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Abstract: We study the properties of regression coefficients when the sum
of the dependent variables is one, that is, the dependent variables are compo-
sitional. We show that the sum of intercepts is equal to one and the sum of
other corresponding regression coefficients is zero. We do it for simple linear
regressions and also for a more general case using matrix notation. The last
part treats the case when the dependent variables do not sum up to one. We
simplify the well known formula derived by the use of Lagrange multipliers.

Keywords: compositional data, equality, regression coefficients, restricted
regression, simplified formula.

Introduction

Compositional data describe quantities that are parts related to some total
or whole. They represent relative information, they have to be nonnegative,
their sum has to be equal to one. We may point out that the conditions that
are satisfied by compositional data may, Goldberger (1964, p.257), improve on
efficiency of estimates in linear regression.

If we consider regression of dependent compositional variables y and z on
some independent variable x, we use observations yt and zt at some point xt
assuming yt+zt = 1 for each t = 1, 2, . . . , T, where T is the number of datapoints
xt, yt, zt. This is what we call a compositional regression.

Independent variables cannot contain compositional data. If there were more
than one independent variables and their sum would be equal to one for each t,
that is, such independent variables would be compositional, we could not use a
regression model with an intercept because the design matrix would be singular.
We don’t call this a compositional regression.

Our assumption is satisfied in the case when yt and zt are relative frequencies,
yt+zt = 1. It is not satisfied when yt and zt are realizations of random variables
Y and Z and the expected value of their sum is E(Y + Z) = 1. In such a case
we do not assume yt + zt = 1 but we still require that ay + byx+ az + bzx = 1.
In a case like this we may call it compositional on the average and we will use
partitioned matrices and Lagrange multipliers. This may happen, for example,
when we measure concentrations and their sum is not equal to one due to errors
in measurements.

Simple linear compositional regression

If we want the sum of two functions ay + byx and az + bzx to be equal to one
for all x, we write it as ay + az + byx+ bzx = 1, where 1 stands for the constant
function of x, we have to have by + bz = 0, thus the equation is ay + az = 1.
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We start with simple linear regression of y on x and that of z on x. The
models look like y = ay + byx + εy and z = az + bzx + εz. When the least
squares method is used, the formulas for by and bz are well known. We want
to calculate their sum. We assume there are observations on one independent
variable x1, x2, . . . , xT and two dependent variables with their sums being equal
to one for each t. We discuss only two dependent variables yt and zt just for the
sake of simplicity. If yt +zt = 1 is true for all t = 1, 2, . . . , T, then so is ȳ+ z̄ = 1
because

ȳ + z̄ =

∑
yt
T

+

∑
zt
T

=

∑
(yt + zt)

T
=
T

T
= 1.

We calculate the sum of the two slopes as

by + bz =

∑
(yt − ȳ)(xt − x̄)∑

(xt − x̄)2
+

∑
(zt − z̄)(xt − x̄)∑

(xt − x̄)2
=

∑
yt(xt − x̄)∑
(xt − x̄)2

−
∑
ȳ(xt − x̄)∑
(xt − x̄)2

+

∑
zt(xt − x̄)∑
(xt − x̄)2

−
∑
z̄(xt − x̄)∑
(xt − x̄)2

=

∑
(yt + zt)(xt − x̄)∑

(xt − x̄)2
−
∑

(ȳ + z̄)(xt − x̄)∑
(xt − x̄)2

=

∑
(xt − x̄)∑
(xt − x̄)2

−
∑

(ȳ + z̄)(xt − x̄)∑
(xt − x̄)2

We have discarded yt +zt because it is equal to 1. We also use the fact ȳ+ z̄ = 1
and obtain the required result

by + bz =

∑
(xt − x̄)∑
(xt − x̄)2

−
∑

(ȳ + z̄)(xt − x̄)∑
(xt − x̄)2

=

∑
(xt − x̄)∑
(xt − x̄)2

−
∑

(xt − x̄)∑
(xt − x̄)2

= 0

To calculate the intercepts ay and az we use the well known formulas ȳ = ay+byx̄
and z̄ = az + bzx̄. In our cases the sum of intercepts is

ay + az = ȳ − byx̄+ z̄ − bzx̄ = ȳ + z̄ − (by + bz)x̄ = ȳ + z̄ = 1.

Interesting situations may occure. What if somebody says that he or she
does not want to hear anything about compositional data and any stuff like that
because simple linear regression will do for the purpose of calculations. Such a
person is actually doing it right without knowing about it.

Another point is that observations of some dependent variables may be miss-
ing completely. If this is the situation, simple linear regression delivers the right
result anyway.

Compositional regression with matrix notation

It is easy to see that the generalisation to more than two dependent variables
is obvious. Now we want to generalize this result for more than one independent
variable.

A set of T values of K independent variables is given, xt1, xt2, . . . , xtK, for
t = 1, 2, . . . , T. We assume xt1 = 1 to indicate the presence of the intercept. To
be specific, we define the T ×K design matrix X as
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X =


x11 x12 . . . x1K

...
...

. . .
...

xt1 xt2 . . . xtK
...

...
. . .

...
xT1 xT2 . . . xTK

 =


1 x12 . . . x1K
...

...
. . .

...
1 xt2 . . . xtK
...

...
. . .

...
1 xT2 . . . xTK

 .

Theorem. Let X be a matrix of independent variables with the first column
consisting of ones. Let y = (y1, y2, . . . , yt)

′ and z = (z1, z2, . . . , zt)
′ satisfy

yt + zt = 1 for t = 1, 2, . . . , T. Let X′X be nonsingular and let by, and bz be
the solutions of equations X′Xby = X′y and X′Xbz = X′z respectively. If
b = by + bz, then b1 = 1 and bk = 0 for k = 2, . . . ,K.

Proof. Write down the equations for by and bz and form their sum X′Xby+
X′Xbz = X′y + X′z which is X′Xb = X′(y + z). Since y + z = e where

e′ = (1, 1, . . . , 1)′, the wright hand side is X′e = (T,
∑T

t=1 xt2, . . . ,
∑T

t=1 xtK)′.
If b1 = 1 and bk = 0 for k = 2, . . . ,K, we check what the first column of

X′Xb looks like and see that it is (T,
∑T

t=1 xt2, . . . ,
∑T

t=1 xtK)′ which is the
same as X′e if we multiply it by b1 = 1. The remaining columns of the matrix
X′X do not matter because they are multiplied by zeroes.

We see the equation X′Xb = X′e is satisfied but the nonsingularity of X′X
means that the solution is unique.

General linear compositional regression

Suppose we have T observations on each ofM dependent variables yt1, . . . , ytM
for each t = 1, . . . , T and K independent variables xt1, . . . , xtK . We define the
T ×M regressand matrix Y as

Y = (y1| . . . |ym| . . . |yM).

This style of notation for sets of regressions is taken from Goldberger (1964, p.
201) and this is why we use this book as a reference.

To introduce the intercept, we assume xt1 = 1 for all t = 1, . . . , T and
minimize the sum of squares

M∑
m=1

T∑
t=1

(
K∑

k=1

xtkbkm − ytm

)2

with respect to bkm, k = 1, 2, . . . ,K, m = 1, 2, . . . ,M, subject to K constraints

M∑
m=1

b1m − 1 = 0, and

M∑
m=1

bkm = 0 for k = 2, . . . ,K.

A matrix notation is convenient when we deal with a set of dependent vari-
ables. We use the notation introduced in Goldberger (1964), p.201. A set of T
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values of K independent variables is given, xt1, xt2, . . . , xtK, for t = 1, 2, . . . , T.
We assume xt1 = 1 to indicate the presence of the intercept.

A set of T values of M dependent variables is given as yt1, yt2, . . . , ytM for
t = 1, 2, . . . , T. We define the regressand vectors as y1 = (y11, y21, . . . , yT1)′, . . . ,
ym = (y1m, y2m, . . . , yTm)′, . . . , yM = (y1M , y2M , . . . , yTM )′.

The regression coefficients of the classical unrestricted regression analysis are
am = (am1, am2, . . . , amK)′ where am = (X’X)−1X’ym. To derive this formula
Goldberger (1964) uses matrix differentiation, Maindonald (1984, p.23) does
not.

Since we want to impose certain restrictions on the regression coefficients,
it is more convenient to define an equivalent joint regression model by using a
partitioned matrix

XP =


X | 0 | . . . | 0
0 | X | . . . | 0

. . . . . .
. . . . . .

0 | 0 | . . . | X

 ,

in which X occurs M times in XP which is of type MT ×MK. If the rank of
X is K, the rank of XP is MK. We also define a partitioned column vectors
yP = (y′1| y′2| . . . |y′M )′ and aP = (a′1| a′2| . . . |a′M )′. The joint model
is yP = XPaP +eP . We minimize the unrestricted sum of squares by calculating
aP = (X′PXP )−1X′PyP .

In this joint model we have a square matrix

X′PXP =


X′X | 0 | . . . | 0

0 | X′X | . . . | 0

. . . . . .
. . . . . .

0 | 0 | . . . | X′X

 ,

the type of X′PXP is MK ×MK which makes it computationally feasible be-
cause it is sufficient to calculate (X′X)−1 to get the inverse

(X′PXP )−1 =


(X′X)−1 | 0 | . . . | 0

0 | (X′X)−1 | . . . | 0

. . . . . .
. . . . . .

0 | 0 | . . . | (X′X)−1

 .

We get the same result as we would obtain in M separate models.
The advantage of the joint model becomes clear when we impose restrictions

on the model. The regression coefficients in the restricted model are denoted
bP = (b′1| b′2| . . . |b′M )′. We write linear restrictions on the coefficients in
the form

RPbP = rP .

RP is a partitioned matrix, RP =
(
IK |IK | . . . |IK

)
where IK is a K×K identity

matrix. Thus RP is a K ×KM matrix of rank K. The right hand side is rP =
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(1, 0, . . . , 0)′of type 1 ×M which is a way of saying that the sum of intercepts

is
∑M

m=1 b1m = 1 and that the meaning of zero components is
∑M

m=1 bkm = 0
for k = 2, 3, . . . ,K.

The formula we can now use is well known, Goldberger (1964), p.256-7.
When aP = (X′PXP )−1X′PyP , is obtained by the unconstrained classical

least squares method, then the formula, when the restrictions are applied, is

bP = aP + (X′PXP )−1R′P (RP (X′PXP )−1R′P )−1(rP −RPaP )

It is easy to verify that

(RP (X′PXP )−1R′P )−1 = X′X/M

and therefore

bP = aP + (X′PXP )−1R′P (X′X)(rP −RPaP )/M

Since

(X′PXP )−1R′P =


(X′X)−1 | 0 | . . . | 0

0 | (X′X)−1 | . . . | 0

. . . . . .
. . . . . .

0 | 0 | . . . | (X′X)−1


 IK
. . .
IK

 ,

we have

(X′PXP )−1RP =

 (X′X)−1

. . .
(X′X)−1


Thus

(X′PXP )−1RPX′X =

 (X′X)−1

. . .
(X′X)−1

X′X =

 IK
. . .
IK


and

bP = aP +

 IK
. . .
IK

 (rP −RPaP)/M = aP +
1

M

 rP −RPaP

. . .
rP −RPaP


We can see that the difference of the restricted estimator bP from the unre-
stricted one aP is

1

M

 rP −RPaP

. . .
rP −RPaP

 ,

that is, the difference rP −RPaP is divided into M equal ammounts to correct
the ordinary regression coefficients.

It is also worth mentioning that we got rid of calculating inverse matrices.
It is certainly an advantage from the numerical point of view.
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7. Numerical example

Our approach was originally designed to study concentrations of certain
substances. Since such an example would not be obvious, we took the data
about the cause of death in the US. The number of inhabitants may be different
each year but the proportions may follow some other pattern.

http://www.cdc.gov/nchs/nvss/mortality/lcwk9.htm
is the address from which only a small part of data was used.

The most prominent causes of death are cardiovascular deseases (denoted as
Heart) and cancer, other specific causes have frequency less than six percent.
The data are presented in the table below. We indicate that we used the year
minus 2000. Coefficients of the restricted linear regression follow.

Original data Linear regression restricted or not

Year Heart Cancer Other Coeff Heart Cancer Other

1999 0.30327 0.22987 0.46686 a 0.29627 0.22894 0.47479

2000 0.29578 0.23009 0.47412 b -0.005830 0.0002348 0.005595

2001 0.28969 0.22911 0.48120 y=a+b(Year-2000)

2002 0.28526 0.22802 0.48672 Overall sum of squares 7.038E-05

2003 0.27984 0.22746 0.49270

2004 0.27214 0.23099 0.49688

2005 0.26638 0.22848 0.50515

2006 0.26037 0.23075 0.50888

2007 0.25423 0.23221 0.51356

2008 0.24957 0.22878 0.52165

2009 0.24591 0.23293 0.52116

The coefficients are the same as the coefficients for unrestricted regressions.
This is because we used the catch-all category Other.

8. What is it good for.
It is true that the equalities derived in this paper may be interesting. Espe-

cially the part when somebody does not like compositional approach but uses
it without realizing it.

Compositional linear regression yields linear unbiased estimates with vari-
ances less than or equal to those unrestricted estimates. But there is a serious
disadvantage of linear functions. They eventually take on values that are nega-
tive or greater than one when arguments are allowed to be arbitrarily large.

On the other hand, we need not worry about some observations equal to
zero. Restricted regression does not care but we have to be carefull about the
domain of definition not to obtain values that are negative or greater than one.

The main purpose of the linear compositional regression is to obtain the
values of functions and their partial derivatives that will be used for interpolation
by generalized logistic functions, Agresti (1990). The values of parameters we
will obtain by interpolation will be used as starting values for iterative processes
to find the minimal sum of squares numerically. Iterations will be difficult but
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the generalized logistic functions are intrinsically positive and less than zero
which is their main advantage as compared with linear functions.

As we mentioned above the values of linear functions are eventually outside
the interval (0,1). The arguments for which such values are within the interval
[0,1] form a polytope. Only an interior point of a polytope may be used for
interpolation by logistic functions. That is why the following has been included.

9. Interior point of the polytope

Fact. Let p1, . . . , pM , where M > 1, be real numbers with
∑M

m=1 pm = 1. Then
0 < pm < 1 for each m = 1, . . . ,M if and only if 0 < pm for each m = 1, . . . ,M.

Proof. Obviously 0 < pm < 1 implies 0 < pm. But if 0 < pm for all m and

pm = 1−
M∑

i=1,i6=m

pi < 1.

It is good to write this fact down because in our case of restricted linear
regression it will suffice to examine merely if 0 < pm for each m = 1, . . . ,M.
Now we repalce pm by a function fm(x) of x where x = (x1, . . . , xK)′ and check if
there is a domain of definition for which 0 < fm(x) for all m = 1, . . . ,M. When
we consider practical applications, we calculate the means of the independent
variable data x̄k =

∑T
t=1 xtk, for t = 1, . . . , T, x̄ = (x̄1, . . . , x̄K)′ and check if

these means satisfy 0 < fm(x̄) for all m = 1, . . . ,M. Unfortunately there is no
guarantee that the means will work.

To find the values of x that satisfy 0 < fm(x) for all m = 1, . . .M we
introduce a new variable y and examine fm(x)−y ≥ 0. in our case of restricted
linear regression we have a linear programming model: Maximize y subject to
y ≥ 0 and fm(x) − y ≥ 0 for m = 1, . . . ,M, x unrestricted as to the signs.
This task may be solved easily by the simplex method because the number of
variables is small.

The only trouble with the simplex algorithm may arise due to rounding
errors. That is why we prefer the use of this simple idea instead of other methods
of finding an interior point or some optimal center of a polytope.
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