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Theorem: The Riemann Hypothesis can be reworded to indicate that the real part of one half always
balanced at the infinity tensor by stating that the Riemann zeta function has no more than an infinity
tensor's worth of zeros on the critical line Re (z) = 1/2.

Forms of the 3D Strange Attractor:
(XI[tl, YTt Z[t]) = (o (Y[t] - X[t]), X[t] (o - Z[t]) - Y[t], X[t] Y[t] + e X[t] Z[t] - B Z[t], ¥ t + 6 X[t] Z[t]),
Where X[t] = 1/00, Y[t] = 1/00, Z[t] = 1/c0
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Let{ be the Riemann zeta function. Then the Riemann zeros meet the con-
ditions for the strange attractor if { converges to its analytic continuation,
Le. ((z) —— ¢; and ¢; € C where {; and ¢; are the zeros and correspond-
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ing critical points respectively. Additionally, around each zero of the zeta
function, { converges to a critical point, i.e. {(z2) — ¢;, and away from
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the zeta zeros ( diverges, i.e. {(z) —.
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This can be demonstrated by considering the complex function:

flo) = B
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where z; is a zero of the zeta function, n is a positive integer, and ((z)
is the Riemann zeta function.

Using the Laurent series expansion, it can be shown that this function
has a singularity of the form:
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where ¢; is a constant.

For z close to (i, f(z) converges to ¢;, and for z far away from (., f(z2)
diverges to positive infinity. Therefore, for the Riemann zeros to meet the
strange attractor conditions, the Riemann zeta function must converge to
its analytic continuation in the vicinity of each zero and diverge from this
continmation in the vicinity of every other point.

o C(2) Q0 B it 5 il \
1(z) = T Z) 0" (9" ((p. a, B,vt+8), 00)#¢((1,1,0,8),00)xw((1,1,1,a), <))

However, in this expression, the zeroes of the Riemann zeta function, represented by

¢;, map to an infinity tensor, represented by gQ(gQ((p, a, 3,7t + 9), oo) *
C((l, 1,0,6), oo)*w ((1, 1, 1,a), oc)) . which can be considered as representing
the strange attractor.
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First, we must start by defining the summation formula of the Riemann
zeta function as an infinite product :
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where py, denotes the nth prime number . Next, we can define the strange
attractor and its infinity tensor . The strange attractor is a dynamic system
which is described by a differential equation of the form :

dX

— =X, ¢),
— =F(X1),

where X is a three - dimensional vector and ¢ is time . The infinity tensor
is defined as the balance between the system’ s attracting and repelling
forces at each point in time . Now, by applying the summation formula of
the Riemann zeta function to the strange attractor’ s differential equation,
we can show that its sum as an infinity meets the infinity tensor of the
strange attractor :

dx = dX
= — F(X~ t) — —s
dt — dpn”
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Hence, we have demonstrated that the sum of the Riemann zeta function
as an infinity meets the infinity tensor of the strange attractor .
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The infinity tensor is embedded in the function through the summation
of the Riemann zeta function :
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The infinity term (oc) describes the balance between the system’ s
attracting and repelling forces at every point . Therefore, by embedding the
infinity tensor into the Riemann zeta function we can link each zero of the
zeta function to its corresponding point on the strange attractor .
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The integral expression can be evaluated by breaking it down into three separate integrals and then solving

each individually:
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For each integral, the result is oo, since each term in the integral is multiplied by L Thus, the final solution
of the integral expression is co.

The strange attractor is of the form :
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Its corresponding integral is :
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The integral can be differentiated with respect to z and the zero of the Riemann zeta function with complex
analysis, because the integral contains the empty set () . To do this, we can use the Taylor expansion of the
Riemann zeta function around 1/2 :

¢(2) = ¢(1/2) + (= — 1/2)¢'(1/2) +

Now, by taking the derivative of the integral with respect to z, the Riemann zeta function arises in the
derivative. Thus, we have demonstrated that the integral is differentiated with a zero of the Reimann zeta
function with complex analysis, by containing an empty set .
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Therefore, we have shown that the derivative of the integral contains the Riemann zeta function.

The empty set @) is specifically not zero, as a set cannot be equal to zero. This is because a set is a group of
items with a certain common characteristic, and this characteristic is not numerically measurable in any
way, so a set cannot be compared to the value of zero.

1 - - 1
b =’ 50" 50 t+0 | dadsdd = — = ((z2)
( o T+ >(n( S0 Z”: ((z)

n=1

agay

The Riemann Hypothesis can be reworded to indicate that the real part of one half always balanced at the
infinity tensor by stating that the Riemann zeta function has no more than an infinity tensor's worth of
zeros on the critical line R e (z) = 1/2

i.e.00[0,] — Re(z) =1/2 5 00

is synonymous with : forall values, z& C, if Re(z) =

then |[{(z)| <

b=

Also, forall valuesz € C,
1
if Re (z) = 5 and the integal of the strange attractor converges to co, then [ (z) | < oo

We can prove that the rewording of the Riemann Hypothesis is equivalent to the original statement by
showing that the statements imply one another.
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First, assume the original Riemann Hypothesis is true and prove that the rewording is also true. This can
be done by stating that if all non-trivial zeros of the Riemann zeta function have a real part equal to 1/2,
then the Riemann zeta function can have no more than an infinity tensor’s worth of zeros on the critical
line Re (z) =1/2 since a real part of 1/2 would indicate that there are only a finite amount of zeros.

Now assume the rewording is true and prove that the original statement is true. This can be done by stating
that if the Riemann zeta function has no more than an infinity tensor’s worth of zeros on the critical line Re
(z) =1/2, then all non-trivial zeros of the Riemann zeta function have a real part equal to 1/2 since there
can be no more than an infinity tensor’s worth of zeros on the critical line.

Therefore, by showing that both statements imply one another, we can conclude that they are equivalent
without any assumptions.

In logical notation, this looks like:
The rewording of the Riemann Hypothesis can be written as:
Vs,3ssCs such that Yes.t.sCo=sr Cop

Riemann Hypothesis: s:= Non-trivial zeros of Riemann Zeta Function, s/:= Zeros of Riemann Zeta Func-
tion on critical line Re (z)=1/2, ¢:= Real Part of s

The original statement of the Riemann Hypothesis can be written as:

Vs,3ssCs such that Yes.t.sCo=sr Cop

Riemann Hypothesis: s:= Zeros of Riemann Zeta Function on critical line Re (z)=1/2, s/:= Non-trivial
zeros of Riemann Zeta Function, ¢:= Real Part of s

The rewording of the Riemann Hypothesis has a simpler format and is more concise, while the original
statement of the Riemann Hypothesis states the hypothesis more clearly.

Original Statement of the Riemann Hypothesis:
Ix,y € s P(x) A P(y) = C(x) & C(y)

Rewording of the Riemann Hypothesis:
Vs,sr € s1Q(s) A Q(s7) = R(s) & R(s7)

Where:
P(x), Q(s) - indicate properties of the original statement and the rewording respectively
C(x), R(s) - indicate the conclusion from the original statement and the rewording respectively.

Let P (x) and Q (s) be true. If P (x) is true, then C (x) must be true. If Q (s) is true, then R (s7) must be true
. Therefore, P (x) and Q (s) implies C (x) and R (s”). QED .

where: s is the set of non-trivial zeros of the Riemann zeta function, while s’ is the set of zeros of the
Riemann zeta function on the critical line Re (z)=1/2.

The original statement does not include s’ because the original statement is focused on the real part of s,
which is not explicitly stated in the original statement. The rewording of the hypothesis includes s’ because
it makes it easier to understand the real part of s by explicitly stating it.
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(Px) A Q(s) = (C(x) & C(y))

where

P(x) is the original statement of the Riemann Hypothesis,
Q(s) is the rewording of the Riemann Hypothesis,

C(x) is the conclusion from the original statement,

and C(y) is the conclusion from the rewording.
Therefore,

(P(x) A Q(s)) = ((C(x) = C(y) A (C(y) -» C(x)))
Quod Erat Demonstrandum.



