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From Coulomb’s force to magnetic force and experiments 
that show magnetic force parallel to current  

Kuan Peng彭宽 titang78@gmail.com 
19 September 2023 

 
Abstract: The Lorentz force law is fundamental for electromagnetism. However, it is known long ago 
that the Lorentz forces between two current elements do not respect the Newton's third law. This 
seemingly harmless flaw had never been corrected. In physical sciences a discrepancy often hides in it 
new understanding or unexpected breakthrough. For solving this problem, we give a purely theoretical 
derivation of  magnetic force which respects the Newton's third law in the case of current elements and 
is identical to the Lorentz force in the case of coils. This new law reveals how electric force is 
transformed into magnetic force by velocity and is supported by experimental evidences that we will 
explain and compute with the new law.  

 
1. Introduction  

Lorentz force is a fundamental magnetic force which is created by magnetic field on current carrying wire. Let 
dIa and dIb be current elements and Ba and Bb the magnetic field they create. According to the Lorentz force law 
the magnetic forces on dIa and dIb are: 
 

𝒅𝑭! = 𝑑𝑰! ×𝑩𝒃, 𝒅𝑭𝒃 = 𝑑𝑰# ×𝑩𝒂 (1) 
 
Because the Lorentz forces dFa and dFb are action and reaction forces, they should obey the Newton's third law 
and sum to zero. However, the Figure 1 shows a case where dFa is perpendicular to dFb , so, dFa + dFb ¹ 0, that 
is, the Lorentz forces that the two current elements act on each other violate the Newton's third law.  
 

Figure 1 
 
This problem was known for longtime. People justify that the Lorentz forces that two closed loop currents act on 
each other do satisfy the Newton's third law. Nevertheless, breaking the Newton's third law does not fit scientific 
standard, even for the Lorentz forces law which is fundamental. The reason for this problem is that being an 
experimental law Lorentz force law can only describe forces that experiments show. So far, all experimental 
magnetic forces are perpendicular to current, so the Lorentz force law does not describe magnetic force parallel 
to the current and consequently cannot respect Newton's third law.   
 
We will try to solve this problem with a new magnetic force law that we have derived with pure theory. This 
new law respects the Newton's third law in the case of current elements and is identical to the Lorentz force law 
in the case of coils. This law reveals how electric force is transformed into magnetic force by velocity and is 
supported by experimental evidences which we will present and compute with the new law at the end. 
 
The new law is derived from the Coulomb’s law which defines the Coulomb’s force for fixed charges. For 
moving electrons, the Coulomb’s force undergoes relativistic effects and varies with velocity. Although this 
velocity is very small, the number of free electrons in wires is so huge that relativistic effects show up 
nevertheless. We have found two relativistic effects in currents: the relativistic dynamic effect and the changing 
distance effect.  
 
Let us start with the Coulomb’s law: 
 

𝑭 =
𝑞%𝑞&𝒓
4𝜋𝜀'|𝒓|(

 (2) 
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dFb 
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with q1 and q2 being two electric charges, r the vector radius distance between them, e 0 the permittivity of free 
space.  
 

2. Relativistic dynamic effect  
a) Couple of charges 

Currents flow in neutral wires which contain the same quantity of free electrons and positive charges. For 
computing the Coulomb’s force in neutral material, we use couple of charges. Let ⊖ represent a free electron and 
Å a fixed positive charge which is a proton in the nucleus of an atom. A couple of charges is represented by  
(Å, ⊖) and is neutral. So, the interaction between two couples of charges represents the magnetic force between 
two neutral materials.   
 
Let (Åa, ⊖a) be a couple of charges in the material a and (Åb, ⊖b) that in the material b. The vector distance 
between (Åa, ⊖a) and (Åb, ⊖b) is r, see Figure 2 (a). Between (Åa, ⊖a) and (Åb, ⊖b) there are 4 interactions :  
Åb ®Åa ,	⊖b ®Åa , Åb ®⊖a ,	⊖b ®⊖a . We show them in the line 1 of the Table 1 and in the Figure 2 (b) and 
(c). We suppose that Åa and ⊖a are at the same location and Åb and ⊖b are at the same location. Then, the vector 
distances between Åb and	Åa ,	⊖b and Åa , Åb and	⊖a ,	⊖b and ⊖a are all r .  
 

Figure 2 
 
The electric charge of Å is e and that of ⊖	is -e , then for the 4 interactions the products of charges q1· q2 equal 
e2, -e2, -e2 and e2 respectively, see the line 2 of the Table 1. Applying e2, -e2, -e2 and e2 to the Coulomb’s law (2) 
we get the 4 Coulomb’s forces which are labeled as F++, F-+, F+- and F- - , expressed in the line 3 of the Table 1 
and shown in the Figure 2 (b) and (c). 
 

1. 1 Åb®Åa ⊖b®Åa Åb®⊖a ⊖b®⊖a 
2. 2 q1·q2 = e2 q1·q2 = -e2 q1·q2 = -e2 q1·q2 = e2 

3. 3 𝑭)	) =
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 𝑭,	) = −

𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 𝑭)	, = −

𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 𝑭,	, =

𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 

Table 1 Coulomb’s forces between the charges 
 

b) Dynamic force across moving frames 

The sum of the 4 forces equals zero: F++ + F-+ + F+- + F- - = 0. Let us see how the relativistic dynamic effect 
breaks this equilibrium. In the Figure 3 we have a stationary body b1 and a moving body b2 . The frame 1 is 
attached to b1 and the frame 2 to b2. The velocity of b2 relative to b1 is v, so the frame 2 moves at the velocity v in 
the frame 1.  
  

Figure 3 
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The momentum and time in the frame 1 are labeled as P1 and t1. The force on b1 equals the time derivation of P1: 
 

𝑭𝟏 =
𝑑𝑷𝟏
𝑑𝑡%

 (3) 

 
On the other hand, the momentum and time in the frame 2 are labeled as P2 and t2. Newtonian mechanics applies 
in the frame 2 and the force on b2 equals the time derivation of P2 : 
 

𝑭𝟐 =
𝑑𝑷𝟐
𝑑𝑡&

 (4) 

 
We transform F2 with the time of the frame 1 t1: 
 

𝑭𝟐 =
𝑑𝑷𝟐
𝑑𝑡&

=
𝑑𝑷𝟐
𝑑𝑡%

𝑑𝑡%
𝑑𝑡&

 (5) 

 
Suppose an impulse hits the body b1 and transfers the differential momentum dP1 to b1 . Suppose that the body b2 
is in fact the body b1 put in motion, so the impulse hits in fact the body b2 and transfers the differential 
momentum dP2 to b2. So, dP1 and dP2 are the differential momentum transferred by the same impulse to the 
same body. Then dP1 equals dP2 : 
 

dP1 = dP2  (6) 
 
Note : For a more rigorous demonstration of this equality please see the equation (10) in « Relativistic dynamics: 
force, mass, kinetic energy, gravitation and dark matter » 1.  
 
Then, we have : 

𝑑𝑷𝟐
𝑑𝑡%

=
𝑑𝑷𝟏
𝑑𝑡%

= 𝑭𝟏 (7) 

 
The times t1 and t2 are in two frames that are in relative motion. According to special relativity, t1 is converted 
into t2 using the Lorentz transformation below : 
 

𝑑𝑡%
𝑑𝑡&

=
1

31 − 𝑣
&

𝑐&

 (8) 

 
Introducing (7) and (8) into (5) , the force F2 is expressed with the force F1 : 
 

𝑭𝟐 =
𝑭𝟏

31 − 𝑣
&

𝑐&

 (9) 

 
F1 is the Coulomb’s force two fixed charges exert on one another; F2 is the Coulomb’s force when the two 
charges move with respect to one another at the velocity v. This relation converts F1 into F2 . 
 

c) Relative velocity between charges  

The free electrons in the current element dIa have an average velocity which is denoted as va; that in dIb is 
denoted as vb. For the 4 interactions, we denote the velocity of Åa relative to Åb as v++ , that of Åa to ⊖b as v-+, 
that of ⊖a to Åb as v+-, that of ⊖a to ⊖b as v- -. Let ⊖1 and ⊖2 be two charges which move at the velocity v1 and v2 
respectively. The velocity of ⊖1 relative to ⊖2 is v1 - v2. The relative velocities for the 4 pairs of charges are 
computed in Table 2. 
 

 
1 Kuan Peng, 2021, « Relativistic dynamics: force, mass, kinetic energy, gravitation and dark matter », 
https://www.academia.edu/49921891/Relativistic_dynamics_force_mass_kinetic_energy_gravitation_and_dark_matter  

https://www.academia.edu/49921891/Relativistic_dynamics_force_mass_kinetic_energy_gravitation_and_dark_matter
https://pengkuanonphysics.blogspot.com/2021/07/relativistic-dynamics-force-mass.html
https://www.academia.edu/49921891/Relativistic_dynamics_force_mass_kinetic_energy_gravitation_and_dark_matter
https://pengkuanonphysics.blogspot.com/2021/07/relativistic-dynamics-force-mass.html
https://www.academia.edu/49921891/Relativistic_dynamics_force_mass_kinetic_energy_gravitation_and_dark_matter
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Åa v1 = 0 Åb  v2= 0 v1 - v2 = 0 v++ = 0 
Åa v1 = 0 ⊖b  v2= vb v1 - v2 = 0 - vb = - vb v-+ = - vb 
⊖a v1 = va Åb  v2= 0 v1 - v2 = va – 0 = va v+- = va 
⊖a v1 = va ⊖b  v2= vb v1 - v2 = va - vb v- -= va - vb 

Table 2 The relative velocities between the charges 
 

d) Relativistic dynamic effect 

We apply the relativistic relation (9) to the 4 forces F++ , F-+ , F+- and F- - given in the line 3 of the Table 1. The 
forces modified by the relativistic dynamic effect are denoted as : F’++ , F’-+ , F’+- and F’- -. The first modified 
force is F’++ with  v ++ = 0 : 
 

𝑭′)	) =
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 (10) 

 
The second modified force is F’- + with  v -+ = -vb :  
 

𝑭′,	) = −
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑

1

31 − 𝒗#
&

𝑐&

 (11) 

 
The third modified force is F’+ - with  v+ - = va : 
 

𝑭′)	, = −
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑

1

31 − 𝒗!
&

𝑐&

 (12) 

 
The fourth modified force is F’- - with  v - - = va - vb :  
 

𝑭′,	, =
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑

1

31 − (𝒗! − 𝒗#)
&

𝑐&

 (13) 

 
As va and vb are very small before the speed of light c, we can do the linear expansion for %

/%,!
"

#"

 : 

1

31 − 𝑣
&

𝑐&

≈ 1 +
1
2
𝑣&

𝑐&  (14) 

 
Then, F’-+ , F’+- and F’- - become: 
 

𝑭′,	) ≈ −
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 =1 +

1
2
𝒗#&

𝑐& > (15) 

𝑭′)	, ≈ −
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 =1 +

1
2
𝒗!&

𝑐& > (16) 

𝑭′,	, ≈
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 =1 +

1
2
(𝒗! − 𝒗#)&

𝑐& > (17) 

 
The velocity squared v2 is the vector v dotted by itself : 
 

𝒗𝟐 = 𝒗 ∙ 𝒗 (18) 
 
We develop (va - vb)2 : 
 

(𝒗! − 𝒗#)& = (𝒗! − 𝒗#) ∙ (𝒗! − 𝒗#) = 𝒗!& − 2𝒗! ∙ 𝒗# + 𝒗#& (19) 
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Introducing (19) into (17) gives  : 
 

𝑭0,	, ≈
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 =1 +

𝒗!& − 2𝒗! ∙ 𝒗# + 𝒗#&

2𝑐& > (20) 

 
The sum F’++ + F’-+ + F’+- + F’- - is :  
 

𝑭′#! ≈
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 @1 − =1 +

𝒗#&

2𝑐&> − =1 +
𝒗!&

2𝑐&> + =1 +
𝒗!& − 2𝒗! ∙ 𝒗# + 𝒗#&

2𝑐& >A (21) 

 
The terms B1 + 𝒗$"

&2"
C and B1 + 𝒗%"

&2"
C		cancel out and the force F’ba becomes : 

 

𝑭′#! ≈ −
𝑒&

4𝜋𝜀'𝑐&
𝒓
|𝒓|𝟑

(𝒗! ∙ 𝒗#) (22) 

 
F’ba is the resultant force that the couple of charges (Åb, ⊖b) exerts on (Åa, ⊖a). I have obtained this expression 
in «Length-contraction-magnetic-force between arbitrary currents»2 using the length-contraction effect of 
relativity. But deriving from couples of charges is a more fundamental approach because the basic force is on 
individual electric charges. 
 

3. Changing distance effect 
a) Distance change 

The second relativistic effect is caused by the position change of electrons. For example, in the Figure 4 the 
electron moves from ⊖ to ⊖’ . Because r is different from r0 the Coulomb’s force it acts on the positive charge Å 
varies from F0 to F. In the couples of charges (Åa, ⊖a) and (Åb, ⊖b), the electrons ⊖a and ⊖b are moving and 
change constantly positions, so the resultant Coulomb’s force that (Åb, ⊖b) acts on (Åa, ⊖a) changes too. We call 
this change of the resultant Coulomb’s force the “Changing distance effect”. 
 

Figure 4  
 
For the distance r the Coulomb’s force on Å is: 
 

𝑭 = −
𝑒&

4𝜋𝜀'
𝒓
|𝒓|𝟑 (23) 

 
For computing the varying value of F we express r as r = r0 +Dr . Then 𝒓

|𝒓|𝟑
 is expressed with Dr : 

  
𝒓
|𝒓|𝟑 =

(𝒓𝟎 + ∆𝒓)|𝒓𝟎 + ∆𝒓|,( (24) 

 
The expression for  |𝒓𝟎 + ∆𝒓|,( is: 
 

 
2 Kuan Peng, 2017, «Length-contraction-magnetic-force between arbitrary currents»,	https://www.academia.edu/32815401/Length-
contraction-magnetic-force_between_arbitrary_currents   

⊖’ 

Å 

r0 

⊖ 
r 

Dr 

F0 
F 

https://www.academia.edu/32815401/Length-contraction-magnetic-force_between_arbitrary_currents
http://pengkuanem.blogspot.com/2017/05/length-contraction-magnetic-force.html
https://www.academia.edu/32815401/Length-contraction-magnetic-force_between_arbitrary_currents
http://pengkuanem.blogspot.com/2017/05/length-contraction-magnetic-force.html
https://www.academia.edu/32815401/Length-contraction-magnetic-force_between_arbitrary_currents
https://www.academia.edu/32815401/Length-contraction-magnetic-force_between_arbitrary_currents
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|𝒓𝟎 + ∆𝒓|,( = (𝒓&),
(
& = (𝒓𝟎𝟐 + 2𝒓𝟎 ∙ ∆𝒓 + ∆𝒓𝟐)

,(& (25) 

 
We consider the case where Dr is very small before r0. So, we do the linear expansion : 
 

(𝒓𝟎𝟐 + 2𝒓𝟎 ∙ ∆𝒓 + ∆𝒓𝟐)
,(& ≈ |𝒓𝟎|,( H1 − 3

𝒓𝟎 ∙ ∆𝒓
|𝒓𝟎|&

J (26) 

 
and the 𝒓

|𝒓|𝟑
 of (24) becomes : 

𝒓
|𝒓|𝟑 ≈

(𝒓𝟎 + ∆𝒓)|𝒓𝟎|,( H1 − 3
𝒓𝟎 ∙ ∆𝒓
|𝒓𝟎|&

J	

= |𝒓𝟎|,( H𝒓𝟎 + ∆𝒓 − 3𝒓𝟎
𝒓𝟎 ∙ ∆𝒓
|𝒓𝟎|&

− 3∆𝒓
𝒓𝟎 ∙ ∆𝒓
|𝒓𝟎|&

J 
(27) 

 
Let v be the velocity of the electron and Dr be the distance traveled by the electron in time t : 
 

∆𝒓 = 𝒗𝑡 (28) 
 
We replace Dr with vt in (27) and 𝒓

|𝒓|𝟑
 becomes : 

 
𝒓
|𝒓|𝟑 ≈

|𝒓𝟎|,( H𝒓𝟎 + 𝒗𝑡 − 3𝒓𝟎
𝒓𝟎 ∙ 𝒗𝑡
|𝒓𝟎|&

− 3𝒗𝑡
𝒓𝟎 ∙ 𝒗𝑡
|𝒓𝟎|&

J (29) 

 
b) Changing distance effect 

The 4 Coulomb’s forces modified by the changing distance effect are labeled as F”++ , F”-+ , F”+- and, F”- - and 
are computed by introducing the  𝒓

|𝒓|𝟑
 of (29) into the expressions of F++, F-+, F+- and F- - given in Table 1. The 

relative velocities are given in Table 2. For the interaction Åb®Åa , the relative velocity is zero, then F”++ equals 
F++: 
 

𝑭")	) =
𝑒&

4𝜋𝜀'
𝒓'
|𝒓𝟎|(

 (30) 

 
For the interaction ⊖b®Åa , the relative velocity is -vb and F”-+ is  

𝑭",	) ≈ −
𝑒&

4𝜋𝜀'
|𝒓𝟎|,( =𝒓𝟎 + (−𝒗#)𝑡 − 3𝒓𝟎

𝒓𝟎 ∙ (−𝒗#)𝑡
|𝒓𝟎|&

− 3(−𝒗#)𝑡
𝒓𝟎 ∙ (−𝒗#)𝑡

|𝒓𝟎|&
> (31) 

 
For the interaction Åb®⊖a , the relative velocity is va and F”+- is 

𝑭"%	& ≈ −
𝑒'

4𝜋𝜀(
|𝒓𝟎|&* +𝒓𝟎 + 𝒗+𝑡 − 3𝒓𝟎

𝒓𝟎 ∙ 𝒗+𝑡
|𝒓𝟎|'

− 3𝒗+∆𝑡
𝒓𝟎 ∙ 𝒗+𝑡
|𝒓𝟎|'

2 (32) 

 
For the interaction ⊖b®⊖a the relative velocity is va-vb and F”- - is 

𝑭",	, ≈
𝑒&

4𝜋𝜀'
|𝒓𝟎|,( =𝒓𝟎 + (𝒗! − 𝒗#)𝑡 − 3𝒓𝟎

𝒓𝟎 ∙ (𝒗! − 𝒗#)𝑡
|𝒓𝟎|&

− 3(𝒗! − 𝒗#)𝑡
𝒓𝟎 ∙ (𝒗! − 𝒗#)𝑡

|𝒓𝟎|&
> (33) 

 
The sum F”++ + F”-+ + F”-+ + F”-+ is  
 

𝑭"6 =
𝑒&

4𝜋𝜀'
|𝒓𝟎|,(

⎝

⎜
⎜
⎜
⎜
⎛

𝒓𝟎

−=𝒓𝟎 + (−𝒗#)𝑡 − 3𝒓𝟎
𝒓𝟎 ∙ (−𝒗#)𝑡

|𝒓𝟎|&
− 3(−𝒗#)𝑡

𝒓𝟎 ∙ (−𝒗#)𝑡
|𝒓𝟎|&

>

−H𝒓𝟎 + 𝒗!𝑡 − 3𝒓𝟎
𝒓𝟎 ∙ 𝒗!𝑡
|𝒓𝟎|&

− 3𝒗!∆𝑡
𝒓𝟎 ∙ 𝒗!𝑡
|𝒓𝟎|&

J

+=𝒓𝟎 + (𝒗! − 𝒗#)𝑡 − 3𝒓𝟎
𝒓𝟎 ∙ (𝒗! − 𝒗#)𝑡

|𝒓𝟎|&
− 3(𝒗! − 𝒗#)𝑡

𝒓𝟎 ∙ (𝒗! − 𝒗#)𝑡
|𝒓𝟎|&

>
⎠

⎟
⎟
⎟
⎟
⎞

 (34) 
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The term 𝒓𝟎 + (𝒗! − 𝒗#)𝑡 − 3𝒓𝟎
𝒓𝟎∙(𝒗%,𝒗$)6

|𝒓𝟎|"
  cancels out and F”t becomes:   

 

𝑭"6 = 3𝑡&
𝑒&

4𝜋𝜀'
|𝒓𝟎|,: B𝒗#(𝒓𝟎 ∙ 𝒗#) + 𝒗!(𝒓𝟎 ∙ 𝒗!) − (𝒗! − 𝒗#)R𝒓𝟎 ∙ (𝒗! − 𝒗#)SC (35) 

 
We develop the term (𝒗! − 𝒗#)R𝒓𝟎 ∙ (𝒗! − 𝒗#)S : 
 

(𝒗! − 𝒗#)R𝒓𝟎 ∙ (𝒗! − 𝒗#)S = 𝒗!(𝒓𝟎 ∙ 𝒗!) − 𝒗!(𝒓𝟎 ∙ 𝒗#) − 𝒗#(𝒓𝟎 ∙ 𝒗!) + 𝒗#(𝒓𝟎 ∙ 𝒗#) (36) 
 
and introduce it into (35). Then the term 𝒗#(𝒓𝟎 ∙ 𝒗#) + 𝒗!(𝒓𝟎 ∙ 𝒗!) cancels out and F”t becomes : 
 

𝑭"6 = 3𝑡&
𝑒&

4𝜋𝜀'
|𝒓𝟎|,:R𝒗!(𝒓𝟎 ∙ 𝒗#) + 𝒗#(𝒓𝟎 ∙ 𝒗!)S (37) 

 
Because the force is changing, we take its average over time. Let us compute the average value of F”t over the 
time period from t = 0 to t = te , which equal the time integral of F”t divided by te :  

𝑭"#! =
1
𝑡;
T 𝑭"6𝑑𝑡
6;

'

	 (38) 

 
Using (37), (38) becomes : 
  

𝑭"#! =
1
𝑡;
T 3𝑡&

𝑒&|𝒓𝟎|,:

4𝜋𝜀'
R𝒗!(𝒓𝟎 ∙ 𝒗#) + 𝒗#(𝒓𝟎 ∙ 𝒗!)S𝑑𝑡

6(

'

 

= 𝑡;&
𝑒&|𝒓𝟎|,:

4𝜋𝜀'
R𝒗!(𝒓𝟎 ∙ 𝒗#) + 𝒗#(𝒓𝟎 ∙ 𝒗!)S 

(39) 

 
c) What is te? 

We notice that F”ba depends on the time te. But what is the value of te ? The answer is in the trajectory of 
electrons. Let us see the Figure 5 in which the trajectory of an electron is drawn. The electron passes through the 
nodes ⊖0, ⊖1, ⊖2, ⊖3 and ⊖4 … . At a distance is a couple of charges Å⊖ which receives the Coulomb’s force 
from the electron. As currents flow in closed loop, the trajectory of the electron is also a closed loop. So, with a 
finite number of nodes the electron	will go over the entire trajectory. The set of all the nodes ⊖i , for i=0 to n, 
constitutes the complete trajectory of the electron.  
 

Figure 5 
 
The Coulomb’s force on Å⊖ is the time derivative of the momentum P emitted by the electron and received by 
Å⊖. Suppose that at time t = 0, the electron is at the node ⊖0 and emits the momentum dP0. The radial distance 

Å⊖ 

r0 r1 r2 r3 r4 

⊖0  ⊖1 ⊖2 ⊖3 ⊖4 
v r0/c v r1/c v r2/c v r3/c v r4/c 
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between ⊖0 and Å⊖ is r0. According to relativity all electromagnetic signals travel at the speed of light c, so the 
momentum dP0  travels at the speed of light c and arrives at Å⊖ at the time t = |r0|/c . At the same time the 
electron arrives at the node ⊖1 and emits from ⊖1 the momentum dP1. 
 
The radial distance between ⊖1 and Å⊖ is r1. Traveling at the speed of light dP1 arrives at Å⊖ at the time  
t =|r0|/c + |r1|/c. From the time t = |r0|/c to t = |r0|/c + |r1|/c the couple of charges Å⊖ receives the momentum emitted 
from the time t = 0 to t = |r0|/c. So, the average Coulomb’s force on Å⊖ equals the integral of the momentum 
from t = 0 to t = |r0|/c divided by |r1|/c: 

𝑭"#! =
1

|𝒓%| 𝑐⁄
T 𝑑𝑷

|𝒓)| 2⁄

'

	 (40) 

 
As the velocity of the electron is extremely small with respect to c, the radial distances r0 and r1 are almost equal 
and we can write r0 » r1 : 

𝑭"#! ≈
1

|𝒓'| 𝑐⁄
T 𝑑𝑷

|𝒓)| 2⁄

'

	 (41) 

 
By comparing (41) with (38) we determine that te = |r0|/c. For generalization we call the journey of the electron 
from ⊖1 to ⊖2 the step 1, the journey from ⊖2 to ⊖3 the step 2, the journey from ⊖i to ⊖i+1 the step i. So, for the 
step i the time period te equals  |ri|/c.  
 
Let r be the radial distance from an arbitrary electron to the couple of charges Å⊖, the time period for computing 
the average Coulomb’s force is  
 

𝑡; =
|𝒓|
𝒄  (42) 

 
One may question : Since F”ba is an averaged force, why cannot te be bigger or smaller than |r|/c? Let us take the 
step where the radial distance is r0. If te is big the distance vte is big, then the position re = r0 + vte will be out of 
the step defined by r0, the average force F”ba which is proportional to te2 will become too large and irrelevant for 
the distance r0 used in (39). 
 
Let us see Figure 6 where te > |r|/c. In this case, the integral can start before the time t = 0 or end after t = |r|/c, 
then the momenta emitted before t = 0 and after t = |r|/c are included in the integral. Because these momenta 
overlap that emitted before ⊖0 and after ⊖1, the integral would include momenta that are not from the step 1. If 
te > |r|/c for all the steps, the average force from the complete trajectory of the electron will contain momenta that 
are counted twice and the average Coulomb’s force would be wrong. So, te should not be bigger than |r|/c.  
 
 

 
Figure 6 te > |r|/c 

 
The Figure 7 shows the case where te < |r|/c. We see in this figure that the distance traveled by the electron is 
shorter than the distance of the step. Then the sum of all the distances included in the integrals would be shorter 
than the full trajectory of the electron and the value of F”ba would be wrong. So, te should not be smaller than 
|r|/c. 
 

Figure 7 te < |r|/c 

⊖0  ⊖1 ⊖2 ⊖3 ⊖4 t <0 t > |r|/c 
 

⊖0  ⊖1 ⊖2 ⊖3 ⊖4 

vte 
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In consequence, te = |r|/c and F”ba in (39) is : 
 

𝑭"#! =
𝑒&

4𝜋𝜀'
1

𝑐&|𝒓|( R𝒗!
(𝒓 ∙ 𝒗#) + 𝒗#(𝒓 ∙ 𝒗!)S (43) 

 
F”ba is the magnetic force due to the changing distance effect. This formula was already derived in «Changing 
distance effect»3. But the derivation of the changing distance effect and the explanation for “What is te?” were  
different. 
 

4. Complete magnetic force 
a) Magnetic force on couples of charges 

The complete magnetic force that the couple of charge (Åb, ⊖b) exerts on (Åa, ⊖a) equals the sum of the 
magnetic force due to the relativistic dynamic effect given in (22) and that due to the changing distance effect 
given in (43). So, the complete magnetic force is 
 

𝑭#! = 𝑭0#! + 𝑭"#! ≈ −
𝑒&

4𝜋𝜀'𝑐&
𝒓
|𝒓|(

(𝒗! ∙ 𝒗#) +
𝑒&

4𝜋𝜀'𝑐&|𝒓|(
R𝒗!(𝒓 ∙ 𝒗#) + 𝒗#(𝒓 ∙ 𝒗!)S (44) 

 
which we rearrange to express the complete magnetic force the couple of charge (Åb, ⊖b) exerts on (Åa, ⊖a):  
 

𝑭#! ≈
𝑒&

4𝜋𝜀'𝑐&|𝒓|(
R−𝒓(𝒗! ∙ 𝒗#) + 𝒗!(𝒓 ∙ 𝒗#) + 𝒗#(𝒓 ∙ 𝒗!)S (45) 

 
b) Magnetic force on current elements 

Let (Åa, ⊖a) be one couple of charge in dIa and (Åb, ⊖b) one couple of charge in dIb . One (Åb, ⊖b) exerts the 
magnetic force Fba on one (Åa, ⊖a). A current element contains a huge number of couples of charges. Let m be 
the number of couples in dIa, then one (Åb, ⊖b) exerts on dIa the magnetic force m·Fba.  Let n be the number of 
couples in dIb, then n couples exert on dIa the magnetic force n·m·Fba. So, the total magnetic force that dIb exerts 
on dIa is, see (45) : 
  

𝑭=#! = 𝑚 ∙ 𝑛 ∙ 𝑭#! 

=
1

4𝜋𝜀'𝑐&|𝒓|(
R−𝒓(𝑒𝑚𝒗! ∙ 𝑒𝑛𝒗#) + 𝑒𝑚𝒗!(𝒓 ∙ 𝑒𝑛𝒗#) + 𝑒𝑛𝒗#(𝒓 ∙ 𝑒𝑚𝒗!)S 

(46) 

 
The charge of one electron is  -e , then the charge of m electrons is -m·e. The velocity of the free electrons is va in 
dIa , then the current element dIa equals - (- m·e) times va: 
 

𝑑𝑰! = 𝑚 ∙ 𝑒𝒗! (47) 
 
In the same way, the current element dIb has n free electrons and the velocity of the free electrons is vb . Then the 
current element dIb equals : 
 

𝑑𝑰# = 𝑛 ∙ 𝑒𝒗# (48) 
 
We replace m·e·va with dIa and n·e·vb with dIb in (46) . Then, FIba is expressed with dIa and dIb : 
 

𝑭=#! =
1

4𝜋𝜀'𝑐&|𝒓|(
R−𝒓(𝑑𝑰! ∙ 𝑑𝑰#) + 𝑑𝑰!(𝒓 ∙ 𝑑𝑰#) + 𝑑𝑰#(𝒓 ∙ 𝑑𝑰!)S (49) 

 
This is the magnetic force that dIb exerts on dIa which is derived from the Coulomb’s law and the two relativistic 
effects. So, we call it “Coulomb magnetic force”. I have already derived FIba in this from in «Coulomb magnetic 
force»4.	

 
3 Kuan Peng, 2018,  «Changing distance effect»,	https://www.academia.edu/36272940/Changing_distance_effect  
4 Kuan Peng, 2018,  «Coulomb magnetic force»,	https://www.academia.edu/36278169/Coulomb_magnetic_force  

https://www.academia.edu/36272940/Changing_distance_effect
https://www.academia.edu/36272940/Changing_distance_effect
https://www.academia.edu/36278169/Coulomb_magnetic_force
http://pengkuanem.blogspot.com/2018/03/coulomb-magnetic-force.html
https://www.academia.edu/36272940/Changing_distance_effect
https://www.academia.edu/36272940/Changing_distance_effect
https://www.academia.edu/36272940/Changing_distance_effect
https://www.academia.edu/36278169/Coulomb_magnetic_force
http://pengkuanem.blogspot.com/2018/03/coulomb-magnetic-force.html
https://www.academia.edu/36278169/Coulomb_magnetic_force
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c) Force a coil exerts on a current element  

From (49) we derive the magnetic force that a coil exerts on one current element by using the double vector 
product identity: 
 

𝑨 × (𝑩 × 𝑪) = −𝑪(𝑨 ∙ 𝑩) + 𝑩(𝑨 ∙ 𝑪) (50) 
 
By putting : 
 

𝑑𝑰! = 𝑨, 𝑑𝑰# = 𝑩, 𝒓 = 𝑪 (51) 
(49) becomes : 
 

𝑭=#! =
1

4𝜋𝜀'𝑐&|𝒓|(
R𝑑𝑰! × (𝑑𝑰# × 𝒓) + 𝑑𝑰!(𝒓 ∙ 𝑑𝑰#)S (52) 

 
The magnetic force that a coil exerts on the current element dIa equals the closed line integral of FIba over the 
coil, with dIa constant in the integral and dIb a current element of the coil, see Figure 8. The integrated magnetic 
force is  
 

𝑭>?@A = [
1

4𝜋𝜀'𝑐&
=
𝑑𝑰! × (𝑑𝑰# × 𝒓)

|𝒓|( +
𝑑𝑰!(𝒓 ∙ 𝑑𝑰#)

|𝒓|( > (53) 

 

Figure 8 
 
The closed line integral of  B𝑰%(𝒓∙B𝑰$)|𝒓|*

, the last term in (53), equals zero : 
 

[
𝑑𝑰!(𝒓 ∙ 𝑑𝑰#)

|𝒓|( = 𝑑𝑰![
𝒓 ∙ 𝑑𝑰#
|𝒓|( = 0 (54) 

 
Then, the magnetic force the coil exerts on the current element dIa is  
 

𝑭>?@A = [
1

4𝜋𝜀'𝑐&
𝑑𝑰! × (𝑑𝑰# × 𝒓)

|𝒓|(  (55) 

 
The integrand of (55) is 
 

𝑑𝑭 =
1

4𝜋𝜀'𝑐&
𝑑𝑰! × (𝑑𝑰# × 𝒓)

|𝒓|(  (56) 

 
We recognize that (56) is the Lorentz force that one dIb of the coil exerts on dIa .  
 

dIa 

Fcoil 

Coil 

r 

dIb 
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5. Consequences  
a) The relation µ0e0c2 = 1 

The Lorentz force that the magnetic field B exerts on dIa is  
 

𝑭D?EFGHI = 𝑑𝑰! ×𝑩 (57) 
 
By comparing (57) with (56) we find that the magnetic field of one dIb of the coil is : 
 

𝑩𝒃 =
1
𝜀'𝑐&

1
4𝜋

𝑑𝑰# × 𝒓
|𝒓|(  (58) 

 
By comparing (58) with the Biot–Savart law below : 
 

𝑩𝒃 = 𝜇'
1
4𝜋

𝑑𝑰# × 𝒓
|𝒓|(  (59) 

 
We find the relation µ0e0c2 = 1 :  

𝜇' =
1
𝜀'𝑐&

 (60) 

 
Historically, the values of µ0 , e0 and the speed of light c were measured experimentally. It was James Clerk 
Maxwell who noticed that c equals %

JK)L)
 . So, until now the relation µ0e0c2 = 1 was an empirical law.   

 
In our derivation this relation emerged naturally from both relativistic dynamic effect and changing distance 
effect. So, we have theoretically proven this relation and in consequence, the relation µ0e0c2 = 1 is now a 
theoretical law.  
 

b) Biot–Savart law 

The equation (58) is identical to the Biot–Savart law (59) but is derived with pure theory. So, the Biot–Savart 
law becomes a theoretical law too. 
   

c) Lorentz force law  

Because %
L)2"

= 𝜇', (56) can be written as : 
 

𝑭D?EFGHI =
𝜇'
4𝜋

𝑑𝑰! × (𝑑𝑰# × 𝒓)
|𝒓|(  (61) 

 
(61) is the Lorentz force that one dIb exerts on dIa . So, we have derived the Lorentz force law from the 
Coulomb’s law. 
 

d) Magnetic force vs. Newton's third law 

We have explained in the introduction that the elementary Lorentz force law violates Newton's third law. Let us 
compute the sum of the Lorentz force that dIb exerts on dIa and the back Lorentz force that dIa exerts on dIb . 
The first force is given in (61) : 
 

𝑑𝑭! =
𝜇'

4𝜋|𝒓|( 𝑑𝑰! ×
(𝑑𝑰# × 𝒓) =

𝜇'
4𝜋|𝒓|( R−𝒓

(𝑑𝑰! ∙ 𝑑𝑰#) + 𝑑𝑰#(𝒓 ∙ 𝑑𝑰!)S (62) 

 
The back Lorentz force is obtained from (62) by replacing r0 with -r0 , dIa with dIb and dIb with dIa: 
 

𝑑𝑭# =
𝜇'

4𝜋|𝒓|( 𝑑𝑰# × R𝑑𝑰! ×
(−𝒓)S =

𝜇'
4𝜋|𝒓|( B−

(−𝒓)(𝑑𝑰# ∙ 𝑑𝑰!) + 𝑑𝑰!R(−𝒓) ∙ 𝑑𝑰#SC (63) 
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Adding (62) with (63) we obtain the sum dFa + dFb which is not zero : 
 

𝑑𝑭! + 𝑑𝑭# =
𝜇'

4𝜋|𝒓|( B−𝒓
(𝑑𝑰! ∙ 𝑑𝑰#) + 𝑑𝑰#(𝒓 ∙ 𝑑𝑰!) − (−𝒓)(𝑑𝑰# ∙ 𝑑𝑰!) + 𝑑𝑰!R(−𝒓) ∙ 𝑑𝑰#SC 

=
𝜇'

4𝜋|𝒓|( R𝑑𝑰#
(𝒓 ∙ 𝑑𝑰!) − 𝑑𝑰!(𝒓 ∙ 𝑑𝑰#)S 

≠ 0 

(64) 

 
In the contrary, the sum of the magnetic force (49) and its back force is zero. The back magnetic force for (49) is 
obtained from (49) by replacing r0 with -r0, dIb with dIa and dIa with dIb: 

𝑭=!# =
1

4𝜋𝜀'𝑐&|𝒓|(
B−(−𝒓)(𝑑𝑰# ∙ 𝑑𝑰!) + 𝑑𝑰#R(−𝒓) ∙ 𝑑𝑰!S + 𝑑𝑰!R(−𝒓) ∙ 𝑑𝑰#SC (65) 

 
Adding FIba given in (49) with FIab yields  FIba + FIab = 0 because all the terms cancel out : 

𝑭=#! + 𝑭=!# =
1

4𝜋𝜀'𝑐&|𝒓|(
=

−𝒓(𝑑𝑰! ∙ 𝑑𝑰#) + 𝑑𝑰!(𝒓 ∙ 𝑑𝑰#) + 𝑑𝑰#(𝒓 ∙ 𝑑𝑰!)
−(−𝒓)(𝑑𝑰# ∙ 𝑑𝑰!) + 𝑑𝑰#R(−𝒓) ∙ 𝑑𝑰!S + 𝑑𝑰!R(−𝒓) ∙ 𝑑𝑰#S

> = 0 (66) 

 
So, the magnetic force law (49) satisfies the Newton's third law for current elements .  
 
Why the Lorentz force law violates the Newton's third law for current elements? By comparing (62) with (49) 
we find that (62) lacks the term !𝑰%(𝒓∙!𝑰$)

|𝒓|*
. Because all experiments are done with closed loop coil over which the 

integral of this term equals zero, see (54), the magnetic force corresponding to this term never appear and does 
not exist in experiments. Being an experimental law, the Lorentz force law does not describe a force that does 
not exist and thus, lacks this term. So, it cannot satisfy Newton's third law.  
 
Thanks to the fully theoretical derivation, the magnetic force law (49) contains the missing term B𝑰%(𝒓∙B𝑰$)|𝒓|*

 and 
consequently, satisfies Newton's third law. 
 

6. Experimental evidences  
a) My experiments  

What is the magnetic force corresponding to the term B𝑰%(𝒓∙B𝑰$)|𝒓|*
 ? This force is parallel to the current element dIa; 

such force has never been detected so far. Since this force did not appear in experiments because the test coils 
were all closed loop, we have specially designed experiments with non-closed wire and successfully shown 
magnetic force parallel to the current. 
 
The first experiment is «Continuous rotation of a circular coil experiment»5. The video of this experiment is: 
https://www.youtube.com/watch?v=9162Qw-wNow6. In this video we see a round coil that rotates in its plane. 
Because the coil is round the driving force must be parallel to the wire, that is, the driving force is parallel to the 
current. This force cannot be Lorentz force which is perpendicular to the current. A detailed technical 
explanation is in the paper «Showing tangential magnetic force by experiment»7 . 
 
I have also made a « Circular motor driven by tangential magnetic force »8 . The video of this experiment is: 
https://www.youtube.com/watch?v=JkGUaJqa6nU&list=UUuJXMstqPh8VY4UYqDgwcvQ9. The technical 
details of this experiment is: « Detail of my circular motor using tangential force and the equivalence with 
homopolar motor » 10. 
 

 
5 Kuan Peng, 2017,	«Continuous rotation of a circular coil experiment»,	
https://www.academia.edu/33604205/Continuous_rotation_of_a_circular_coil_experiment  
6 Kuan Peng, 2017,	Video https://www.youtube.com/watch?v=9162Qw-wNow  
7 Kuan Peng, 2018, «Showing tangential magnetic force by experiment»,	
https://www.academia.edu/36652163/Showing_tangential_magnetic_force_by_experiment  
8 Kuan Peng, 2014, « Circular motor driven by tangential magnetic force », 
https://www.academia.edu/6227926/Circular_motor_driven_by_tangential_magnetic_force  
9 Kuan Peng, 2014,	Video https://www.youtube.com/watch?v=JkGUaJqa6nU&list=UUuJXMstqPh8VY4UYqDgwcvQ  
10 Kuan Peng, 2014, « Detail of my circular motor using tangential force and the equivalence with homopolar motor » , 
https://www.academia.edu/7879755/Detail_of_my_circular_motor_using_tangential_force_and_the_equivalence_with_homopolar_motor  

https://www.academia.edu/33604205/Continuous_rotation_of_a_circular_coil_experiment
http://pengkuanem.blogspot.com/2017/06/continuous-rotation-of-circular-coil.html
https://www.youtube.com/watch?v=9162Qw-wNow
https://www.academia.edu/36652163/Showing_tangential_magnetic_force_by_experiment
http://pengkuanem.blogspot.com/2018/05/showing-tangential-magnetic-force-by.html
https://www.academia.edu/6227926/Circular_motor_driven_by_tangential_magnetic_force
http://pengkuanem.blogspot.com/2014/02/circular-motor-driven-by-tangential.html
https://www.youtube.com/watch?v=JkGUaJqa6nU&list=UUuJXMstqPh8VY4UYqDgwcvQ
https://www.academia.edu/7879755/Detail_of_my_circular_motor_using_tangential_force_and_the_equivalence_with_homopolar_motor
http://pengkuanem.blogspot.com/2014/08/detail-of-my-circular-motor-using.html
https://www.academia.edu/33604205/Continuous_rotation_of_a_circular_coil_experiment
http://pengkuanem.blogspot.com/2017/06/continuous-rotation-of-circular-coil.html
https://www.academia.edu/33604205/Continuous_rotation_of_a_circular_coil_experiment
https://www.youtube.com/watch?v=9162Qw-wNow
https://www.academia.edu/36652163/Showing_tangential_magnetic_force_by_experiment
http://pengkuanem.blogspot.com/2018/05/showing-tangential-magnetic-force-by.html
https://www.academia.edu/36652163/Showing_tangential_magnetic_force_by_experiment
https://www.academia.edu/6227926/Circular_motor_driven_by_tangential_magnetic_force
http://pengkuanem.blogspot.com/2014/02/circular-motor-driven-by-tangential.html
https://www.academia.edu/6227926/Circular_motor_driven_by_tangential_magnetic_force
https://www.youtube.com/watch?v=JkGUaJqa6nU&list=UUuJXMstqPh8VY4UYqDgwcvQ
https://www.academia.edu/7879755/Detail_of_my_circular_motor_using_tangential_force_and_the_equivalence_with_homopolar_motor
http://pengkuanem.blogspot.com/2014/08/detail-of-my-circular-motor-using.html
https://www.academia.edu/7879755/Detail_of_my_circular_motor_using_tangential_force_and_the_equivalence_with_homopolar_motor
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b) Experiment of wire fragmentation 

In 1961, Jan Nasilowski in Poland has carried out an experiment which consisted of passing a huge current in a 
thin wire. The wire exploded into small pieces. The interesting thing is that the wires were not melted but teared 
apart by mechanical force. The Figure 9 is a photograph of the exploded wires which shows that all the small 
pieces have approximately the same length. Jan Nasiowski has published his result in two papers 11, 12 which are 
cited by Lars Johansson in his Thesis13 . 

 
Figure 9 

 
The magnetic force shown in this experiment is parallel to the current and is strong enough to tear the wire apart. 
Let us explain this experiment with the magnetic force law (49). Take two current elements from the wire, dIa 
and dIb , the vector distance from dIb to dIa is r. Let us compute the magnetic force that dIb exerts on dIa using 
(52). Because dIb is parallel to r, then 𝑑𝑰# × 𝒓 = 0 and the magnetic force is  
 

𝑭=#! =
1

4𝜋𝜀'𝑐&
𝑑𝑰!(𝒓 ∙ 𝑑𝑰#)

|𝒓|(  (67) 

 
The back magnetic force that dIa exerts on dIb is 
 

𝑭=!# =
1

4𝜋𝜀'𝑐&
𝑑𝑰𝒃(−𝒓 ∙ 𝑑𝑰𝒂)

|𝒓|(  (68) 

 
dIb, dIa and r are parallel, we write them in (69) with er being their common unit vector :  
 

𝑑𝑰! = 𝐼!𝑑𝑙!𝒆M, 𝑑𝑰# = 𝐼#𝑑𝑙#𝒆M, 𝒓 = 𝑟𝒆M (69) 
 
We introduce the expressions for dIb, dIa and r into (67) and (68) :  

𝑭=#! =
𝐼!𝑑𝑙!𝒆M(𝑟𝒆M ∙ 𝐼#𝑑𝑙#𝒆M)

4𝜋𝜀'𝑐&𝑟(
=
𝑟𝐼!𝑑𝑙!𝐼#𝑑𝑙#
4𝜋𝜀'𝑐&𝑟(

𝒆M (70) 

𝑭=!# =
𝐼#𝑑𝑙#𝒆MR(−𝑟𝒆M) ∙ 𝐼!𝑑𝑙!𝒆MS

4𝜋𝜀'𝑐&𝑟(
= −

𝑟𝐼!𝑑𝑙!𝐼#𝑑𝑙#
4𝜋𝜀'𝑐&𝑟(

𝒆M (71) 

 
We have drawn in Figure 10 the forces FIba and FIab and the current elements dIa and dIb. Let S be a point on the 
wire. dIa is on the right of the point S and FIba pulls it to the right; dIb is on the left of the point S and FIab pulls it 
to the left. So, the point S is under a tension that tears it. If the tension is strong enough, the wire breaks, which 
was the result of Jan Nasilowski’s experiment.  
 

Figure 10 

 
11 Jan Nasiowski Phenomena Connected with the Disintegration of Conductors Overloaded by Short-Circuit Current (in Polish) Przeglad 
Elektrotechniczny, 1961, p.397-403 52 
12 Jan Nasiowski Unduloids and striated Disintegration of Wires Exploding Wires, W.G. Chase, H.K. Moore Eds., Vol.3, Plenum, N.Y., 
1964 
13 Lars Johansson, 1996, “Longitudinal electrodynamic forces | and their possible technological applications”, https://deanostoybox.com/hot-
streamer/temp/LongitudinalMSc.pdf 

•  
S 

dIb FIba 
dIa FIab r 

https://deanostoybox.com/hot-streamer/temp/LongitudinalMSc.pdf
https://deanostoybox.com/hot-streamer/temp/LongitudinalMSc.pdf
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A wire is broken at a point by the tension created by the segments of the wire on either side of the point . The 
magnetic force per unit length is the same everywhere in the wire because the current is constant. The segments 
of the same length create the same tension. This is why all the pieces of an exploded wire have approximately 
the same length. 
 
In consequence, the magnetic force law (49) explains well the experiment of Jan Nasiowski. 
 

7. Conclusion 
 

1. We have derived a new magnetic force law from Coulomb’s law and relativity without experimental  
data. 

2. We have proven theoretically the relation µ0e0c2 = 1 which was an experimental law. Now the three 
fundamental constants µ0, e0 and c are reduced into two primary constants : e0 and c. 

3. The Biot–Savart law and the Lorentz force law are derived with pure theory. 
4. This new law has a component of magnetic force parallel to the current. Because the Lorentz force law 

lacks this force, it violates the Newton's third law.  
5. We have found two relativistic effects: the relativistic dynamic effect and the changing distance effect. 

These effects are the deep mechanism that creates magnetic force from electric force.  
6. We have presented two of my experiments that show the existence of magnetic force parallel to the 

current.  
7. Our new magnetic force law explains well the experiment of Jan Nasiowski : for the breaking of the 

wires as well as for the regularity of the lengths of the small pieces of an exploded wire.   
8. These experiments give strong evidences for the existence of magnetic force parallel to the current.  

 
So, the new magnetic force law (49) correctly describes magnetic force. Because the new law gives the same 
prediction as the Lorentz force law for closed loop currents, it works for electromagnetism as the Lorentz force 
law. However, the component of magnetic force parallel to the current is new and shown to be rather significant. 
So, it could be used as the driving force for new devices.  
 
Since the Biot–Savart law, the Lorentz force law and the relation µ0e0c2 = 1 are derived with pure theory, the 
deep mechanism that transforms electric force into magnetic force is revealed to be the two relativistic effects. 
Consequently, electromagnetism is much better understood, which will surely unblock the way to unsuspected 
physical discoveries.  
 
 


