and graph neural networks.

Pacaud, F.; Schanen, M.; Shin, S.; Maldonado, D. A.; and
Anitescu, M. 2023. Parallel Interior-Point Solver for Block-
Structured Nonlinear Programs on SIMD/GPU Architec-
tures. arXiv preprint arXiv:2301.04869.

Rozemberczki, B.; Scherer, P.; He, Y.; Panagopoulos, G.;
Riedel, A.; Astefanoaei, M.; Kiss, O.; Beres, F.; Lopez,
G.; Collignon, N.; and Sarkar, R. 2021. PyTorch Geomet-
ric Temporal: Spatiotemporal Signal Processing with Neu-
ral Machine Learning Models. In Proceedings of the 30th
ACM International Conference on Information and Knowl-
edge Management, 4564–4573.

Shen, Y.; Shi, Y.; Zhang, J.; and Letaief, K. B. 2019. A
Graph Neural Network Approach for Scalable Wireless
Power Control.
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Appendix

Code and data

The implementation code, generated dataset, results and
analysis are available in https://github.com/zenineasa/
MasterThesis.

To set up the Anaconda environment and IPOPT, fol-
low the instructions in the Jupyter Notebook file named
Code/setup.ipynb. The environment information is available
in the file named Code/environment.yml. If the environment
installation process does not work as specified in Jupyter
Notebook, please manually install the packages listed in Ta-
ble 5.

The program that generates synthetic data is in the file
named Code/dataGenerator.py, and the generated data is in
the file named Code/Data/data.csv. Files related to baseline
generation and a few initial experiments are in the folder
Code/experiment. Files about applying deep learning and
reinforcement learning methods to solve boundary control
problems are in the folder Code/FinalAttempt.

Hardware and software setup

The specification for the device used in training and vali-
dating all the neural networks is provided in Table 2. Testing
was performed using several regular nodes in an HPC cluster
with specifications listed in Table 3. For performance eval-
uation, an old Linux machine with administrator privileges
available to run a performance analyzing tool named ’perf’
was used, the specification of which is described in Table 4.
The information on the software and libraries used in this
project are listed in Table 5.

Component Specification
Hardware MacBook Pro 2019, 16-inch
Processor 2.6 GHz Intel Core i7
No. of cores 6
Graphics AMD Radeon Pro 5300M 4 GB,

Intel UHD Graphics 630 1536 MB
Memory 16 GB DDR4 @ 2667 MHz
OS macOS 13.3.1

Table 2: Specification for the machine used for training, test-
ing and validating neural networks

Component Specification
Processor Intel(R) Xeon(R) CPU E5-2650 v3
No. of cores 20
Memory 64GB DDR4 @ 2133MHz
OS CentOS Linux 8 (Core)

Table 3: Specification for the nodes used from the HPC Clus-
ter

Component Specification
Hardware Lenovo ideapad 330-15ARR
Processor AMD Ryzen 5 2500U
No. of cores 8
Graphics AMD Radeon vega 8 graphics
Memory 8 GB (2× 4 GB DDR4 @ 2400 MHz)
OS Ubuntu 22.04.02 LTS

Table 4: Specification of the machine used for performance
evaluation

Software / Library Version
Python 3.9.16
PyTorch 2.0.0
Pandas 1.3.5
Anaconda 4.13.0
IPOPT 3.14.12
MATLAB R2022b

Table 5: Versions of different software and libraries used

The implementation of the proposed method is written in
Python using PyTorch and other libraries, while the analysis
is in MATLAB, which makes it easier to know which files
in the codebase are implementation and analysis related.

Removing the effect of the sourcing term
The following are two relationships related to the sourcing
term of Laplace’s equation.
• Relationship between solutions for different sourcing

term values: Setting the boundary values to zero and nu-
merically solving Poisson’s equation for different sourc-
ing term values, one can observe that the solution matrix
when the sourcing term is −20 is double that of when it
is −10. Similarly, for −30, −40 and −50, the solution
matrices are three, four and five times that for −10, re-
spectively.

• Relationship between solutions for random and zero
boundary values: For a fixed domain size, if A is the nu-
merical solution for a given sourcing term with boundary
values set to zero, B is the numerical solution for random
boundary values with the sourcing term set to zero, and
C is the numerical solution for the same random bound-
ary values and the given sourcing term, then it can be
observed that,

A+B = C (1)
Let’s put these relationships together. Forward solving for

Poisson’s equation with a sourcing term of −10 using zero
boundary values of dimensions 4 × N will result in a ma-
trix of size N × N . For reusing, store these matrices for
different values of N . To get the corresponding value for
other sourcing terms, simply multiplying the values in the
stored matrix for the desired size with the ratio of the re-
quired sourcing term and −10 would suffice. This matrix
can be subtracted from the solution to Poisson’s equation
with a constant sourcing term to get the solution to Poisson’s
equation without a sourcing term!



Initial guess method and edge values
It was hard to conclude whether using the initial guess
method or the edge values for the initial guess was more
beneficial. Let us analyze the 3606 cases where using the
edge values for initial guess were observed to have lower
cost and see if there is a pattern.

Partial correlation between the cost differences between
the initial guess method and the edge values, and the prob-
lem parameters were calculated. A relatively high absolute
partial correlation between the sourcing term and the cost
differences was observed, which is a value of 0.4593. Al-
though this correlation in itself is not significantly high, be-
cause the correlation with every other parameter is below
0.07, it may be useful to have a look into this.
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Figure 16: Number of problems for which initial guess
method or edge values had lower cost for different sourc-
ing term values

The number of cases where one method has a lower cost
than the other can be compared easily. Figure 16 shows a
bar graph helping visualize the same. Observe that using
the edge values might be more desirable when the sourcing
value is 0. In every other case, using the initial guess method
would be more desirable.

This may indicate that one could create a better initial
guess mechanism by adding a control statement that would
let one guess the initial values as the edge values if the sourc-
ing term value is zero and use the initial guess method in
every other case. However, it is also likely that there exists
some bias in the problem generator that has caused this.

Adam and RMSProp in optimizer method
There are two reasons why Adam and RMSProp were in-
cluded along with the spatio-temporal network in the opti-
mizer method.

1. Adam and RMSProp have been widely used in deep
learning as optimization algorithms to tune network
weights. They have demonstrated to work well in quite
a lot of scenarios.

2. Adam and RMSProp appear to be guiding the spatio-
temporal network to train. Without them, the best val-
ues observed would be the first set of values (the output
of the initial guess method), and the network iterations
would not be considered during backpropagation.

Indeed, the second issue could have been addressed by
tweaking the training method. It is also true that either one
of Adam or RMSProp could have been used for this and not

both simultaneously. Furthermore, several other optimizers
are being used in research like Adaptive Gradient Algorithm
(Adagrad), AdaDelta, Stochastic Gradient Descend (SGD),
etc. This is just the decision that was made.

Contribution of Adam, RMSProp and
spatio-temporal parts
The learnt learning rates for Adam, RMSProp and the
Spatio-temporal part of the optimizer are respectively
0.0223, 0.0221 and 0.0645. However, this does not con-
clusively mean that the contribution of Spatio-temporal is
higher than that by Adam and RMSProp.

The information regarding contribution of each of the
three parts are recorded for 32 optimizer iterations along
with the domain size and order of iteration. The average
magnitude of contribution per optimizer iteration for Adam,
RMSProp and the Spatio-temporal part are, respectively,
0.0151, 0.0133 and 0.0251. Clearly, the contribution from
the network is higher in magnitude.

Furthermore, the partial correlation between Adam, RM-
SProp and Spatio-temporal parts with the number of itera-
tions are −0.6017, −0.3360 and −0.0086, respectively. The
effects of this correlation are visualized in Figure 17. For
Adam and RMSProp, the values are as expected; as the num-
ber of iterations increases, the contribution would decrease,
indicating that they are converging to a solution. However,
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Figure 17: Comparing the contribution by Adam, RMSProp
and Spatio-temporal part over different iteration

for some peculiar reason, the magnitude of contribution
from the Spatio-temporal part does not seem to change, sug-
gesting that this part may not be doing anything meaningful,
as it may just be outputting some constant value. Let us in-
vestigate whether that is true or not.

Investigating Spatio-temporal part This investigation is
to know if the network is doing something meaningful and
not just outputting the biasses. If it is all about the bias terms,
then for different inputs to the Spatio-temporal part, the out-
put would more or less be a constant value.

In the setup, a minor modification is made to store the
value of the output of the Spatio-temporal part in the ma-
trix form for the first iteration. Then, for every subsequent
iteration, the output of the Spatio-temporal part at that itera-
tion is subtracted with the stored value, following which the
mean of the absolute values are calculated and logged. Fig-
ure 18 helps visualize logged information. Observe that the
contribution from the network is not constant. The variations
observed are between 0 and 0.0503, which is significant.
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(a) For four different problems
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different problems

Figure 18: Contribution by Spatio-temporal part visualized

Although it is still quite interesting to see that the con-
tribution by the Spatio-temporal network has a constant-ish
mean absolute value, it does not mean in any way that the
network itself is giving us a constant-ish value.


