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Abstract

In this paper we introduce the idea of electric fictitious currents for the electromagnetic
field. Electric fictitious currents are currents that arise in electrodynamics when we change the
topology of space. We show, with a specific example, how fictitious currents may be the source
of magnetic moment and charge of a singularity.
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1 Introduction

The Standard Model of particle physics is a very successful theory describing three out of the four
known forces of nature. Its final formulation relay heavily on the use of gauge fields. In gauge theories
the Lagrangian of the system (i.e. its dynamics) does not change under local transformations acting
in a simply connected region of space-time.

However in the standard model, particle are point objects with no dimension being, as a matter of
fact, space-time singularities with fields around them having sometimes infinite values. For example,
the classical version of electric field around an electron goes to infinity as 1/r2, and in the Standard
Models we start from the classical Lagrangian before quantizing.

In this paper we study what happens to a gauge field when we introduce a singularity in space
such that the space is not simply connected any more. The major results is that, depending on
the topology of the singularity, fictitious currents may arise as a manifestation of the inertia of the
system in changing topology. In the example we studied, dealing only with the U(1) symmetry of
the Standard Model, these currents may be seen as sources for charge and magnetic moment of
particles.

In section 2 we derive fictitious currents generated by a topological singularity in space. The
reader, that does not want to go through the math, can find a simplified version of the content of
this section in [3].

In sections 3, 4 and 5 we show how magnetic moment and charge of a particle can arise as a
conseguence of ficticious currents.

In the sections 6 and 7 we give additional thoughts and conclusions.

2 Fictitious Currents

We start from the Lagrangian density of the electromagnetic field in units where µ0 = 1:

L = −1

4
FµνF

µν − Jν
sAν (1)

where Jν
s is the source four-current vector, Fµν equal to:

Fµν = ∂µAν − ∂νAµ (2)
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is the electromagnetic tensor and Aµ is the four-potential. Moreover, we know that Fµν is a gauge
field and that its Lagrangian is invariant with respect to the symmetry:

Aµ → Aµ + ∂µθ̃ (3)

where θ̃(xµ) is any continuous function in a simply connected space-time region Ω.
In the general case, the Lagrangian density L(A, ∂A), given by Eq. (1), depends on both the

vector potential and its derivatives. We will consider now the case of the free electromagnetic field
(i.e. Jν = 0) in which the Lagrangian density L(∂A) depends only on the derivatives and it can be
written as (see Appendix A.1):

L = −1

2
(∂µAν∂

µAν − ∂νAµ∂
µAν) (4)

Let ξµ = ∂µθ̃ be the gradient of a continuous function in Ω. In this section we will apply the
symmetry Aµ → Aµ + ξµ in order to see what happens to the Lagrangian density.

For the first term in (4) we have;

∂µ(Aν + ξν)∂
µ(Aν + ξν) = ∂µAν∂

µAν + ∂µAν∂
µξν + ∂µξν∂

µAν +

not needed︷ ︸︸ ︷
∂µξν∂

µξν (5)

where the last term is not needed and can be omitted because we are interested in the equation of
motion and that term does not depend on Aµ and therefore has not effect on the variation of the
action with respect to the fields.

For the second term we have:

∂ν(Aµ + ξµ)∂
µ(Aν + ξν) = ∂νAµ∂

µAν + ∂νAµ∂
µξν + ∂νξµ∂

µAν +

not needed︷ ︸︸ ︷
∂νξµ∂

µξν (6)

where the last term once again can be omitted if we are interested in the equation of motion. Putting
the two equation above back together, swapping some terms and rearranging the names of dummy
indices of the third term in parenthesis below, we have:

L = −1

4
FµνF

µν − 1

2
(∂µAν∂

µξν + ∂µAν∂µξν − ∂µAν∂
νξµ − ∂µAν∂νξµ) (7)

Applying the Leibniz rule (i.e. f ′g′ = (fg′)′ − fg′′) to the terms in parenthesis above, we have:

∂αAβ∂
γξδ =

not needed︷ ︸︸ ︷
∂α(Aβ∂

γξδ)−Aβ∂α∂
γξδ (8)

where in this case the first term is not needed, if we are interested in the equation of motion, because
it is a divergence and therefore it depends only on the value of the tensors on the boundary of Ω
and has no effect on the variation of the action with respect to fields. Eq. (7) becomes:

L = −1

4
FµνF

µν − 1

2
(−Aν∂µ∂

µξν −Aν∂µ∂µξν +Aν∂µ∂
νξµ +Aν∂µ∂νξµ) (9)

If we are in nice flat Minkowski space we can raise and lower indices at will also on the derivative
symbols, we have:

L = −1

4
FµνF

µν − 1

2
(−Aν∂µ∂

µξν −Aν∂µ∂
µξν +Aν∂µ∂

νξµ +Aν∂µ∂
νξµ) (10)

and eventually:

L = −1

4
FµνF

µν −Aν∂µ(∂
νξµ − ∂µξν)

= −1

4
FµνF

µν − JνAν (11)
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where Jµ = ∂µ(∂
νξµ − ∂µξν) is a new term now present in the Lagrangian density due to the fact

that we have changed the gauge field θ̃. However, if ξν = ∂µθ̃, we have:

Jν = ∂µ(∂
νξµ − ∂µξν) = (∂µ∂

µ∂ν − ∂µ∂
µ∂ν)θ̃ = 0 (12)

Note that:
L(∂A) ̸= L(∂(A+ ξ)) (13)

only because we have removed terms from the Lagrangian. Otherwise, the two Lagrangians would
have been identical since we are applying a symmetry. However, the way we have removed the terms
has left the equation of motion unchanged, and in fact, if Ω is simply connected we have Jµ = 0 and
this restores the correctness of the equation of motion and leaves the field unchanged.

However, if Ω is not simply connected, then the currents Jν may be different from zero and act
as sources for the fields. We will call Jν Fictitious Currents (Pseudo Currents). Note that these
are electric ficticious currents not to be confused with the magnetic fictitious currents sometimes
used in computational electrodynamics as a trick for solving complex problems.

The reason why we call Jν fictitious, it is due to an analogy with discrete systems (see Appendix
A.2). For discrete systems, if we act on a symmetry (e.g. shift in space) while the system is evolving,
this will result in fictitious forces. For continuous systems, if we act on a symmetry, this will result
in fictitious currents.

The analogy is not perfect though. For mechanical systems fictitious forces appear when we have
a change of symmetry during the evolution of the system. For the electromagnetic field, fictitious
currents appear when we have a change a of the gauge symmetry fields in conjunction with a specific
space topology.

With abuse of terminology, we may say that fictitious currents are due to the inertia of the
system in changing space topology.

3 Magnetic Moment of One Half Spin Particles

Now that we have defined fictitious currents, we want to find an example where the theory may be
used. Let us consider the Lagrangian density of quantum electrodynamics:

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνFµν (14)

and suppose that we have no particles and the electromagnetic field is zero everywhere (at least from
a classical field theory point of view). We know that we have the following symmetry:

ψ → ψeiθ̃(x
µ) ; A→ A+ ∂µθ̃ ⇒ ∆L = 0 (15)

where A is the four-vector potential.
Suppose now we hit the field with the creation operator and we create a particle. Before the

particle is present, the gauge field θ̃ is a continuous function, and since we can choose, we choose it to
be zero everywhere. Suppose finally that in the process, θ̃ goes from being continuous everywhere to
be discontinuous on a line segment AB lying on the z axis with A = (0, 0, L/2) and B = 0, 0,−L/2.
The topology of space has changed, and now θ̃ has to adapt to it and it cannot be zero everywhere.
Now θ̃ will be described by the following function:

θ̃(xµ) = θ(x, y, z)u(t) (16)

where u(t) is the Heaviside unitary step function and θ is a function depending from special coordi-
nates but independent from time.

For θ we give the following boundary conditions expressed in cylindrical coordinates (r, ϕ, z):
lim
r→∞

eiθ(r,ϕ,z) = eiθ∞

lim
r→0

eiθ(r,ϕ,z) = ei(±αϕ+θ0) for − L
2 < z < L

2

(17)
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where α, θ0 and θ∞ are constants and you can have the plus or the minus sign before α. The second
condition above is the one that defines the discontinuity and, in words, it means that going around
the line segment discontinuity, the phase of eiθ goes around the circle α times, by the time we go
around the z axis once. In particular, on any line s parallel to the (x, y) plane and crossing AB we
want the function θ to have a jump of απ (i.e. eiθ to change phase by απ).

Figure 1: Boundary Conditions in the Singularity

Although we do not need to know θ in space, we want to spend a few words on the way it may
look like. We assume that two close points want to have the same phase, which means that there
is some energy associated to difference in phase for nearby points. As usual with these problems
of finding a minimum for energy in space, we end up with a Laplace equation. We propose the
following equation for θ:

∇2θ = 0 (18)

that together with the boundary condition allows to evaluate θ in space.

Whatever equation we use for θ, its important to note that θ will be a multivalued function
shaped like an helicoid and spiralling along the z axis.

Now let ξν = ∂νθ. Given the above boundary conditions, we have that ξ0 = 0 and ξ3 = 0 and
therefore the Jµ lay on the (x, y) plane. From Eq. (12) and after the due calculations (see Appendix
A.3) we have:

Jν =


J0 = 0
J1 = ∂2(∂

1ξ2 − ∂2ξ1)
J2 = ∂1(∂

2ξ1 − ∂1ξ2)
J3 = 0

=


J0 = 0

J1 = ∂y(∇× ξ̂)z
J2 = −∂x(∇× ξ̂)z
J3 = 0

(19)

where ξ̂ is the three-vector (ξ1, ξ2, ξ3), (·)z means component along the z axis, and ∇× ξ̂ has clearly
only the z component while the x and y components vanish.

If we integrate ξ̂ on any loop on the (x, y) plane not containing the origin, we get always a

vanishing integral because ∇×∇θ = 0. However, if we integrate ξ̂ on any loop on the (x, y) plane
containing the origin, given Eq. (17) we get 2πα. This is because, given the expression of the
gradient in the cylindrical coordinate (r, ϕ, z) and picking the plus sign before α, we have;

lim
r→0

ξ̂ = lim
r→0

∇θ = 1

r
αîϕ (20)

This means we have a discrete curl in the origin or, another way to say it, we have an impulsive curl
in the origin described by a Dirac delta function of amplitude 2πα:

(∇× ξ̂)z =
2πα

µ0
δ(x, y) [A][m] (21)

In the above equation we have taken into account that ξ̂ has the same units of Aµ ([kg][m][s−2][A−1]),
the curl adds an unit of [m] and we have put back in the equation µ0 ([kg][m][s−2][A−2]) that was
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previously set to 1. Applying this reasoning to the expressions of J1 and J2, we have:

Jν =


J1 = ∂y(∇× ξ̂)z = α

µ0
∂yδ(x, y) = 2πα

µ0
δ(x)δ′(y) [A]

J2 = −∂x(∇× ξ̂)z = − α
µ0
∂xδ(x, y) = − 2πα

µ0
δ(y)δ′(x) [A]

(22)

Since there is nothing special about the x and y axis, the above is true for any axis on to the
(x, y) plane and crossing the origin. The derivative of the Dirac delta functions of amplitude 2πα

µ0

represents two opposite currents on opposite sides of the origin end it can be described by a current
circulating around the z axis along a circle of radius d→ 0 and having amplitude:

Jm =
1

2d

2πα

µ0
[A] (23)

This current is generating a magnetic moment. Note that the above equation gives a new and nice
physical meaning to µ0. The reason why we need to divide by 2d is due to the definition of d delta
derivative (see figure below).

To evaluate the magnetic moment M of our singularity, we can use the magnetic moment of a
single coil element of a solenoid. To do that, we have to abandon our line segment model AB and
use instead a cylinder of height L and radius d. The current can be distributed inside the cylinder
in many ways. Among others, the current may be concentrated on the surface of the cylinder or
uniformly distributed along the radius.

Figure 2: Magnetic Moment per Unit Length

We choose to use a current concentrated on the external surface as given by Eq. (23). The magnetic
moment m per unit length of the cylinder in the case of a current Jm concentrated on the surface is
m = JmS where S is the surface of the solenoid. We have:

m = Jmπd
2 =

1

2d

2πα

µ0
πd2 =

π2αd

µ0
[A][m] (24)

The total magnetic moment M of the cylinder of length L is therefore:

M = mL =
π2αdL

µ0
[A][m2] (25)

Now we need to give a value to α and we will use the value α = 3. This choice may seem odd.
However, we will justify it in a later paragraph. Assuming the radius of the particle R = d ≈ L

2
(round particle) we may evaluate the radius of the particle from M . For example, taking the value
of the magnetic moment1 µe of the electron and the value of the permeability2 µ0, we have:

RM =

√
µ0µe

2π2α
= 1.4× 10−15 [m] (26)

Which is not too far from the value of the classical electron radius3 re. In Appendix A.4 we have
evaluated the same radius with a more refined model.

1µe = −9.2847647043(28)× 10−24 [A][m2]
2µ0 = 4π × 10−7 [kg][m][s−2][A−2]
3re = 2.8179403227(19)× 10−15 [m]
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4 Charge of One Half Spin Particle

Now we go back to see in more detail what happens during the transition at time t = 0 in which we
go from a zero gauge to our gauge θ(x, y):

θ̃(t) = θ(x, y)u(t) (27)

From Eq. (12) and after the due calculations (see Appendix A.3) we have:

J0 = ∂1(∂
0ξ1 − ∂1ξ0) + ∂2(∂

0ξ2 − ∂2ξ0)

= ∂x(∇× ξ̃)y − ∂y(∇× ξ̃)x (28)

Where ξ̃ is the three-vector (ξ1, ξ2, ξ0) and (·)i means component along the i axis.
From the above equation we see that J0 is always zero even during the transition and therefore

it cannot be used to determine the variation of charge in space. However, to evaluate the quantity
of charge generate in the process we can just integrate the density of current on the surface of our
cylinder. We know that at time zero the current that generates the magnetic moment goes from
zero to Jm (see Eq. (23)). To get the charge we need to divide this current by c to get the correct
units (as it happens for the zero component of the currents four-vector). We have:

Jm =
1

2d

2πα

cµ0
[A][s][m−1] (29)

The total charge generated in the singularity is therefore the above current multiplied for the lateral
surface of the cylinder:

Q =
1

2d

2πα

cµ0
× 2πdL =

2π2αL

cµ0
[C] (30)

Once again, assuming the radius of the particle R ≈ L
2 (round particle), given the speed of light4 c

and using the value of the elementary charge5 e of the electron, we can evaluate the radius of our
particle:

RQ =
cµ0e

4π2α
= 5.0× 10−18 [m] (31)

Which this time a bit too far from the expected value of the classical electron radius. In Appendix
A.4 we have evaluated the same radius with a more refined model.

5 Choosing a Value for α

In this paper we have shown that:

Ficticious Currents Momentum ⇔ Topological Singularity (32)

However, no much it can be said on the nature of the topological singularity that may match or
model the behaviour of a particle. The example of the line segment singularity is just a study
example that we have used to develop our reasoning. However, if we stick to this kind of singularity
and to the relevant cylindrical model needed to evaluate the momentum and charge, we need to
explain why we used a value of α = 3.

Figure 3: Space Deficiency Model

4c = 2.99792458× 108 [m][s]
5e = 1.602176634× 10−19 [C]
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To make a topological singularity out of a cylinder, we have many possibilities. One way is to
split the lateral surface in rectangles and identify them. The first possibility that come to mind is
to split the surface in two rectangle (a and b) and identify the two rectangle with the orientation
shown in the figure above for Configuration 1. In this case we get α = 2 because we need to go
around twice while going around the original cylinder once. If we changed the orientation of one
of the lateral surfaces before identifying them, we would get α = 0 because the would need to go
around twice as before but this time walking in opposite directions and the current of the first loop
would be cancelled by the current of the second loop.

If we apply the same reasoning to configuration 2 and 3, we find α = 3 and α = 1. In configuration
3 we go around 3 times one of which walking in the opposite direction and therefore the current
of two loops cancel each other. Since the charge of the particle, keeping the same radius for the
cylinder, is propositional to α, if we assign to the charge Q2 = e, the elementary charge of an
electron, we can summarise what we have found as follows:

Configuration 1 Q1 ∝ 2α = 2
3e Candidate for Quarks

Configuration 2 Q2 ∝ 3α = e Candidate for Electrons

Configuration 3 Q3 ∝ α = 1
3e Candidate for Quarks

(33)

These are just examples. For sure, further research is needed for trying to match topological sin-
gularities with the characteristics of particles (if this is even possible) taking into account the 3
symmetries of standard model.

6 Space Deficiency Model

In [2] we have shown that if we model space as an elastic material, a deficiency in the material (i.e.
in space) is equivalent to gravity. This is because, if we remove a ball of material making a hole
in it and we identify the boundary of the hole to a point, the material will stretch and the strain
field is equivalent to gravitational field. Moreover, two deficiencies in the material will experience
an attraction force to each other proportional to 1/r2 where r is the distance between the two space
deficiencies.

Since space should be conserved, we wonder how a deficiency may be created in space. A
possibility is that when a particle is created in a point P , the configuration of space changes from
flat Euclidean space to a 3-dimensional manifold attached to the point P by means of a connected
sum.

We will illustrate this with a 2-dimensional example.

Figure 4: Space Deficiency Model

Given a sheet of elastic material representing space, if we cut along a line segment between two
points A and B and we identify the two sides of the cut with opposite orientations, we get a cross
cap (i.e. a real projective plane) attached to the sheet by means of a direct sum.

The sheet will pull the cross cap which will shrink till the bending forces inside the cap will
balance the pulling forces of the sheet. At the equilibrium, the cross cap will protrude from the
sheet and since the quantity of elastic material is conserved in the process, this will be equivalent to
a space deficiency.

The sheet will be stretched around the cross cap and the strain field will be equivalent to a
gravitation field (see [2]). Note that, if the sheet represents space, fields will change phase when
crossing the line segment as in the example we gave in the previous sections.
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7 Conclusions

In this paper, we have shown that a sufficient condition to have magnetic moment and charge in a
point in space (i.e. particle) is to introduce a topological singularity designed to twist the fields in
a specific way. Although the paper has been dealing with the U(1) symmetry only, the very same
approach may be used to explore what happens with the other two symmetries of the standard Model.
We believe that it is worth to further research in order to trying to match particle characteristics
to topological characteristics of space singularity (i.e. 3D compact manifolds connected by direct
sum to space) with respect to the three symmetries of nature, in an effort to make a one-to-one
correspondence between particles and manifolds (or topological singularities).

Although we know that this approach is very unlikely to be a theory that fully describe particles,
however, there is also a chance that things may partially match just by mathematical chance, end
this would allow to exploit the huge variety of 3D-compact manifold to explain some of the complex
characteristics of particles.

We may for example be able to give to some constants of the Standard Model, which now are
known by direct measurement, a theoretical derivation. An example that come to mind is the three
different families of particles with different mass (e.g. electron, muon and tau). They may just be
three different stationary state of the same manifold (i.e. same particle characteristics) like Willmore
spheres that are all the same manifold in different stationary state of energy and with different sizes
(i.e. mass from a particle point of view).

Another example is the fractional charge of some particles that come in 1/3 and 2/3 the charge of
the electron. This may be explained if we find the correct topological singularity to describe them.

A final example may come from dark matter. Maybe dark matter particles are simply manifolds
that do not twist the fields (e.g. oriented manifolds) and therefore do not interact to ordinary matter.

Appendix

A.1 Lagrangian Density of Electromagnetic Field

Given the Lagrangian density of the free electromagnetic field:

L =
1

4
FµνF

µν (34)

we have:

L =
1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ) (35)

=
1

4
(∂µAν∂

µAν − ∂νAµ∂
µAν − ∂µAν∂

νAµ + ∂µAν∂
µAν) (36)

the above terms are equal in pairs, we have:

L =
1

2
(∂µAν∂

µAν − ∂νAµ∂
µAν) (37)

A.2 Fictitious Forces

Given the Lagrangian of a one variable discrete system:

L = L(q, q̇) (38)

having the following symmetry:
q → q + ϕ ⇒ ∆L = 0 (39)

then from the Noether’s theorem we know that the quantity ∂L
∂q̇ is conserved.

The above quantity is conserved when we let the system evolve without applying the symmetry to
it. However, if we apply the symmetry by changing some symmetry parameter (e.g. for a meccanical
system this parameter may be position) while the system is evolving (e.g. for a mechanical system it
may correspond to a shift of the whole system in space or to moving the relative position of parts of
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the system in a way the Lagrangian is not affected), then d
dt

∂L
∂q̇ is not a conserved quantity any more.

This physically corresponds to having fictitious forces (pseudo forces) in the system depending from
the way we change the symmetry parameter as a function of time.

To address the above case, we need to change the Lagrangian in order to take into account the
dependency from symmetry parameters (see [1]). To illustrate that, we will use the same example
of [1], where it is shown how to get a new Lagrangian just with a change of coordinates from q0, the
coordinate of the inertial system, to q = q0 + ϕ, the coordinate of the non inertial one:

Given the Lagrangian of a particle in an external field:

L =
1

2
m(ẋ0)

2 − U(x0) (40)

where x0 is the coordinate in the inertial frame and x is the coordinate of the moving frame with
velocity ϕ̇, we consider the change of variable x0 = x+ ϕ(t). We have:

L′(x+ ϕ, ẋ+ ϕ̇) =
1

2
mẋ2 +mẋϕ̇+

1

2
mϕ̇2 − U(x) (41)

The term 1
2mϕ̇ does not depends on x, gives no contribution to ∂S

∂q and, if we are interested to the

equation of motion, it can be dropped. Regarding the term mẋϕ̇, using the Leibniz rule we have:

mẋϕ̇ = m
d

dt
(xϕ̇)−mxϕ̈ (42)

the term m d
dt (xϕ̇) is the derivative of a function. Its contribution to the action depends only on its

value at the two ends of the time integral. Once again, it gives no contribution to ∂S
∂q and it can be

dropped. We are left with the following Lagrangian:

L′ =
1

2
mẋ2 −mxϕ̈− U(x) (43)

which, by using the Euler-Lagrange equation, gives the following equation of motion:

mẍ = −∂U
∂x

−mϕ̈ (44)

The term mϕ̈ is what we call a fictitious force (pseudo force) and it is a force experienced by the
particle m because it is in a non inertial reference frame.

A.3 Evaluation of Jν

From Eq. (12) we have:
Jν = ∂µT

µν (45)

where:

Tµν =


0 ∂0ξ1 − ∂1ξ0 ∂0ξ2 − ∂2ξ0 ∂0ξ3 − ∂3ξ0

∂1ξ0 − ∂0ξ1 0 ∂1ξ2 − ∂2ξ1 ∂1ξ3 − ∂3ξ1

∂2ξ0 − ∂0ξ2 ∂2ξ1 − ∂1ξ2 0 ∂2ξ3 − ∂3ξ2

∂3ξ0 − ∂0ξ3 ∂3ξ1 − ∂1ξ3 ∂3ξ2 − ∂2ξ3 0

 (46)

Suppose ∂0θ̃ = ∂3θ̃ = 0, if we ignore all the terms that get hit by ∂0 and ∂3, we have:

∂µT
µν = ∂µ


0 0 0 0
0 0 ∂1ξ2 − ∂2ξ1 0
0 ∂2ξ1 − ∂1ξ2 0 0
0 0 0 0

 (47)

Suppose ∂3θ = 0, if we ignore all the terms that get hit by ∂3 only, we have:

∂µT
µν = ∂µ


0 ∂0ξ1 − ∂1ξ0 ∂0ξ2 − ∂2ξ0 0

∂1ξ0 − ∂0ξ1 0 ∂1ξ2 − ∂2ξ1 0
∂2ξ0 − ∂0ξ2 ∂2ξ1 − ∂1ξ2 0 0

0 0 0 0

 (48)
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A.4 A More Refined Model

In this paper we have proposed a mechanism for creation of magnetic moment in a particle and
we have evaluated the magnetic moment using a simplified model made of a cylinder with currents
circulating on the lateral surface.

In this appendix, we want to use a more refined model where currents are circulating on the
surface of a sphere and the source are two discrete vortices. Discrete vortices will be represented as
Dirac delta functions of the curl of the currents placed at the two poles of the sphere.

Figure 5: Models for Currents Generating Magnetic Model of a Particle

We want to evaluate the currents field J on a sphere S2 of radius R with current sources give
by two discrete vortices of amplitude J0 = 2πα

µ0
given by Eq. (22), placed at the two poles and

spinning with the same orientation with respect to the axis of the sphere. We want also vanishing
curl everywhere else on the sphere.

We will use a system of spherical coordinates (θ, ϕ) on S2 with θ ∈ [0, π] (polar angle) and
ϕ ∈ [0, 2π] (azimuthal angle). The reader should not confuse this θ, which is one of the coordinates
variables, with the θ used in the main body of the paper which was a gauge field. We have:

∇× J =
2π

µ0
(δnp − δsp) = J0(δnp − δsp) (49)

where δnp and δsp are Dirac delta functions placed on the sphere at the north and south pole.

We can use Stoke’s theorem applied to a circle γ(θ) of constant θ. The curves γ splits the sphere
in 2 surfaces Γnp and Γsp booth having as boundary γ but one containing the north pole and one
the south pole. We have: ∫

Γnp

∇× J · dS = J0 =

∮
γ

J · dL = 2πR sin θJϕ (50)

where Jϕ is the component of the current on the sphere along the ϕ axis. We have:

Jϕ =
J0

2πR sin θ
(51)

Note that we can do the same calculation using the surface Γsp, and taking into account signs in the
correct way. Since the flows of the curl through Γnp and Γsp add up to zero (i.e. δs have opposite
signs) we get the same result.

For Jθ, we know that
∂Jϕ

∂ϕ
= 0 and ∇ · Jθ = 0, we have:

∇ · J =
1

R sin θ

∂

∂θ
(Jθ sin θ) +

1

R sin θ

∂Jϕ
∂ϕ

= 0 (52)

from which:
∂

∂θ
(Jθ sin θ) = −∂Jϕ

∂ϕ
(53)

which leads to:
sin θJ ′

θ + cos θJθ = 0 (54)
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The above equation is verified for Jθ = 0 and Jθ = A
sin θ . We go for Jθ = 0.

We are now ready to evaluate the magnetic moment M of a particle in this model. Along the
axis of the sphere, for each ring of current of radius R sin θ, we have a contribution to the magnetic
moment given by:

dM = πd2 × JϕRdθ = π(R sin θ)2JϕRdθ =
παR2

µ0
sin θdθ (55)

M =

∫
dm =

παR2

µ0

∫ π

0

sin θdθ =
2παR2

µ0
(56)

As we did in the main body of the paper, using the value of the magnetic moment of the electron
µe we can evaluate the radius R of the particle:

RM =

√
µ0µe

2πα
= 2.5× 10−15 [m] (57)

The element charge dQ of the particle can be determined multiplying the current Jπ by the length
of each circle γ(θ). This time we have to divide Jϕ by c, the speed of light, as we do for the time
component of the current four-vector. We have:

dQ = 2πd× Jϕ
c

= 2πR sin θ
2πα

cµ0R sin θ
Rdθ =

4π2αR

cµ0
dθ (58)

and therefore:

Q =
4π2αR

cµ0

∫ π

0

dθ =
4π3αR

cµ0
(59)

Once again, as we did in the main body of the paper, by using the elementary charge of the electron
e, we can evaluate R. We have:

RQ =
cµ0e

4π3α
= 1.6× 10−18 [m] (60)
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