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1 Introduction

It is from the definitions § = B’(a) — 6 |a(s,)= B’(c;) and the chain of
definitions / NN (Vp) = 7 <,—; 1 <, 1(d), that can be expressed by ®(ridl),

such that V7 <, (A — 3), then for some p(w) — p~!(v), there is some vector u
of positive variational u, such that i=% = v™(7). This implies that the number
of binary connections from i*", lowers the complexity of ¢.

Y(r <, (A=B)) 3 p(w) = p~'(v) I u, where uy >0 and i~% = 0™ so that ¢ is less complex.

This process is facilitated by the idea that the functions BY(a) and ®(7id¢)
can be used to express changes in the system and yield new solutions. By
specifying certain values of 7, § and /¢, as well as using the relation 7 <;_;
1 <¢ 1(6), a set of parameters which are applicable in various contexts can
be constructed. This allows for an easier analysis of the system, which can
subsequently be used to develop more efficient solutions. Thus, these definitions
and functions can be used to construct useful parameters which can enhance
the performance of the system.

2 Notational Structures

S | Ry | {W,Y),Smt1,---,5:}
a® | 3 pE=D)

Table 1: Definition of Table 1

The definition of table 1 locates positive connections of o, it holds that
the set (S, Rp),...,Sn, Pa{W,Y), Spus1,. .., S} satisfies 3 € P*~1 5o the
set of negative connections in the complement of the set Bio. It is simple
matter of doing this same type of analysis for which it is sufficient to prove that
fa € ¥2%°, ..., 00 can be computed from a;.



2.1 Complex Notations

The notation for a mathematical complex can be expressed as a direct sum of
elements, each of which is a tensor product of the corresponding elements. This
can be written as:

P Ai@r Bi@r, Ci...

iel

where each A;,B;,C;, ... is an element (e.g. vector, matrix, etc.), belonging
to a corresponding ring R;.

A rigorously standardized calculus for mathematical complexes is typically
based on the framework of algebraic topology. Depending on the specific area
of study, this framework may include properties and operations such as the
exterior product, the Whitney sum, and homology.

The exterior product of two complexes X and Y is given by

XAY = PXiey)).

ij=1

The Whitney sum of two complexes X and Y is defined as

XoY =X ey

4,j=1

Homology is a tool which is used to study the topological properties of a
space and it is typically used to define cohomology operations. For example,
the reduced cohomology of a complex X may be defined as

* (X)) = ker(9") /im(0* )

red

where 0 is an associated boundary operator.
Finally, the cup product is an operation on cohomology which takes as input
two cochain complexes X and Y and produces a third complex

XUy = X;uY)).

ij=1

This operation allows for the comparison of cohomology groups.
Any superposition of the form

o
T = E aiNi
i=1

, can have as its minimal encoding x itself, with an orthonormal basis, with the
bijective homomorphism

0PNy X Ny X -+ — (éNn) A (éNJ)
i=1 j=1



This expands to regular logic.

In summary, a rigorously standardized calculus for mathematical complexes
relies on a framework of algebraic topology which includes the exterior and
Whitney products, homology, and the cup product.
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3 Complexes Notation for Forms of the Quan-

tum Communication Game
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For each position y = sg of the game g, we can identify the set I, C

Up>n{(p, k)} with its model by taking the Whitney sum

L= oPI.,.

a>n a>n

The set Sy'() is then given by
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4 Quantum Communication Games
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Therefore, for any quantum game ¥ and elements 91, ¥, ..., ¥, and ¥, 11,
if 1,, is an element of ¥ and 1,41 is not an element of ¥, then the intersection

of ¥ and ,,41 must be non-empty.



5 Organism Encoding Communications
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The R? set allows for communication between multiple organisms through
interactions, allowing for communication games to be simulated. Additionally,
the Gg set allows for the encoding of different organisms and environments which
can be included in simulations.
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The aforementioned non-linear solve method can then be used to answer the
following pairing problem:

Given two sets of quantum games A and B, for each element of set A, find the
corresponding pair in set B so that, for the two elements together, the integral
& converges to the greatest lower bound of both sets. The expression in the first
line is equivalent to:

7= FU « (ot (0], xH (72,5 Gx 7 ha))

With T ¢ ¢ d, this can be rewritten as:

= FU « g(lbeont(m)], xH (x2,2(Gx 7 ha))

Next, the expression under consideration is:
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The above expression can be simplified to:
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This simplified expression can be further written as:

aAB(rC.y X 7-hy)
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B, i A Aji- DD 28 28 D Ry ARE (RS, ..., C¥)
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Now (7C.y) can be written as (py): B
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After expanding, we get:



a A B(p'py)
Y6V o(S[YAT U (Y1 Athe < U1 T %) A A S*Dh

D, T AW A i DD 28 @ 2L D Ny ARE (RE, ... (2)
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In the above expression, (p'py) and 746 can be combined using the distribu-
tive law of multiplication over addition to obtain:
a A [B(p"py) x 4]
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After this, the expression simplifies to:
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Applying the commutative property of the addition operator, we finally get:
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