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Abstract

In the realm of theoretical physics, scientists have long been intrigued by the link between gauge
theories and gravity. This study explores a fascinating idea called the ”double copy technique,” which
reveals a deep connection between these two seemingly different theories. While gauge theories, like
Yang-Mills, describe basic interactions in a simple and elegant way, gravity, despite its symmetry, is
a complex and challenging theory in the quantum world. This paper investigates the ”double field
theory” (DFT) and its connection to the double copy method. This connection shows that gauge and
gravity theories are remarkably similar at the quantum level. The double copy technique essentially
transforms gravity into a sort of ”squared” gauge theory [1], offering insights into how color and
movement are related in gauge theories. By carefully studying the math and important equations,
this paper explains how this connection is tied to the idea of color and movement duality. The study
concludes by introducing the DFT action, which is derived through the double copy method and
doesn’t rely on a specific background. This surprising result highlights how the complexity of gravity
can be beautifully linked to the simplicity of Yang-Mills theory.

1 Introduction

This paper is based on a paper [2] which I read recently on DFT [3] and double copy
of Yang-Mills.The results that the paper discussed are very interesting and thought-
provoking.

To provide some background context, the framework of fundamental interactions in
nature encompasses two categories of theories: firstly, Einstein’s theory of relativity, and
secondly, Yang-Mills’ theory [4, 5] which characterizes the gauge bosons within the stan-
dard model of particle physics. Although Yang-Mills represents a class of gauge theories,
not all gauge theories need conform to the Yang-Mills form. In a broader perspective,
even gravity itself can be viewed as a gauge theory, evident through its association with
the diffeomorphism group symmetry [6].

While Yang-Mills theory stands as a remarkable quantum field theory (QFT) with a
unified account of electromagnetic, weak, and strong forces, gravity, in contrast, poses
significant challenges. Perturbation theory in gravity becomes increasingly complex, es-
pecially beyond quadratic order, rendering interaction vertex calculations nightmarish.
Thus, the juxtaposition of simple-elegant Yang-Mills and complicated gravity at a quan-
tum level underscores an age-old duality.

Notably, despite their differences, gravity and gauge theory share certain resemblances
[7, 8], particularly when considering aspects like Lorentz symmetries and super Poincaré
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symmetries. An example of their intriguing connection is the holographic principle and
the AdS/CFT correspondence.

A productive avenue for exploring gauge-gravity duality, particularly in the past decade,
has stemmed from the works of Bern-Carrasco-Johansson [9, 7] and [10]. A striking
observation emerges: gravity scattering amplitudes can be regarded as an exact double
copy of Yang-Mills amplitudes [11, 7],implying a profound interrelation between these two
fundamental theories.

This perspective schematically posits that gravity can be understood as the double
product of two gauge theories, leading to the somewhat intriguing assertion that gravity
can be seen as gauge theory squared [7, 12]. Central to this idea is the KLT relations
in string theory [13, 14]. The double copy technique leverages a property known as
color-kinematics duality within the building blocks of gauge theories, establishing a deep
connection between color and kinematics while preserving amplitudes.

For example, examining the relation between gravity and gauge theory amplitudes at
tree level involves considering a gauge theory amplitude where all particles exist in the
adjoint color representation. For pure Yang-Mills, represented by

SYM =
1

g2

∫
TrF ∧ ⋆F (1)

the n-point L-loop gluon amplitude can be organized in terms of cubic diagrams as

An,L
YM =

∑
i

cini

Sidi
(2)

where ci are the color factors, ni are kinetic numerical factors, and di represents the
propagator.

The color-kinematic duality relates these factors through transformations that mirror
the Jacobi identity of the color factors:

ci + cj + ck = 0 ⇒ ni + nj + nk = 0 and ci → −ci ⇒ ni → −ni. (3)

This duality enables the derivation of gravity amplitudes from gauge theory ones, for
instance, leading to an N = 0 supergravity amplitude:

An,L
N=0 =

∑
i

n1ni

Sidi
(4)

where the numerator factors are transformed from color to kinematic factors.
Despite the richness of these relationships, it’s important to note that this discussion

doesn’t directly concern the Lagrangian-level description of physics. Previously, attempts
to extend the double copy method to the level of action seemed uncertain. A statement
in [15] captures the challenge: ’no amount of fiddling with the Einstein-Hilbert action will
reduce it to a square of a Yang-Mills action.’ Nevertheless, the paper [2] delves into this
aspect.

In [2], the authors employ the double copy techniques to replace color factors with
a second set of kinematic factors, introducing their momenta. This leads to a double
field theory (DFT) at quadratic and cubic order, presenting doubled momenta or, in
position space, an augmented set of coordinates. Intriguingly, the double copy of Yang-
Mills theory at the action level yields double field theory through the integration of the
duality-invariant dilaton (ϕ) which is defined in terms of scalar dilation Φ [2]

e2ϕ =
√
−ge2Φ

This insightful exploration underscores the intricate connections and potential unifica-
tion between gauge theory and gravity.
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2 Yang-Mills/DFT–Quadratic theory

Let’s begin with a non-abelian gauge theory in D-dimensions represented by the action:

SYM = −1

4

∫
dDxκabF

µνaF b
µν (6)

where Aa
µ are the gauge bosons’ fields and F a

µν represents their field strength:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gYMfa

bcA
b
µA

c
ν (7)

where gYM is the gauge coupling constant, fa
bc are the structure constants of the non-

Abelian gauge group, and a, b, . . . are adjoint indices. The Cartan-Killing form κab is used
to lower the adjoint indices, defining fabc ≡ κadf

d
bc in an anti-symmetric manner.

Expanding the action (6) up to quadratic order in Aµ and then performing integration
by parts leads to:

S
(2)
YM = −1

4

∫
dDxκab

(
−2□AµaAb

µ + ∂µ∂
νAµaAb

ν

)
=

1

2

∫
dDxκabA

µa
(
□Ab

µ + ∂µ∂
νAb

ν

)
(8)

Extracting Aµa and the factor of 2, the second-order action takes the form as presented
in [2]:

S
(2)
YM =

1

2

∫
dDxκab A

µa(□Ab
µ − ∂µ∂

νAb
ν) (9)

To align with the double copy formalism, we move into momentum space with momenta
k. Define

Aa
µ(k) =

1

(2π)D/2

∫
dDxAa

µ(x) exp(ikx)

.
In these notes, we adopt the notation

∫
k
:=

∫
dDk. Following the convention in [2], where

k2 is scaled out, we introduce the projector:

Πµν(k) ≡ ηµν − kµkν

k2
(10)

with ηµν = (−,+,+,+) denoting the Minkowski metric.

Proposition 1:

The projector defined in (10) satisfies the following identities:

Πµν(k)kν ≡ 0, and ΠµνΠνρ = Πµ
ρ (11)

Proof

The second identity is trivial. To address the first identity, we’ll substitute (10) into (11),
with the consideration that k2 has been factored out.
The first identity in (11) implies gauge invariance under the transformation:
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δAa
µ(k) = kµλ

a(k) (12)

Here, the gauge parameter λa(k) is defined as an arbitrary function.

3 Double copy of gravity theory

Proposition 2

The double copy prescription in gravity theory leads to double field theory. [6]

Proof

Let’s commence by exchanging the color indices a with a new set of space-time indices
a → µ̄. This introduces a second set of space-time momenta k̄µ̄ corresponding to the new
indices.[16] In the context of momentum space, we redefine the fields Aa

µ(k) as a novel
doubled field:

Aa
µ(k) → eµµ̄(k, k̄). (13)

Continuing along the lines of the double copy framework, we need to establish a substi-
tution rule for the Cartan-Killing metric κab. The authors of [2] propose that we replace
this metric with a projector characterized by barred indices, leading to:

κab →
1

2
Π̄µ̄ν̄(k̄). (14)

Notably, this expression entirely resides within the domain of barred space.

Remark 1 (Justification for Equation (14))

The motivation for the substitution (14) arises from the double copy principle applied at
the level of amplitudes. By adopting a gauge theory amplitude formA =

∑
i
nici
Di

, where ni

signifies kinematic factors, ci represents color factors, and Di denotes inverse propagators,
we observe that in the double copy process, the color factors can be replaced by kinematic
factors. Notably, Di scales with k2, effectively leaving the propagator doubled while
eliminating the color factor.

With these transformations in place, we derive a double copy action for gravity with
the following structure:

S(2)
grav = −1

4

∫
k,k̄

k2Πµν(k)Π̄µ̄ν̄(k̄)eµµ̄(−k,−k̄)eνν̄(k, k̄). (15)

This action exhibits an elegant structure, reminiscent of the duality symmetric string’s
form.

To provide a more explicit characterization of the action (15)’s doubled nature, let’s
introduce doubled momenta denoted as K = (k, k̄). Analogous to the duality symmetric
string approach, we treat k and k̄ equivalently. This symmetrical treatment brings into
focus the arbitrariness between k2 and k̄2 at the front of the integrand. To address this,
we impose the level-matching condition [3, 17, 18, 19]:

k2 = k̄2 (16)

which, intriguingly, mirrors the level-matching requirement. Notably, the imposition of
this constraint is crucial for obtaining double field theory (DFT), akin to its necessity in
pure DFT.
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Proposition 2

The double copy prescription in gravity theory leads to double field theory.

Proof

We initiate the proof by substituting the color indices a with a secondary set of space-time
indices a → µ̄. Consequently, this introduces an alternate set of space-time momenta k̄µ̄

that corresponds to the new indices. In the realm of momentum space, we redefine the
fields Aa

µ(k) as a novel doubled field:

Aa
µ(k) → eµµ̄(k, k̄). (17)

Proceeding with the double copy methodology, we must establish a replacement rule
for the Cartan-Killing metric κab. The authors of [2] advocate that we substitute this
metric with a projector that bears barred indices, yielding:

κab →
1

2
Π̄µ̄ν̄(k̄). (18)

It is worth highlighting that this expression operates entirely within the framework of
barred space.

Remark 1:Reason behind the Correctness of Equation (14)

The justification for the substitution (14) stems from the double copy principle as it
operates at the amplitude level. Schematically, one can consider a gauge theory amplitude
in the form A =

∑
i
nici
Di

, where ni represent kinematic factors, ci denote color factors,
and Di stand for inverse propagators. Within the double copy process, the color factors
are replaced by kinematic factors. Remarkably, Di scales with k2, effectively leading to
the doubling of the propagator while eliminating the color factor.

Implementing these substitutions, we derive a double copy action for gravity charac-
terized by the following structure:

S(2)
grav = −1

4

∫
k,k̄

k2Πµν(k)Π̄µ̄ν̄(k̄)eµµ̄(−k,−k̄)eνν̄(k, k̄). (19)

This action exhibits an elegant structure that bears a resemblance to the configuration
of the duality symmetric string.

Remark 2:More General Solutions

While the solution k = k̄ may resonate from the analysis of the linearized theory, there
exist broader solutions that warrant deeper investigation. It becomes apparent that under
the transformation

δeµν̄ = kµλ̄ν̄ + k̄ν̄λµ (20)

the action (15) remains invariant. Consequently, we introduce two gauge parameters that
are reliant on doubled momenta.

After detailing the projectors (11) and imposing the level-matching condition (16), we
harness the metric to lower indices. This leads us to deduce that, upon multiplying with
the e fields, the action (15) assumes the following form:

S(2)
grav = −1

4

∫ ∫
k,k̄

(k2eµν̄eµν̄ − kµkρeµν̄e
ν̄
ρ

− k̄ν̄ k̄σ̄eµν̄e
µ
σ̄ +

1

k2
kµkρk̄ν̄ k̄σ̄eµν̄eρσ̄). (18)

5



The resemblance to the background-independent quadratic action of DFT is already
apparent. To enhance the comparison, we Fourier transform to doubled position space.

This transformation reveals that every term transitions smoothly except the final term,
which introduces a non-local segment. The solution, as indicated in [2], involves intro-
ducing an auxiliary scalar field ϕ(k, k̄), akin to the dilaton.

Applying these steps enables us to rewrite (18) in the following manner:

S(2)
grav = −1

4

∫ ∫
k,k̄

(k2eµν̄eµν̄ − kµkρeµν̄e
ν̄
ρ − k̄ν̄ k̄σ̄eµν̄e

µ
σ̄ − k2ϕ2 + 2ϕkµk̄ν̄eµν̄). (19)

By using the field equations for ϕ:

ϕ =
1

k2
kµk̄ν̄eµν̄ (20)

or alternatively using the redefinition:

ϕ → ϕ′ = ϕ− 1

k2
kµk̄ν̄eµν̄ (21)

we can regain the non-local action (18).

Remark 3 (Sustaining Gauge Invariance)

A notable aspect is that (19) maintains its gauge invariance, as confirmed by examining
the gauge transformation for the dilaton

δϕ = kµλ
µ + k̄µ̄λ̄

µ̄ = ∂/∂x̄µ̄ (22)

Additionally, the standard duality invariant measure is obtained. Consequently, the re-
sulting action takes on the following configuration:

S(2)
grav =

1

4

∫
dDx dDx̄ (eµν̄□eµν̄ + ∂µeµν̄∂

ρeν̄ρ

+ ∂̄ ν̄eµν̄ ∂̄
σ̄eµσ̄ − ϕ□ϕ+ 2ϕ∂µ∂̄ ν̄eµν̄). (23)

In the given context, the partial derivatives are represented as ∂µ = ∂
∂xµ and ∂̄µ̄ = ∂

∂x̄µ̄ ,

which correspond to coordinates that are dual to kµ and k̄µ̄, as indicated by (16). This
correspondence leads to the imposition of a constraint expressed by

□ ≡ ∂µ∂µ = ∂̄µ̄∂̄µ̄, (24)

The gauge transformations (20) and (22), when translated to doubled position space,
take the form

δeµν̄ = ∂µλ̄ν̄ + ∂̄ν̄λµ; δϕ = ∂µλ
µ + ∂̄µ̄λ̄

µ̄. (25)

These transformations leave (23) invariant, subject to the constraint (24). The action
(23) precisely defines the standard quadratic double field theory action. When the iden-
tification x ≡ x̄ is made, it becomes equivalent, with appropriate field redefinitions, to
the well-known free action describing gravity, an antisymmetric tensor, and a dilaton, as
discussed in [3].
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4 Conclusion

In summary, the double copy technique presents a remarkable avenue for unraveling the
deep connections between gauge and gravity theories. By leveraging color-kinematics
duality and a meticulous analysis of mathematical relationships, this paper has illumi-
nated the intriguing equivalence between the two seemingly distinct realms of physics.
The transformation of gravity into a ”squared” gauge theory through the double copy
method offers a tantalizing glimpse into the unification of fundamental forces. The derived
background-independent double field theory action, born from the double copy approach,
underscores the elegance of this symmetry and its potential implications for understand-
ing the fundamental nature of the universe. As researchers continue to delve into this
fascinating interplay between gauge and gravity, the double copy technique promises to
unlock new insights and pave the way for a more comprehensive understanding of the
fabric of reality.
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