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  Abstract 

In this paper, we will find a way to apply the Gell-Mann transformations made by the 

λi matrices using Geometric Algebra Cl3,0. And without the need of adding the time 

as an ad-hoc dimension, but just considering that: 

�̂� = 𝒙�̂��̂� 

The transformations are as follows. Considering the original ψ: 

 

𝜓 = 𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�  

 

The new ψ’ obtained when applying each of the Gell-Mann matrices λi is:    

 

𝜓′ = (𝜆1 → 𝜓) = 𝜓0 + 𝜓𝑦�̂� + 𝜓𝑥�̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�  

𝜓′ = (𝜆2 → 𝜓) = 𝜓0 + 𝜓𝑧𝑥�̂� − 𝜓𝑦𝑧�̂�−𝜓𝑦�̂��̂� + 𝜓𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂� 

𝜓′ = (𝜆3 → 𝜓) = 𝜓0 + 𝜓𝑥�̂� − 𝜓𝑦�̂� + 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂� 

𝜓′ = (𝜆4 → 𝜓) = 𝜓0 + 𝜓𝑧�̂� + 𝜓𝑥�̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂� 

𝜓′ = (𝜆5 → 𝜓) = 𝜓0 + 𝜓𝑥𝑦�̂� − 𝜓𝑦𝑧�̂� − 𝜓𝑧�̂��̂� + 𝜓𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂� 

𝜓′ = (𝜆6 → 𝜓) = 𝜓0 + 𝜓𝑧�̂� + 𝜓𝑦�̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂� 

𝜓′ = (𝜆7 → 𝜓) = 𝜓0 + 𝜓𝑥𝑦�̂� − 𝜓𝑧𝑥�̂� − 𝜓𝑧�̂��̂� + 𝜓𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂� 

𝜓′ = (𝜆8 → 𝜓) = 𝜓0 +
1

√3
𝜓𝑥�̂� +

1

√3
𝜓𝑦�̂� −

2

√3
𝜓𝑧�̂� +

1

√3
𝜓𝑦𝑧�̂��̂� +

1

√3
𝜓𝑧𝑥�̂��̂� −

2

√3
𝜓𝑥𝑦 �̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�   (29) 

  

Considering that Gell-Mann matrices do not consider at all the existence of 𝜓0 and 

𝜓𝑥𝑦𝑧 , it is possible that we should consider them zero form the beginning. Anyhow, 

above relations would correspond with the most general case. 

 

We will also work in the bra-ket product using geometric algebra. For the Euclidean 

case we have the equation (where the cross sign means reverse and the asterisk means 

conjugate, both mean the same in Cl3,0): 

𝜓†𝜓 = 𝜓∗𝜓 = 
= (𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥 �̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�)(𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥 �̂��̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�) = 

= (𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� − 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥 �̂��̂� − 𝜓𝑥𝑦 �̂��̂� − 𝜓𝑥𝑦𝑧 �̂��̂��̂�)(𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥 �̂��̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�) = 

= 𝜌 + 𝑗 
 

Being 𝜌 the probability density: 
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𝜌 = 𝜓0
2 + 𝜓𝑥

2 + 𝜓𝑦
2 + 𝜓𝑧

2 + 𝜓𝑦𝑧
2 + 𝜓𝑧𝑥

2 + 𝜓𝑥𝑦
2 + 𝜓𝑥𝑦𝑧

2      (29.2) 

 

And 𝑗 the fermionic current: 
 

𝑗 = 2(𝜓𝑥𝜓0 − 𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑧𝜓𝑧𝑥 +𝜓𝑦𝑧𝜓𝑥𝑦𝑧)�̂� + 2(𝜓0𝜓𝑦 +𝜓𝑥𝜓𝑥𝑦 − 𝜓𝑧𝜓𝑦𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧)�̂�

+ 2(𝜓0𝜓𝑧 −𝜓𝑥𝜓𝑧𝑥 +𝜓𝑦𝜓𝑦𝑧 +𝜓𝑥𝑦𝜓𝑥𝑦𝑧)�̂�       (29.3) 

 

We will also make the same in the case of orthogonal buy not orthonormal metric, 

leading to: 

𝜓†𝜓 = 𝜓∗𝜓 = 𝜌 + 𝑗      (32) 
But in this case: 

 
 

𝜌 = 𝜓0
2 + 𝜓𝑥

2𝑔𝑥𝑥 + 𝜓𝑦
2𝑔𝑦𝑦 + 𝜓𝑧

2𝑔𝑧𝑧 + 𝜓𝑦𝑧
2𝑔𝑦𝑦𝑔𝑧𝑧 + 𝜓𝑧𝑥

2𝑔𝑧𝑧𝑔𝑥𝑥
+𝜓𝑥𝑦

2𝑔𝑥𝑥𝑔𝑦𝑦 + 𝜓𝑥𝑦𝑧
2𝑔𝑥𝑥𝑔𝑦𝑦𝑔𝑧𝑧 (33) 

 

And: 

 

𝑗 = 2(𝜓0𝜓𝑥 − 𝜓𝑦𝜓𝑥𝑦𝑔𝑦𝑦 + 𝜓𝑧𝜓𝑧𝑥𝑔𝑧𝑧 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧𝑔𝑦𝑦𝑔𝑧𝑧)�̂�

+ 2(+𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦𝑔𝑥𝑥 − 𝜓𝑦𝑧𝜓𝑧𝑔𝑧𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧𝑔𝑧𝑧𝑔𝑥𝑥)�̂�

+ 2(+𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥𝑔𝑥𝑥 + 𝜓𝑦𝜓𝑦𝑧𝑔𝑦𝑦 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧𝑔𝑥𝑥𝑔𝑦𝑦)�̂�      

 

It will be also shown that the g-2 issue of the muon could be related to gravitational 

(non-Euclidean metric) issues without needing another natural force.  

 

The difference of the values of g-2 of the muon are: 

𝑎𝑚 − 𝑎𝑡 = 2,79𝐸 − 09 

And the effect of the non-Euclidean metric on the surface of Earth is: 

𝑔𝑥𝑥 − 1 = 1,392262𝐸 − 09        

𝑎𝑚 − 𝑎𝑡
𝑔𝑥𝑥 − 1

=
2,79𝐸 − 09

1,392262𝐸 − 09
= 2,00 

 

 

As we can check, the change in g-2 value is just the double of the gravitational effects 

(this means, in the same order). So, gravitational effects could indeed affect the g-2 

value of the muon on the surface or Earth as it will be shown. 

 

Keywords 

Geometric Algebra, Strong Force Interaction, Gell-Mann matrices, Bra-ket product, 

non-Euclidean metric 

 

1. Introduction  

In this paper, we will calculate which are the transformations performed by the Gell-Mann 

matrices but in the realm of the Geometric Algebra Cl3,0. We will also check how the bra-

ket product is performed using Geometric Algebra. And in the end we will check the effects 
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of gravitational fields (non-euclidean metric) in this product and how it could affect the g-

2 issue of the muon. 

 

2. We live in eight dimensions 

There is a discipline in mathematics that is called Geometric Algebra [1][3] also known as 

Clifford Algebras. One curious thing of this Algebra is that if you consider a certain number 

of spatial dimensional (a certain number of independent vectors), automatically appear 

other dimensions (or if you want to call them, new degrees of freedom or other entities 

other than vectors). 

In fact, the total number of degrees of freedom in an n-dimensional (understanding n as the 

number of special dimensions or independent vectors) in Geometric Algebra is: 

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒆𝒈𝒓𝒆𝒆𝒔 𝒐𝒇 𝒇𝒓𝒆𝒆𝒅𝒐𝒎 = 𝟐𝒏 

If we consider that our world has three spatial dimensions (in Geometric Algebra it is called 

Cl3,0), we will have: 

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒅𝒆𝒈𝒓𝒆𝒆𝒔 𝒐𝒇 𝒇𝒓𝒆𝒆𝒅𝒐𝒎 = 𝟐𝟑 = 𝟖 

And in fact, we can check that this is true: 

In three dimensions, we have three independent vectors 𝒙, �̂� and �̂�: 

                   

Fig. 1 Basis vectors in three-dimensional space. 

 

In geometric algebra, these three vectors create 5 other entities. 

 

The first other three entities are the bivectors. The bivectors are created multiplying per-

pendicular vectors. The result of this product is the bivector, an independent entity from 

the vectors that represent oriented planes. For example, the �̂��̂� bivector: 

 

 
Fig.2 Representation of the bivectors �̂��̂� and �̂��̂�. They represent the same plane 

with opposite orientation. In fact, �̂��̂� = −�̂��̂�. 

There are three independent bivectors: 𝒙�̂�, �̂��̂� and �̂�𝒙. 

Another appearing entity is the trivector. It is formed by the product of the three independ-

ent vectors (and represent an oriented element of volume): 
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Fig.3 Representation of the two possible orientations of the trivector. 

We can check that �̂��̂��̂� = −�̂��̂��̂� . 

One important thing of the trivector is that in three dimensions there is only “one trivector”. 

I mean, it can be bigger or smaller or with opposite direction (this means it can be escalated 

by a real scalar -positive or negative-), but the trivector itself as basis or unit trivector is 

always the same. You can check Annex A1 to check wheat I am talking about. 

Another special property of the bivectors and the trivectors is that the square of a bivector 

or a trivector is -1. This you can check in all the papers of GA [1][3][5][6][26][27][47]. 

And the square of a vector is 1. Always talking in Euclidean metric. If this is not the case, 

you can check [2][4]. 

That the square of the bivectors and the trivectors is -1, means that they are a clear candidate 

for the imaginary unit i in certain circumstances. And we will see that this property is key 

for the trivector in the next chapter. 

The last entity exiting in Geometric Algebra are the scalars (the numbers). They exist in 

their own space (are not linear as vectors, surface as bivectors or volume as trivector). 

So, in total you can check that we have 8 entities when we have three spatial dimensions: 

3 vectors, three bivectors, one trivector and the scalars. 

But why are they “degrees of freedom”? 

Ok, I will define another concept, the multivector. A multivector is just a sum of all the 

commented previous entities. This is, for example: 

𝑨 = 𝜶𝟎 + 𝜶𝟏𝒙 + 𝜶𝟐�̂� + 𝜶𝟑�̂� + 𝜶𝟒𝒙�̂� + 𝜶𝟓�̂��̂� + 𝜶𝟔�̂�𝒙 + 𝜶𝟕𝒙�̂��̂�  (1) 

Being 𝜶𝒊 scalars. This means the multivector (whatever it represents) it has eight degrees 

of freedom (from 𝜶𝟎 to 𝜶𝟕). Its meaning can vary a lot depending on the context or the 

discipline we are talking about. 

For example, let us check the position multivector: 
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Fig.4 Representation position multivector 

 

This multivector has 8 coordinates (8 degrees of freedom corresponding to the scalar, the 

three space vectors, the three bivectors and the trivector): 

 

𝑅 = 𝑟0 + 𝑟𝑥 �̂� + 𝑟𝑦�̂� + 𝑟𝑧�̂�+𝑟𝑥𝑦�̂��̂�+𝑟𝑦𝑧�̂��̂� + 𝑟𝑧𝑥�̂��̂� + 𝑟𝑥𝑦𝑧�̂��̂��̂�     (1.1) 

 

We can see that the vector a in the figure corresponds to the linear position of the particle 

or to the rigid body center of mass: 

 

�⃗� = 𝑟𝑥 �̂� + 𝑟𝑦�̂� + 𝑟𝑧�̂�     (2) 

So, we can simplify the representation of the multivector as: 

 

𝑅 = 𝑟0 + �⃗�+𝑟𝑥𝑦�̂��̂�+𝑟𝑦𝑧�̂��̂� + 𝑟𝑧𝑥�̂��̂� + 𝑟𝑥𝑦𝑧 �̂��̂��̂�       (5) 

 

Now let’s go to the bivectors. In Fig.4 you can see that there is a bivector �⃗⃗�^𝑐 that repre-

sents the orientation of a preferred plane in the particle/rigid body. This is, if you select a 

preferred plane solidary to the particle/rigid body, it tells us the orientation of this plane at 

a certain time. To define this orientation, you need a coefficient per basis bivector (the 

same as to define a vector you need the sum of three basis vectors, for bivectors works the 

same). So: 

�⃗⃗�^𝑐 = 𝑟𝑥𝑦�̂��̂�+𝑟𝑦𝑧�̂��̂� + 𝑟𝑧𝑥 �̂��̂� (7) 

Introducing in R: 

 

𝑅 = 𝑟0 + �⃗� + �⃗⃗�^𝑐 + 𝑟𝑥𝑦𝑧�̂��̂��̂�       (8) 

You can see that in a unique multivector R we are having the position and the orientation 

in the same expression. We have the sufficient degrees of freedom in the expression of the 

multivector R to give all this information just in one entity (the multivector R). 

 

There are two other components 𝑟0 (the scalar) and �̂��̂��̂� (the trivector) that I will explain 

in the next chapter. 

 

For information, this realm of Geometric Algebra that considers three spatial dimensions, 

and the eight degrees of freedom (or eight type of elements) created by them is called Ge-

ometric Algebra Cl3,0. 

 

And for orthonormal bases in Euclidean metric, the following rules apply in Cl3,0 [4] [5] 

[6] [26]: 
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�̂�2 = �̂��̂� = 1 

�̂�2 = �̂��̂� = 1 

�̂�2 = �̂��̂� = 1 

 

�̂��̂� = −�̂��̂� 

                                  �̂��̂� = −�̂��̂�                         (8.1) 
�̂��̂� = −�̂��̂� 

 

(�̂��̂�)2 = �̂��̂��̂��̂� = −�̂��̂��̂��̂� = −1 

(�̂��̂�)2 = �̂��̂��̂��̂� = −�̂��̂��̂��̂� = −1 

(�̂��̂�)2 = �̂��̂��̂��̂� = −�̂��̂��̂��̂� = −1 

(�̂��̂��̂�)2 = �̂��̂��̂��̂��̂��̂� = −1 

It is also important to remark that the scalars and the trivector commute with all the ele-

ments. The vectors anticommute among them as you can see in 8.1 equations. 

 

The bivectors anticommute among them. Example: 

 

                          (�̂��̂�)(�̂��̂�) = �̂��̂��̂��̂� = �̂��̂� = −�̂��̂�                 (8.2) 
(�̂��̂�)(�̂��̂�) = �̂��̂��̂��̂� = −�̂��̂��̂��̂� = �̂��̂��̂��̂� = �̂��̂� 

 

And the vectors and the bivectors anticommute among them, when the result is a vector. 

And they commute if the result is �̂��̂��̂� (or any of its permutations). Examples: 

 
(�̂�)(�̂��̂�) = �̂��̂��̂� = −�̂��̂��̂� = −�̂� 

                                (�̂��̂�)(�̂�) = �̂��̂��̂� = �̂�            (8.3) 
 

(�̂��̂�)(�̂�) = �̂��̂��̂� 

(�̂�)(�̂��̂�) = �̂��̂��̂� = −�̂��̂��̂� = �̂��̂��̂� 

 

It is also worth to comment that the associative and distributive properties apply to all the 

elements of the multivector (and in general in Geometric Algebra). It is only the commu-

tative and anticommutative properties that apply differently (according above rules). 

 

To sum up:  

 

• The scalars and the vectors have positive square. The bivectors and the trivectors 

have negative square (see 8.1 equations). 

• The scalars and the trivector commute with all the elements. The vectors anticom-

mute above them (equations 8.1). Bivectors anticommute among them (equations 

8.2). Vectors and bivectors can anticommute (if the result is a vector) or commute 

(if the result is the trivector). See equations 8.3. 

3. Time as the trivector 

I am not going to explain a lot here and the reason is because what you are going to hear is 

very difficult to believe and digest. You can check papers [5][6][26][27][47] to check all 

the info that corroborates what I am going to tell now. 

In Geometric Algebra, it is not necessary that the time is a fourth dimension of the space-

time (the classical 3 space dimensions and one 4th time dimension). 

In Geometric Algebra, the time can be the 8th degree of freedom of the 8 degrees of freedom 

(or dimensions created by the GA itself). The time is emerging as one of the dimensions 

that appear automatically when the three spatial dimensions exist. 

This is, the basis vector of the time is not a separate vector �̂�  but it is the trivector 𝒙�̂��̂� 

already commented.  



J.Sánchez 
 

 

 7  

 

�̂� = 𝒙�̂��̂�    (𝟗) 

The main reasons to consider this are: 

• The signature of time is negative in General Relativity [7]. This can only be 

achieved considering an ad-hoc metric with a -1 signature or considering imagi-

nary numbers. In GA, this is not necessary as the basis vector of time (the trivec-

tor) has a negative square as expected. 

• I have written three papers [5][6][26] where it is checked that considering this in 

Dirac Equation, Maxwell equations and Lorentz Force equations match perfectly 

(see chapters 4, 5 and 6 of this chapter for more information). In fact, that the 

spinor of the Dirac equation has 8 degrees of freedom, and to consider one of 

them, the time-trivector, match perfectly with the equations (check chapter 4 and 

[5]).  

So, you will check that from this point on, we will consider always the trivector as the basis 

vector of time. This does not mean that the trivector could not mean other things depending 

on the context (sometimes, it could be related to spin [2] or to the electromagnetic trivector 

see chapter 7). The same than a vector can sometimes represent a position, others a force 

etc… The trivector is just a tool that has certain properties, and these properties match 

perfectly with the properties of what we perceive as time.  

Anyhow, that the trivector represents at the same time the volume and the time could be a 

hint that somehow, they are related. And the time could be a kind of measurement of the 

continuous creation of volume in the universe (you can check different mechanisms of 

creation of volume by the masses in the universe in [40][41]). 

After this shock, we continue with the other pending item of the previous chapter, this is, 

r0. The meaning of this element is more obscure. As I have commented, the scalars in the 

multivectors are a kind of scalation factor that affects all the magnitudes that are multiplied 

by it.  

 

So, it could be related to a kind of scalation in the metric appearing in non-Euclidean met-

rics (kind of local Ricci scalar or trace of the metric tensor). See [2] for example. 

 

Another simpler interpretation for r0, is that the scalars appear when we multiply or divide 

vectors (or bivectors or the trivector) by themselves. So, sometimes it is necessary a degree 

of freedom to accommodate these results when they appear. For example, in [6][26] the 

current density through time, sometimes is accompanied by the trivector and other times is 

just a scalar depending on the operations that have been performed before. 

 

And to finish, I will just comment the i imaginary unit. In geometric algebra will be always 

substituted by another that also has -1 square. These are the bivectors or the trivector (in 

Cl3,0). When it is related with a magnitude with no preferred direction (energy, time…), it 

will be substituted by the trivector �̂��̂��̂�. When i is attached to a magnitude with specific 

direction (velocity, momentum…) it will be represented by a bivector (normally represent-

ing the plane perpendicular to that direction). You can see examples in [4][5][6]. In this 

paper, the substitution by the trivector �̂��̂��̂� will be sufficient, as we will see. 
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3. Spinors in Geometric Algebra Cl3,0  

 

If we have a spinor in matrix notation like: 

 

 

𝜓 = (

𝜓1𝑟 + 𝜓1𝑖𝑖
𝜓2𝑟 + 𝜓2𝑖𝑖
𝜓3𝑟 + 𝜓3𝑖𝑖
𝜓4𝑟 + 𝜓4𝑖𝑖

) 

 

And we apply the substitution of i by the trivector as commented in chapters 1 and 2. 

 

𝑖 → �̂��̂��̂� 

We get: 

 

𝜓 = (

𝜓1𝑟 +𝜓1𝑖𝑖
𝜓2𝑟 +𝜓2𝑖𝑖
𝜓3𝑟 +𝜓3𝑖𝑖
𝜓4𝑟 +𝜓4𝑖𝑖

) = (

𝜓1𝑟 +𝜓1𝑖 �̂��̂��̂�
𝜓2𝑟 +𝜓2𝑖 �̂��̂��̂�
𝜓3𝑟 +𝜓3𝑖 �̂��̂��̂�
𝜓4𝑟 +𝜓4𝑖�̂��̂��̂�

)          (10) 

 

Now, we want to project the spinor in the four dimensions 𝑥,̂ �̂�, �̂� and �̂� premultiplying 

by them: 

 

(�̂� �̂� �̂� �̂�)𝜓 = (�̂� �̂� �̂� �̂�) (

𝜓1𝑟 + 𝜓1𝑖 �̂��̂��̂�
𝜓2𝑟 + 𝜓2𝑖 �̂��̂��̂�
𝜓3𝑟 + 𝜓3𝑖 �̂��̂��̂�
𝜓4𝑟 + 𝜓4𝑖�̂��̂��̂�

) 

 

But here we can use the equation (9) of chapter 2: 

 

�̂� = �̂��̂��̂�   (9) 
To get to: 

 

(�̂� �̂� �̂� �̂�)𝜓 = (�̂� �̂� �̂� �̂��̂��̂�) (

𝜓1𝑟 + 𝜓1𝑖 �̂��̂��̂�
𝜓2𝑟 + 𝜓2𝑖 �̂��̂��̂�
𝜓3𝑟 + 𝜓3𝑖 �̂��̂��̂�
𝜓4𝑟 + 𝜓4𝑖�̂��̂��̂�

) 

 

 

Here, you could think that the �̂��̂��̂� in the row vector, should be negative as we conjugate 

(put negative the elements with square -1) when a column vector is converted to row. Even 

you could think that instead of projecting to �̂� , we could project to the scalar 1 (as our 

APS [43] friends probably would propose). No worries, all of them would work, just con-

ventions of signs or nomenclature between elements will change but the result would re-

main coherent. You can make the checking if you want. 

 

If we continue operating: 

 

 

(�̂� �̂� �̂� �̂�)𝜓 = (�̂� �̂� �̂� �̂��̂��̂�) (

𝜓1𝑟 +𝜓1𝑖 �̂��̂��̂�
𝜓2𝑟 +𝜓2𝑖 �̂��̂��̂�
𝜓3𝑟 +𝜓3𝑖 �̂��̂��̂�
𝜓4𝑟 +𝜓4𝑖�̂��̂��̂�

) = �̂�(𝜓1𝑟 + 𝜓1𝑖�̂��̂��̂�) + �̂�(𝜓2𝑟 +

𝜓2𝑖�̂��̂��̂�) + �̂�(𝜓3𝑟 + 𝜓3𝑖�̂��̂��̂�) + �̂��̂��̂�(𝜓4𝑟 + 𝜓4𝑖�̂��̂��̂�) = 𝜓1𝑟�̂� + 𝜓1𝑖 �̂��̂��̂��̂� + 𝜓2𝑟�̂� +
𝜓2𝑖�̂��̂��̂��̂�𝜓3𝑟 �̂� + 𝜓3𝑖�̂��̂��̂��̂� + 𝜓4𝑟�̂��̂��̂� + 𝜓4𝑖�̂��̂��̂��̂��̂��̂� = 𝜓1𝑟�̂� + 𝜓1𝑖�̂��̂� + 𝜓2𝑟�̂� + 𝜓2𝑖�̂��̂� +
𝜓3𝑟 �̂� + 𝜓3𝑖�̂��̂� + 𝜓4𝑟�̂��̂��̂� − 𝜓4𝑖 
 

If we rename the components the following way: 
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𝜓1𝑟 = 𝜓𝑥 

𝜓2𝑟 = 𝜓𝑦 

𝜓3𝑟 = 𝜓𝑧 
               𝜓1𝑖 = 𝜓𝑦𝑧     (11) 

 𝜓2𝑖 = 𝜓𝑧𝑥  
𝜓3𝑖 = 𝜓𝑥𝑦  

𝜓4𝑟 = 𝜓𝑥𝑦𝑧 

−𝜓4𝑖 = 𝜓0 

 

We obtain the typical definition of a spinor in Geometric Algebra Cl3,0 [5][47]. 

 

𝜓 = 𝜓0 +𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�       (12) 

 

We can see that it has the 8 degrees of freedom commented for a general multivector in 

Geometric Algebra Cl3,0. You can compare it with equations (1) or (1.1) for example. 

 

Although one of the ideas of geometric Algebra is not to use matrices, but as we will have 

to handle the Gell-Mann matrices (see next chapter) in this paper, we will show also the 

matrix form of this multivector. So, we have it prepared when we have to use it. We apply 

equations (1) to (19) to obtain: 

 

𝜓 =

(

 
 

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

𝜓𝑥𝑦𝑧 − 𝜓0�̂��̂��̂�)

 
 
        (13) 

 

In this paper, we will proceed as follows. We will apply the Gell-Mann matrices (see next 

chapter) to an original spinor called 𝜓 (13). These matrices will transform the original 

spinor 𝜓 into a new one called 𝜓′ (14) with a similar form but different values for each 

element. 

 

𝜓′ =

(

 
 

𝜓′
𝑥
+ 𝜓′

𝑦𝑧
�̂��̂��̂�

𝜓′
𝑦
+ 𝜓′

𝑧𝑥
�̂��̂��̂�

𝜓′
𝑧
+ 𝜓′

𝑥𝑦
�̂��̂��̂�

𝜓′
𝑥𝑦𝑧

−𝜓′
0
�̂��̂��̂�)

 
 
   (14) 

 

Once we have this transformed matrix vector, we can obtain its equivalent multivector in 

Geometric Algebra Cl3,0 as follows:  

 

𝜓′ = 𝜓′
0
+ 𝜓′

𝑥
�̂� + 𝜓′

𝑦
�̂� + 𝜓′

𝑧
�̂� + 𝜓′

𝑦𝑧
�̂��̂� + 𝜓′

𝑧𝑥
�̂��̂� + 𝜓′

𝑥𝑦
�̂��̂� + 𝜓′

𝑥𝑦𝑧
�̂��̂��̂�      (15) 

4. Gell-Mann matrices  

 

First comment is that it has been already tried to get a correspondence between Gell-Man-

natrices and geometric algebra [49][50][51][52][53]. Some of the ideas in the paper have 

come from these previous papers. 

 

The Gell-Mann matrices [46] used in Strong Force interactions are as following: 

 

 

𝜆1 = (
0 1 0
1 0 0
0 0 0

) 
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𝜆2 = (
0 −𝑖 0
𝑖 0 0
0 0 0

) 

 

𝜆3 = (
1 0 0
0 −1 0
0 0 0

) 

 

𝜆4 = (
0 0 1
0 0 0
1 0 0

) 

 

𝜆5 = (
0 0 −𝑖
0 0 0
𝑖 0 0

) 

 

𝜆6 = (
0 0 0
0 0 1
0 1 0

) 

 

𝜆7 = (
0 0 0
0 0 −𝑖
0 𝑖 0

) 

 

𝜆8 =
1

√3
(
1 0 0
0 1 0
0 0 −2

) 

 

The first thing that we see is that they 3x3 matrices. So how can we use them in matrix 

vectors of 4 rows as (13)? 

 

𝜓 =

(

 
 

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

𝜓𝑥𝑦𝑧 − 𝜓0�̂��̂��̂�)

 
 
        (13) 

 

One of the important things of Gell-Mann matrices is that they only act in anticommutative 

elements. See [46] for more details. In Geometric Algebra Cl3,0 (you can check it playing 

with 8.1,8.2 and 8.3 equations in chapter 2) the anticommutative elements are the vectors 
(𝑥,̂ 𝑦,̂ �̂�) and the bivectors (�̂��̂�, �̂��̂�, �̂��̂�). And the scalars and trivector (1, �̂��̂��̂�) are always 

commutative. See chapter 2 and [1][2][3][4][5][6] for more details. 

 

If you check equation (12) which is the multivector equivalent to (13) 

 

𝜓 = 𝜓0 +𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�       (12) 

 

You can see that the coefficients attached to vectors and bivectors (anticommutative) are: 

 

𝜓𝑥    𝜓𝑦   𝜓𝑧   𝜓𝑦𝑧   𝜓𝑧𝑥    𝜓𝑥𝑦  

 

So, this means above coefficients will be affected by the Gell-Mann matrices. 

 

While the commutative ones 𝜓𝑥𝑦𝑧 and 𝜓0 will not be affected. Thies leads us to an easy 

solution. The matrix vector we will use when using Gell-Mann matrices, will be this 

“cropped” one: 
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𝜓 = (

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 +𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 +𝜓𝑥𝑦�̂��̂��̂�

)       (14) 

Where we have eliminated the last row. And once we make the operation to this vector 

using Gell-Mann matrices, we just have to add the last row again (or put it as zero? we will 

comment later this point). What it is clear is that we do not lose any generality not consid-

ering some elements that are not affected by a transformation and then putting them again. 

As commented Gell-Mann matrices only “touch” anticommutative elements, so we do not 

need the row with commutative elements to perform these operations. 

 

The resultant matrix vector, accordingly, will have this form: 

 

𝜓′ = (

𝜓′
𝑥
+ 𝜓′

𝑦𝑧
�̂��̂��̂�

𝜓′
𝑦
+𝜓′

𝑧𝑥
�̂��̂��̂�

𝜓′
𝑧
+𝜓′

𝑥𝑦
�̂��̂��̂�

)        (16) 

 

And when finish all the operation, we can jut add the last row again. 

 

There is another way to manage this situation and it is to use Gell-Mann matrices of 4x4 

elements if you prefer that option. This we will comment in chapter 7. 

 

But we will start using the standard Gell-Mann matrices of 3x3 elements. As commented, 

this means the last row of original spinor: 

 

 

𝜓 =

(

 
 

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

𝜓𝑥𝑦𝑧 − 𝜓0�̂��̂��̂�)

 
 
        (13) 

Will not be touched by the Gell-Mann matrices. 

 

𝜓′ =

(

 
 

𝜓′
𝑥
+ 𝜓′

𝑦𝑧
�̂��̂��̂�

𝜓′
𝑦
+ 𝜓′

𝑧𝑥
�̂��̂��̂�

𝜓′
𝑧
+ 𝜓′

𝑥𝑦
�̂��̂��̂�

𝜓′
𝑥𝑦𝑧

−𝜓′
0
�̂��̂��̂�)

 
 
   (17) 

 

So, in the transformed spinor (16), the following equations will always apply (as these 

elements will not be affected by Gell-Mann matrices: 

 

 

                       𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧        (18) 

𝜓′0 = 𝜓0 

 

There is another possibility as we will comment later in chapters 5 and 7. It is that the 

lambda matrices in an implicit move, provokes the following: 

 

                           𝜓′𝑥𝑦𝑧 = 0               (19) 

𝜓′0 = 0 

 

This is equivalent as deciding if we add a fourth row and column in Gell-Matrices and 

decide to put all zeros in these new lines. Or in the case (18) to put all zeros, except a 1 in 

the diagonal. See chapter 7 for more details. 

 

At this stage we will work with equations (18) for two reasons: 
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-As the Gell-Mann matrices do not consider those parameters, we guess they are not 

touched, so they keep the same value. 

-And a practical reason. The case (18) is more general. This means, if in the end, we dis-

cover that they should be zero, we can just eliminate them from the equations. The opposite 

case, supposing that they are zero and then going backwards is more complicated. 

 

Anyhow, as will see in the following chapters 5 and 7, the option that they become zero 

(equation (19)) seem more plausible/symmetric. Anyway, we will stick to equations (18) 

for the reasons commented above. 

 

5. Applying Gell-Mann matrices to ψ 

 

In this chapter, we will apply each Gell-Mann matrix to ψ to get the result of this transfor-

mation as a new ψ’. This is, we will perform the following matrix multiplication: 

 

𝜓′ = 𝜆𝑖𝜓 = 𝜆𝑖 (

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

) =  (

𝜓′
𝑥
+𝜓′

𝑦𝑧
�̂��̂��̂�

𝜓′
𝑦
+ 𝜓′

𝑧𝑥
�̂��̂��̂�

𝜓′
𝑧
+𝜓′

𝑥𝑦
�̂��̂��̂�

)      (20)       

 

Where the ψ and the ψ’ correspond to the 3 row version of the matrix vector (14) and (16). 

This way they can be multiplied by the 3x3 Gell-Mann matrices λi (See chapter 4). Once 

this operation is done, we will obtain the relation between the different elements of original 

ψ and the obtained ψ’.  

 

With this information, we will obtain the new ψ’ also in Geometric Algebra Cl3,0 represen-

tation from the original ψ. This is, we will see which the resultant multivector (15) when λi  

is applied to (12): 

 

𝜓 = 𝜓0 +𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�       (12) 

 

𝜓′ = 𝜓′
0
+ 𝜓′

𝑥
�̂� + 𝜓′

𝑦
�̂� + 𝜓′

𝑧
�̂� + 𝜓′

𝑦𝑧
�̂��̂� + 𝜓′

𝑧𝑥
�̂��̂� + 𝜓′

𝑥𝑦
�̂��̂� + 𝜓′

𝑥𝑦𝑧
�̂��̂��̂�      (15) 

5.1 Gell-Mann matrix λ1 

 

In chapter 4, we saw that λ1 was: 

 

𝜆1 = (
0 1 0
1 0 0
0 0 0

) 

 

If we apply it to equation (20): 

 

 

𝜓′ = (

𝜓′𝑥 +𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 + 𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 + 𝜓′𝑥𝑦�̂��̂��̂�

) = 𝜆1𝜓 = (
0 1 0
1 0 0
0 0 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

) = (

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

0

) 

 

We obtain: 

 

𝜓′𝑥 = 𝜓𝑦 

𝜓′𝑦𝑧 = 𝜓𝑧𝑥 

                   𝜓′𝑦 = 𝜓𝑥           (21) 

𝜓′𝑧𝑥 = 𝜓𝑦𝑧 

𝜓′𝑧 = 0 



J.Sánchez 
 

 

 13  

 

𝜓′𝑥𝑦 = 0 

 

And we have to add the two equations (18) commented in the end of chapter 4. As com-

mented, at this stage we will consider them as the ones to apply (with all the considerations 

commented in chapter 4). Other possibilities as equations (19) or even different could be 

considered. Apart form what we have commented in chapter 4, we will come back with 

more comments about this mainly in chapter 7. 

 

 

                       𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧        (18) 

𝜓′0 = 𝜓0 

 

Remind that we had defined ψ’ (in geometric algebra notation) as: 

 

𝜓′ = 𝜓′
0
+ 𝜓′

𝑥
�̂� + 𝜓′

𝑦
�̂� + 𝜓′

𝑧
�̂� + 𝜓′

𝑦𝑧
�̂��̂� + 𝜓′

𝑧𝑥
�̂��̂� + 𝜓′

𝑥𝑦
�̂��̂� + 𝜓′

𝑥𝑦𝑧
�̂��̂��̂�     (15)  

This means the new ψ’ obtained of the transformation of applying λ1 lambda1 to ψ is (fol-

lowing all the relations (21) and (18) above): 

 

𝜓′ = 𝜓0 + 𝜓𝑦�̂� + 𝜓𝑥�̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�     (22) 

 

This means, the matrix λ1 interchanges the coefficients in the �̂� and �̂� axes and in the �̂��̂� 

and �̂��̂� planes. This is, it creates a kind of rotation in these axes/planes of the ψ function. 

It also destroys all the information regarding �̂� axis and �̂��̂� planes. And as commented, 

for 𝜓0 and 𝜓𝑥𝑦𝑧 we keep them as not affected unless something different is discovered 

in the future (other clear possibility would be that they become zero as commented in chap-

ter 4 and will comment later). 

 

Now, that we have seen the process, let’s go to the effects in the rest of the Gell-Mann 

matrices. We will reduce the comments -as everything commented for λ1 will apply in 

general. And we will make just comments specific to the different results.  

 

5.2 Gell-Mann matrix λ2 

 

𝜓′ = (

𝜓′𝑥 +𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 + 𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 + 𝜓′𝑥𝑦�̂��̂��̂�

) = 𝜆2𝜓 = (
0 −𝑖 0
𝑖 0 0
0 0 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

)

= (
0 −�̂��̂��̂� 0
�̂��̂��̂� 0 0
0 0 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 +𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

) = (

−�̂��̂��̂�(𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�)

�̂��̂��̂�(𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�)

0

)

= (

−𝜓𝑦�̂��̂��̂� − 𝜓𝑧𝑥�̂��̂��̂��̂��̂��̂�

𝜓𝑥�̂��̂��̂� + 𝜓𝑦𝑧�̂��̂��̂��̂��̂��̂�

0

) = (

−𝜓𝑦�̂��̂��̂� + 𝜓𝑧𝑥
𝜓𝑥�̂��̂��̂� − 𝜓𝑦𝑧

0

)

= (

𝜓𝑧𝑥−𝜓𝑦�̂��̂��̂�

−𝜓𝑦𝑧 +𝜓𝑥�̂��̂��̂�

0

) 

 

 

𝜓′
𝑥
= 𝜓𝑧𝑥 

𝜓′𝑦𝑧 = −𝜓𝑦  

𝜓′𝑦 = −𝜓𝑦𝑧  

𝜓′𝑧𝑥 = 𝜓𝑥 

𝜓′𝑧 = 0 

𝜓′𝑥𝑦 = 0 
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And the ones that are not affected. For the following two, the same comments as for λ1 

apply: 

 

𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧 

𝜓′0 = 𝜓0 

So, this means that the new ψ’: 

 

𝜓′ = 𝜓′0 + 𝜓′𝑥 �̂� + 𝜓′𝑦�̂� + 𝜓′𝑧�̂� + 𝜓′𝑦𝑧�̂��̂� + 𝜓′𝑧𝑥�̂��̂� + 𝜓′𝑥𝑦�̂��̂� + 𝜓′𝑥𝑦𝑧�̂��̂��̂�  

Becomes: 

 

𝜓′ = 𝜓0 + 𝜓𝑧𝑥�̂� − 𝜓𝑦𝑧�̂�−𝜓𝑦�̂��̂� + 𝜓𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�      (23) 

 

In this case, we see that we have a change (complementary transformation/rotation?) where 

we have interchanged the axis �̂� with the �̂��̂� plane and the axis �̂� with the �̂��̂� plane.  

 

5.3 Gell-Mann matrix λ3 

 

 

𝜓′ = (

𝜓′𝑥 + 𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 + 𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 +𝜓′𝑥𝑦�̂��̂��̂�

) = 𝜆3𝜓 = (
1 0 0
0 −1 0
0 0 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

) = (

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

−𝜓𝑦 − 𝜓𝑧𝑥�̂��̂��̂�

0

) 

 

𝜓′𝑥 = 𝜓𝑥 

𝜓′𝑦𝑧 = 𝜓𝑦𝑧 

𝜓′𝑦 = −𝜓𝑦 

𝜓′𝑧𝑥 = −𝜓𝑧𝑥 

𝜓′𝑧 = 0 

𝜓′𝑥𝑦 = 0 

 

And the ones that are not affected. For the following two, the same comments as for λ1 

apply: 

 

𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧 

𝜓′0 = 𝜓0 

So, this means that the new 𝜓′: 
 

𝜓′ = 𝜓′0 + 𝜓′𝑥 �̂� + 𝜓′𝑦�̂� + 𝜓′𝑧�̂� + 𝜓′𝑦𝑧�̂��̂� + 𝜓′𝑧𝑥�̂��̂� + 𝜓′𝑥𝑦�̂��̂� + 𝜓′𝑥𝑦𝑧�̂��̂��̂�  

Becomes: 

 

𝜓′ = 𝜓0 + 𝜓𝑥�̂� − 𝜓𝑦�̂� + 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�    (24) 

5.4 Gell-Mann matrix λ4 

 

𝜓′ = (

𝜓′𝑥 + 𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 + 𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 + 𝜓′𝑥𝑦�̂��̂��̂�

) = 𝜆4𝜓 = (
0 0 1
0 0 0
1 0 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

) = (

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

0
𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

) 

 

𝜓′𝑥 = 𝜓𝑧 
𝜓′𝑦𝑧 = 𝜓𝑥𝑦  

𝜓′𝑦 = 0 

𝜓′𝑧𝑥 = 0 

𝜓′𝑧 = 𝜓𝑥 

𝜓′𝑥𝑦 = 𝜓𝑦𝑧 
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And the ones that are not affected. For the following two, the same comments as for λ1 

apply: 

 

𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧 

𝜓′0 = 𝜓0 

So, this means that the new 𝜓′: 
 

𝜓′ = 𝜓′0 + 𝜓′𝑥 �̂� + 𝜓′𝑦�̂� + 𝜓′𝑧�̂� + 𝜓′𝑦𝑧�̂��̂� + 𝜓′𝑧𝑥�̂��̂� + 𝜓′𝑥𝑦�̂��̂� + 𝜓′𝑥𝑦𝑧�̂��̂��̂�  

Becomes: 

𝜓′ = 𝜓0 + 𝜓𝑧�̂� + 𝜓𝑥�̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�    (25) 

We see an interchange between axes x and z and the planes yz and xy. 

 

5.5 Gell-Mann matrix λ5 

 

𝜓′ = (

𝜓′𝑥 +𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 + 𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 + 𝜓′𝑥𝑦�̂��̂��̂�

) = 𝜆5𝜓 = (
0 0 −𝑖
0 0 0
𝑖 0 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

)

= (
0 0 −�̂��̂��̂�
0 0 0
�̂��̂��̂� 0 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 +𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 +𝜓𝑥𝑦�̂��̂��̂�

) = (

−�̂��̂��̂�(𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�)

0
�̂��̂��̂�(𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�)

)

= (

−�̂��̂��̂�𝜓𝑧 +𝜓𝑥𝑦
0

�̂��̂��̂�𝜓𝑥 − 𝜓𝑦𝑧

) = (

𝜓𝑥𝑦 −𝜓𝑧�̂��̂��̂�

0
−𝜓𝑦𝑧 + 𝜓𝑥�̂��̂��̂�

) 

 

𝜓′𝑥 = 𝜓𝑥𝑦  

𝜓′𝑦𝑧 = −𝜓𝑧  

𝜓′𝑦 = 0 

𝜓′𝑧𝑥 = 0 

𝜓′𝑧 = −𝜓𝑦𝑧  

𝜓′𝑥𝑦 = 𝜓𝑥 

And the ones that are not affected. For the following two, the same comments as for λ1 

apply: 

 

𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧 

𝜓′0 = 𝜓0 

So, this means that the new 𝜓′: 
 

𝜓′ = 𝜓′0 + 𝜓′𝑥 �̂� + 𝜓′𝑦�̂� + 𝜓′𝑧�̂� + 𝜓′𝑦𝑧�̂��̂� + 𝜓′𝑧𝑥�̂��̂� + 𝜓′𝑥𝑦�̂��̂� + 𝜓′𝑥𝑦𝑧�̂��̂��̂�  

Becomes: 

𝜓′ = 𝜓0 + 𝜓𝑥𝑦�̂� − 𝜓𝑦𝑧�̂� − 𝜓𝑧�̂��̂� + 𝜓𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�     (26) 

 

5.6 Gell-Mann matrix λ6 

 

𝜓′ = (

𝜓′𝑥 +𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 + 𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 + 𝜓′𝑥𝑦�̂��̂��̂�

) = 𝜆6𝜓 = (
0 0 0
0 0 1
0 1 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

) = (

0
𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�
) 
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𝜓′𝑥 = 0 

𝜓′𝑦𝑧 = 0 

𝜓′𝑦 = 𝜓𝑧 

𝜓′𝑧𝑥 = 𝜓𝑥𝑦  

𝜓′𝑧 = 𝜓𝑦 

𝜓′𝑥𝑦 = 𝜓𝑧𝑥 

 

 

 

And the ones that are not affected. For the following two, the same comments as for λ1 

apply: 

 

𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧 

𝜓′0 = 𝜓0 

So, this means that the new 𝜓′: 
 

𝜓′ = 𝜓′0 + 𝜓′𝑥 �̂� + 𝜓′𝑦�̂� + 𝜓′𝑧�̂� + 𝜓′𝑦𝑧�̂��̂� + 𝜓′𝑧𝑥�̂��̂� + 𝜓′𝑥𝑦�̂��̂� + 𝜓′𝑥𝑦𝑧�̂��̂��̂�  

Becomes: 

𝜓′ = 𝜓0 +𝜓𝑧�̂� + 𝜓𝑦�̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�       (27) 

 

5.7 Gell-Mann matrix λ7 

 

 

𝜓′ = (

𝜓′𝑥 +𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 + 𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 + 𝜓′𝑥𝑦�̂��̂��̂�

) = 𝜆7𝜓 = (
0 0 0
0 0 −𝑖
0 𝑖 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

)

= (

0 0 0
0 0 −�̂��̂��̂�
0 �̂��̂��̂� 0

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 +𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 +𝜓𝑥𝑦�̂��̂��̂�

) = (

0
−�̂��̂��̂�(𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�)

�̂��̂��̂�(𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�)

)

= (

0
−�̂��̂��̂�𝜓𝑧 +𝜓𝑥𝑦
�̂��̂��̂�𝜓𝑦 − 𝜓𝑧𝑥

) = (

0
𝜓𝑥𝑦 −𝜓𝑧�̂��̂��̂�

−𝜓𝑧𝑥 +𝜓𝑦�̂��̂��̂�
) 

 

 

𝜓′𝑥 = 0 

𝜓′𝑦𝑧 = 0 

𝜓′𝑦 = 𝜓𝑥𝑦  

𝜓′𝑧𝑥 = −𝜓𝑧 
𝜓′𝑧 = −𝜓𝑧𝑥 

𝜓′𝑥𝑦 = 𝜓𝑦 

 

And the ones that are not affected. For the following two, the same comments as for λ1 

apply: 

 

𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧 

𝜓′0 = 𝜓0 

So, this means that the new 𝜓′: 
 

𝜓′ = 𝜓′0 + 𝜓′𝑥 �̂� + 𝜓′𝑦�̂� + 𝜓′𝑧�̂� + 𝜓′𝑦𝑧�̂��̂� + 𝜓′𝑧𝑥�̂��̂� + 𝜓′𝑥𝑦�̂��̂� + 𝜓′𝑥𝑦𝑧�̂��̂��̂�  

Becomes: 

𝜓′ = 𝜓0 +𝜓𝑥𝑦�̂� − 𝜓𝑧𝑥�̂� − 𝜓𝑧�̂��̂� + 𝜓𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�       (28) 
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5.8 Gell-Mann matrix λ8 

 

𝜓′ = (

𝜓′𝑥 + 𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 + 𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 + 𝜓′𝑥𝑦�̂��̂��̂�

) = 𝜆4𝜓 =
1

√3
(
1 0 0
0 1 0
0 0 −2

)(

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

)

=

(

 
 
 
 

1

√3
𝜓𝑥 +

1

√3
𝜓𝑦𝑧�̂��̂��̂�

1

√3
𝜓𝑦 +

1

√3
𝜓𝑧𝑥�̂��̂��̂�

−
2

√3
𝜓𝑧 −

2

√3
𝜓𝑥𝑦�̂��̂��̂�)

 
 
 
 

 

 

𝜓′𝑥 =
1

√3
𝜓𝑥 

𝜓′𝑦𝑧 =
1

√3
𝜓𝑦𝑧 

𝜓′𝑦 =
1

√3
𝜓𝑥𝑦  

𝜓′𝑧𝑥 =
1

√3
𝜓𝑧𝑥 

𝜓′𝑧 = −
2

√3
𝜓𝑧 

𝜓′𝑥𝑦 = −
2

√3
𝜓𝑥𝑦  

 

 

And the ones that are not affected. For the following two, the same comments as for λ1 

apply: 

 

𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧 

𝜓′0 = 𝜓0 

So, this means that the new 𝜓′: 
 

𝜓′ = 𝜓′0 + 𝜓′𝑥 �̂� + 𝜓′𝑦�̂� + 𝜓′𝑧�̂� + 𝜓′𝑦𝑧�̂��̂� + 𝜓′𝑧𝑥�̂��̂� + 𝜓′𝑥𝑦�̂��̂� + 𝜓′𝑥𝑦𝑧�̂��̂��̂�  

Becomes: 

𝜓′ = 𝜓0 +
1

√3
𝜓𝑥�̂� +

1

√3
𝜓𝑦�̂� −

2

√3
𝜓𝑧�̂� +

1

√3
𝜓𝑦𝑧�̂��̂� +

1

√3
𝜓𝑧𝑥�̂��̂� −

2

√3
𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�  (29) 

 

Here the square roots of three are used by Gell-Mann to keep the same norm to the final 

spinor ψ’ independently of the transformation, as the rest of transformations (λ1- λ7) have 

less elements in the result. 

 

This is another hint that clearly, he did not consider ψ0 and ψxyz in the transformations and 

probably the outcome value of them should be zero. Another hint is that in most of the 

transformations, some other elements become zero. If we consider the transformations as 

rotations, these zeros come probably form the “hidden ψ0 and ψxyz that are already zero” in 

the original ψ.  

 

But this is too detailed. Let’s go to the summary.  
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6. Summary of application of Gell-Mann matrices 

 

In the previous chapter we have obtained the results of applying the Gell-Mann matrices to 

ψ (22)-(29) in geometric algebra notation. 

 

Considering this is the original ψ: 

 

𝜓 = 𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�  

The new ψ’ obtained when applying each of the Gell-Mann matrices λi is:    

 

𝜓′ = (𝜆1 → 𝜓) = 𝜓0 + 𝜓𝑦�̂� + 𝜓𝑥�̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�    (22) 

𝜓′ = (𝜆2 → 𝜓) = 𝜓0 + 𝜓𝑧𝑥�̂� − 𝜓𝑦𝑧�̂�−𝜓𝑦�̂��̂� + 𝜓𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�     (23) 

𝜓′ = (𝜆3 → 𝜓) = 𝜓0 + 𝜓𝑥�̂� − 𝜓𝑦�̂� + 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�    (24) 

𝜓′ = (𝜆4 → 𝜓) = 𝜓0 + 𝜓𝑧�̂� + 𝜓𝑥�̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�      (25) 

𝜓′ = (𝜆5 → 𝜓) = 𝜓0 + 𝜓𝑥𝑦�̂� − 𝜓𝑦𝑧�̂� − 𝜓𝑧�̂��̂� + 𝜓𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�      (26) 

𝜓′ = (𝜆6 → 𝜓) = 𝜓0 + 𝜓𝑧�̂� + 𝜓𝑦�̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�      (27) 

𝜓′ = (𝜆7 → 𝜓) = 𝜓0 +𝜓𝑥𝑦�̂� − 𝜓𝑧𝑥�̂� − 𝜓𝑧�̂��̂� + 𝜓𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�       (28) 

𝜓′ = (𝜆8 → 𝜓) = 𝜓0 +
1

√3
𝜓𝑥𝑥 +

1

√3
𝜓𝑦�̂� −

2

√3
𝜓𝑧�̂� +

1

√3
𝜓𝑦𝑧�̂��̂� +

1

√3
𝜓𝑧𝑥�̂�𝑥 −

2

√3
𝜓𝑥𝑦𝑥�̂� + 𝜓𝑥𝑦𝑧𝑥�̂��̂�   (29) 

 

                                 

7. Using Gell-Mann matrices of 4x4 

As commented in chapter 4, there is another way of solving the issue that the Gell-Mann 

matrices are 3x3 and the spinor matrix vector has four rows. Before, we have solved it 

eliminating the last row (with an explanation of why this is possible). In this chapter, we 

will show how to solve it the opposite way. This is, using Gell-Mann matrices of 4x4. 

 

If we take the example of λ1.  

 

𝜆1 = (
0 1 0
1 0 0
0 0 0

) 

We can add a new row and column with all zeros except a 1 in the diagonal. 

𝜆1 = (

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 1

) 

We can see that we will obtain the same result as in chapter in 5.1. If we consider 𝜓 and 

𝜓′ as: 

𝜓 =

(

 
 

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 +𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

𝜓𝑥𝑦𝑧 − 𝜓0�̂��̂��̂�)

 
 

 

 

𝜓′ =

(

 
 

𝜓′𝑥 + 𝜓′𝑦𝑧�̂��̂��̂�

𝜓′𝑦 +𝜓′𝑧𝑥�̂��̂��̂�

𝜓′𝑧 +𝜓′𝑥𝑦�̂��̂��̂�

𝜓′𝑥𝑦𝑧 − 𝜓′0�̂��̂��̂�)

 
 

 

We multiply: 
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𝜓′ =

(

 
 

𝜓′
𝑥
+ 𝜓′

𝑦𝑧
�̂��̂��̂�

𝜓′
𝑦
+ 𝜓′

𝑧𝑥
�̂��̂��̂�

𝜓′
𝑧
+ 𝜓′

𝑥𝑦
�̂��̂��̂�

𝜓′
𝑥𝑦𝑧
− 𝜓′

0
�̂��̂��̂�)

 
 
= 𝜆1𝜓 = (

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 1

)

(

 
 

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

𝜓𝑥𝑦𝑧 −𝜓0�̂��̂��̂�)

 
 

=

(

 

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥 +𝜓𝑦𝑧�̂��̂��̂�

0
𝜓𝑥𝑦𝑧 − 𝜓0�̂��̂��̂�)

  

 

And we get the same result as in 5.1. 

 

𝜓′𝑥 = 𝜓𝑦 

𝜓′𝑦𝑧 = 𝜓𝑧𝑥 

𝜓′𝑦 = 𝜓𝑥 

𝜓′𝑧𝑥 = 𝜓𝑦𝑧 

𝜓′𝑧 = 0 

𝜓′𝑥𝑦 = 0 

𝜓′𝑥𝑦𝑧 = 𝜓𝑥𝑦𝑧 

𝜓′0 = 𝜓0 

 

Leading to: 

 

𝜓′ = 𝜓0 + 𝜓𝑦�̂� + 𝜓𝑥�̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂� 

As in chapter 5.1. 

 

There is another option, as already commented. That the Gell-Mann matrix λ1 it affects 

also ψ0 and ψxyz converting them to zero. That would correspond to: 

 

𝜆1 = (

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

) 

 

Multiplying: 

𝜓′ =

(

 
 

𝜓′
𝑥
+ 𝜓′

𝑦𝑧
�̂��̂��̂�

𝜓′
𝑦
+ 𝜓′

𝑧𝑥
�̂��̂��̂�

𝜓′
𝑧
+ 𝜓′

𝑥𝑦
�̂��̂��̂�

𝜓′
𝑥𝑦𝑧
− 𝜓′

0
�̂��̂��̂�)

 
 
= 𝜆1𝜓 = (

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)

(

 
 

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑧 + 𝜓𝑥𝑦�̂��̂��̂�

𝜓𝑥𝑦𝑧 −𝜓0�̂��̂��̂�)

 
 

= (

𝜓𝑦 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥 + 𝜓𝑦𝑧�̂��̂��̂�

0
0

) 

 

And we will get the same result as in chapter 5.1: 

 

𝜓′𝑥 = 𝜓𝑦 

𝜓′𝑦𝑧 = 𝜓𝑧𝑥 

𝜓′𝑦 = 𝜓𝑥 

𝜓′𝑧𝑥 = 𝜓𝑦𝑧 

𝜓′𝑧 = 0 

𝜓′𝑥𝑦 = 0 

𝜓′𝑥𝑦𝑧 = 0 

𝜓′0 = 0 

 

Leading to: 
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𝜓′ = 𝜓𝑦�̂� + 𝜓𝑥�̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑦𝑧�̂��̂� 

 

 

As commented, the Gell-Mann matrices do not even consider ψ0 and ψxyz so it is not pos-

sible to know, which one is correct. Although to keep the rotation symmetry seems more 

plausible that they really become zero.  

 

There are also other possibilities, in general, 

 

𝜆1 = (

0 1 0 𝑎14
1 0 0 𝑎24
0 0 0 𝑎34
𝑎14
∗ 𝑎24

∗ 𝑎34
∗ 𝑎44

) 

 

Where the asterisk means conjugate (whether it is in i or in xyz notation). And a44 is real. 

That would mean that another transform/rotation is applied to ψ0 and ψxyz not consider in 

the original Gell-Mann transformations (could they be related to other forces?). 

 

8. Possibilities to apply the Gell-Mann transformations using Geo-
metric Algebra operations (not matrices) 

In chapter 6 you have a summary of the transformations obtained with Gell-Mann matrices, 

applied to a spinor in Geometric Algebra notation ψ to be converted to another one ψ’. 

 

In Geometric Algebra the transformations are not normally performed that way. Instead, 

we use rotations or boosts to convert one multivector (in this case, representing a spinor) 

into another one. 

 

In general, the transformation would something like this: 

 

𝜓′ = 𝛼1𝑒
−
1

2
𝛼2�̂�𝑒−

1

2
𝛼3�̂�𝑒−

1

2
𝛼4�̂�𝑒−

1

2
𝛼5�̂��̂�𝑒−

1

2
𝛼6�̂�𝑥𝑒−

1

2
𝛼7�̂��̂�𝑒−

1

2
𝛼8�̂��̂��̂�𝜓𝑒

1

2
𝛼8�̂��̂��̂�𝑒

1

2
𝛼7�̂��̂�𝑒

1

2
𝛼6�̂�𝑥𝑒

1

2
𝛼5�̂��̂�𝑒

1

2
𝛼4�̂�𝑒

1

2
𝛼3�̂�𝑒

1

2
𝛼2�̂� 

 

Where ψ is the spinor multivector to which we want to make the transformation and ψ’ the 

multivector obtained.   

 

𝜓 = 𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�  

 

The exponentials to vectors (which square is +1) are boosts and can be also written as: 

 

𝑒−
1

2
𝛼2𝑥 = 𝑐𝑜𝑠ℎ (−

1

2
𝛼2) + 𝑠𝑖𝑛ℎ (−

1

2
𝛼2) �̂� = 𝑐𝑜𝑠ℎ (

1

2
𝛼2) − 𝑠𝑖𝑛ℎ (

1

2
𝛼2) �̂� 

 

The exponentials to bivectors or to the trivector (which square is -1) are rotations of an 

angle αi in the planes indicated by the bivector (or in the volume/time in the case of the 

trivector) and can be written also as [1][3]: 

 

𝑒−
1

2
𝛼5�̂��̂� = 𝑐𝑜𝑠 (−

1

2
𝛼5) + 𝑠𝑖𝑛 (−

1

2
𝛼5) �̂��̂� = 𝑐𝑜𝑠 (

1

2
𝛼5) − 𝑠𝑖𝑛 (

1

2
𝛼2) �̂��̂� 

 

If you do not understand what a rotation in the volume means, welcome to the club. But 

you can see an example of it in annex A.1 of [2] when I considered that the trivector (I still 

do) was somehow related to spin. 

 

There is also a parameter α1 that it is only a scalation. All αi are real. 

 

The important point is that we have also 8 αi, so we have 8 degrees of freedom of transfor-

mations. This is the same as the 8 Gell-Mann matrices. So, a correspondence between them 
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would be possible. Another thing is if it is necessary to find them, now that we have the 

table in chapter 6. 

 

The same as commented above with rotations and boosts can be applied easier using a 

transformation as: 

  

𝜓′ = (𝛽1 + 𝛽2�̂� + 𝛽3�̂� + 𝛽4�̂� + 𝛽5�̂��̂� + 𝛽6�̂��̂� + 𝛽7�̂��̂� + 𝛽8�̂��̂��̂�)𝜓  

This is, to perform this pre-multiplication to ψ: 

 

𝜓′ = (𝛽1 + 𝛽2�̂� + 𝛽3�̂� + 𝛽4�̂� + 𝛽5�̂��̂� + 𝛽6�̂��̂� + 𝛽7�̂��̂� + 𝛽8�̂��̂��̂�)(𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂�

+ 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂� ) 

 

And even we could have the double-sided version as: 

 

𝜓′ = (𝛿1 + 𝛿2�̂� + 𝛿3�̂� + 𝛿4�̂� − 𝛿5�̂��̂� − 𝛿6�̂��̂� − 𝛿7�̂��̂� − 𝛿8�̂��̂��̂�)𝜓(𝛿1 + 𝛿2�̂� + 𝛿3�̂� + 𝛿4�̂�
+ 𝛿5�̂��̂� + 𝛿6�̂��̂� + 𝛿7�̂��̂� + 𝛿8�̂��̂��̂�) 

 

In both cases, we have 8 parameters that modify the ψ function. So, again there could be 

found the βi or δi that creates the same transformations as indicated in chapter 6. 

 

9. Bra-ket products using spinor multivectors 

 

Before showing how the bra-ket multiplication is, I have two show the operation called 

reversion of a multivector. This operation reverses the order of the bivectors and trivector. 

 

It is the equivalent of the conjugate of a complex number applied to a multivector. 

In fact, in the case of Geometric Algebra Cl3,0 (the one we have used along the paper), what 

it does is to change the sign of the coefficients multiplying the bivectors and the trivector 

(the ones that have square -1). And it keeps the same the coefficients of the scalar and the 

vectors. This is, if we have a multivector ψ: 

 

𝜓 = 𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�  

Its reverse is: 

 

𝜓† = 𝜓∗ = 𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�

= 𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� − 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥�̂��̂� − 𝜓𝑥𝑦�̂��̂� − 𝜓𝑥𝑦𝑧�̂��̂��̂�  

In Euclidean geometry Cl3,0, the reverse 𝜓† and the conjugate 𝜓∗are the same thing. In 

non-Euclidean metric (more specifically in non-orthogonal metric), we will see that this 

not hold. 

 

The bra-ket product is defined as: 

 

𝜓†𝜓 = 𝜓∗𝜓 = 
= (𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥 �̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�)(𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥 �̂��̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�) = 

= (𝜓0 +𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� − 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥 �̂��̂� − 𝜓𝑥𝑦 �̂��̂� − 𝜓𝑥𝑦𝑧�̂��̂��̂�)(𝜓0 +𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧 �̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�) 

 

And the important thing is that if we perform the complete operation we get (see Annex 

A1): 

 

𝜓†𝜓 = 𝜓∗𝜓 = 𝜌 + 𝑗       (29.1) 
 

Being 𝜌 the probability density (positive defined): 

 

𝜌 = 𝜓0
2 + 𝜓𝑥

2 + 𝜓𝑦
2 + 𝜓𝑧

2 + 𝜓𝑦𝑧
2 + 𝜓𝑧𝑥

2 + 𝜓𝑥𝑦
2 + 𝜓𝑥𝑦𝑧

2      (29.2) 
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And 𝑗 is the fermionic current as defined in [48]: 
 

𝑗 = 2(𝜓𝑥𝜓0 − 𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑧𝜓𝑧𝑥 +𝜓𝑦𝑧𝜓𝑥𝑦𝑧)�̂� + 2(𝜓0𝜓𝑦 +𝜓𝑥𝜓𝑥𝑦 − 𝜓𝑧𝜓𝑦𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧)�̂�

+ 2(𝜓0𝜓𝑧 −𝜓𝑥𝜓𝑧𝑥 + 𝜓𝑦𝜓𝑦𝑧 +𝜓𝑥𝑦𝜓𝑥𝑦𝑧)�̂�       (29.3) 

 

All the coefficients in bivectors and the trivector cancel as you can see in Annexes A1 and 

A2. 

 

So, this means, that the spinor multivector is not only a “cool mathematical artifact”. You 

can obtain the same information as with the typical spinor matrix vectors and in a much 

simpler way. See Annex A1 to see what I am talking about. We just have to perform a 

multiplication. And in Annex A2, you can check that the result using Geometric Algenra 

is exactly the same as using matrix algebra, so all the process is validated. 
 

10. Bra-ket product in non-Euclidean metric (under gravitational 
effects) 

In general, in non-Euclidean metric [2][47] (non-orthonormal and non-orthogonal) the fol-

lowing equations apply for the basis vectors (instead of the equation 8.1 in chapter 2): 

 

 

�̂�2 = ‖�̂�‖2 = 𝑔𝑥𝑥 

�̂�2 = ‖�̂�‖2 = 𝑔𝑦𝑦 

                �̂�2 = ‖�̂�‖2 = 𝑔𝑧𝑧       (30) 
�̂��̂� = 2𝑔𝑥𝑦 − �̂��̂� 

�̂��̂� = 2𝑔𝑦𝑧 − �̂��̂� 

�̂��̂� = 2𝑔𝑧𝑥 − �̂��̂� 
 

In the case of non-orthonormal but yes orthogonal (diagonal) metric, these equations are 

simplified as: 
 

 

�̂�2 = ‖�̂�‖2 = 𝑔𝑥𝑥 

�̂�2 = ‖�̂�‖2 = 𝑔𝑦𝑦 

                �̂�2 = ‖�̂�‖2 = 𝑔𝑧𝑧       (31) 
�̂��̂� = −�̂��̂� 

�̂��̂� = −�̂��̂� 

�̂��̂� = −�̂��̂� 

The bra-ket product in non-orthonormal but yes orthogonal metric leads again to (see An-

nex A3): 

 

𝜓†𝜓 = 𝜓∗𝜓 = 𝜌 + 𝑗      (32) 
But in this case: 

 
 

𝜌 = 𝜓0
2 +𝜓𝑥

2𝑔𝑥𝑥 + 𝜓𝑦
2𝑔𝑦𝑦 +𝜓𝑧

2𝑔𝑧𝑧 +𝜓𝑦𝑧
2𝑔𝑦𝑦𝑔𝑧𝑧 + 𝜓𝑧𝑥

2𝑔𝑧𝑧𝑔𝑥𝑥 +𝜓𝑥𝑦
2𝑔𝑥𝑥𝑔𝑦𝑦 + 𝜓𝑥𝑦𝑧

2𝑔𝑥𝑥𝑔𝑦𝑦𝑔𝑧𝑧 (33) 

 

And: 

 

𝑗 = 2(𝜓0𝜓𝑥 − 𝜓𝑦𝜓𝑥𝑦𝑔𝑦𝑦 + 𝜓𝑧𝜓𝑧𝑥𝑔𝑧𝑧 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧𝑔𝑦𝑦𝑔𝑧𝑧)�̂�

+ 2(+𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦𝑔𝑥𝑥 − 𝜓𝑦𝑧𝜓𝑧𝑔𝑧𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧𝑔𝑧𝑧𝑔𝑥𝑥)�̂�

+ 2(+𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥𝑔𝑥𝑥 + 𝜓𝑦𝜓𝑦𝑧𝑔𝑦𝑦 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧𝑔𝑥𝑥𝑔𝑦𝑦)�̂�     (34) 
 

 

For the case of non-orthonormal and non-orthogonal case (equations 30), you can check 

that nightmare in Annex A4 and never come back. 
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11. Effects of gravitation in muon g-2 issue  

Normally, it is said that the gravitational effects are too small to affect the g-2 issue. I will 

show that this could not be correct. 

 

If you check equation: 

 
𝜌 = 𝜓0

2 +𝜓𝑥
2𝑔𝑥𝑥 + 𝜓𝑦

2𝑔𝑦𝑦 +𝜓𝑧
2𝑔𝑧𝑧 +𝜓𝑦𝑧

2𝑔𝑦𝑦𝑔𝑧𝑧 + 𝜓𝑧𝑥
2𝑔𝑧𝑧𝑔𝑥𝑥 +𝜓𝑥𝑦

2𝑔𝑥𝑥𝑔𝑦𝑦 + 𝜓𝑥𝑦𝑧
2𝑔𝑥𝑥𝑔𝑦𝑦𝑔𝑧𝑧 (33) 

 

And we consider that we are in the surface of earth. We put the x axis in the radial direction, 

and y and z perpendicular to it. According Schwarzschild metric, the effect in axis x (radial) 

would be: 

 

𝑔𝑥𝑥 = 𝑔𝑟𝑟 = (1 −
𝐺𝑀

𝑐2𝑟
)
−1

 

Where: 

𝐺 = 6,6743𝐸 − 11𝑁𝑚2/𝑘𝑔 

𝑀𝑒𝑎𝑟𝑡ℎ = 5,9722𝐸24 𝑘𝑔 

𝑟 = 𝑟𝑒𝑎𝑟𝑡ℎ = 6,371𝐸6𝑚 

This gives: 

 

𝑔𝑥𝑥 = 1 + 1,392262𝐸 − 09       (34) 
And we can consider: 

 

𝑔𝑦𝑦 = 𝑔𝑧𝑧 = 1 

 

We see in equation (33) that 𝑔𝑥𝑥 is included and is affecting 4 of the 8 elements of the 

equation. So, the probability (and therefore the probability of the possible states that the 

particle can take) can be impacted by it (it is not something neglectable that only affects 

one of the 8 elements). 

 

But can this small value in equation (34) affect something? 

 

If we go to the g-2 experiment [55], we have:  

 

Theoretical value: 

 

𝑎𝑡 =
𝑔 − 2

2
= 1,1659181𝐸 − 03 

Traditionally measured value: 

 

𝑎𝑚 =
𝑔 − 2

2
= 1,16592089𝐸 − 03 

If we get the difference between the values we have: 

 

𝑎𝑚 − 𝑎𝑡 = 2,79𝐸 − 09 

 

If we divide this value with the “added element” in (34) we have: 

 
𝑎𝑚 − 𝑎𝑡
𝑔𝑥𝑥 − 1

=
2,79𝐸 − 09

1,392262𝐸 − 09
= 2,00 

 

This means, the change in g-2 is the double (this means, in the same order) of the gravita-

tional effects. Perfectly the 𝑔𝑥𝑥 value could be affecting the measurement. As commented 

𝑔𝑥𝑥 appears in 4 of the 8 elements of the multivector (33). It is not only affecting in one 

direction. 

 

Even taking the latest value measured in Fermilab [56], we are in the same order (although 

not exactly the double): 
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𝑎𝑓𝑒𝑟𝑚𝑖𝑙𝑎𝑏 =
𝑔 − 2

2
= 1,16592055𝐸 − 03 

 

𝑎𝑓𝑒𝑟𝑚𝑖𝑙𝑎𝑏 − 𝑎𝑡 = 2,45𝐸 − 09 

 
𝑎𝑓𝑒𝑟𝑚𝑖𝑙𝑎𝑏 − 𝑎𝑡

𝑔𝑥𝑥 − 1
=

2,45𝐸 − 09

1,392262𝐸 − 09
= 1,76 

 

Again, in the same order of magnitude. So, we can check, that yes, the gravitational effects 

creating a non-Euclidean metric could have their effects in muon g-2 effect. 

 

One way to check the gravitational effects in the muon g-2, would be to measure g-2 value 

at different altitudes (or even outside the Earth if this is possible). 

12. Conclusions 

We have found a way of applying the Gell-Mann transformations made by the λi matrices 

using Geometric Algebra Cl3,0. And without the need of adding the time as an ad-hoc di-

mension, but just considering that: 

�̂� = 𝒙�̂��̂�    (𝟗) 

The transformations are as follows. Considering the original ψ: 

 

𝜓 = 𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�  

 

The new ψ’ obtained when applying each of the Gell-Mann matrices λi is:    

 

𝜓′ = (𝜆1 → 𝜓) = 𝜓0 + 𝜓𝑦�̂� + 𝜓𝑥�̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�    (22) 

𝜓′ = (𝜆2 → 𝜓) = 𝜓0 + 𝜓𝑧𝑥�̂� − 𝜓𝑦𝑧�̂�−𝜓𝑦�̂��̂� + 𝜓𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�     (23) 

𝜓′ = (𝜆3 → 𝜓) = 𝜓0 + 𝜓𝑥�̂� − 𝜓𝑦�̂� + 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�    (24) 

𝜓′ = (𝜆4 → 𝜓) = 𝜓0 + 𝜓𝑧�̂� + 𝜓𝑥�̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�      (25) 

𝜓′ = (𝜆5 → 𝜓) = 𝜓0 + 𝜓𝑥𝑦�̂� − 𝜓𝑦𝑧�̂� − 𝜓𝑧�̂��̂� + 𝜓𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�      (26) 

𝜓′ = (𝜆6 → 𝜓) = 𝜓0 + 𝜓𝑧�̂� + 𝜓𝑦�̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�      (27) 

𝜓′ = (𝜆7 → 𝜓) = 𝜓0 +𝜓𝑥𝑦�̂� − 𝜓𝑧𝑥�̂� − 𝜓𝑧�̂��̂� + 𝜓𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�       (28) 

𝜓′ = (𝜆8 → 𝜓) = 𝜓0 +
1

√3
𝜓𝑥𝑥 +

1

√3
𝜓𝑦�̂� −

2

√3
𝜓𝑧�̂� +

1

√3
𝜓𝑦𝑧�̂��̂� +

1

√3
𝜓𝑧𝑥�̂�𝑥 −

2

√3
𝜓𝑥𝑦𝑥�̂� + 𝜓𝑥𝑦𝑧𝑥�̂��̂�   (29) 

  

Taking into account that Gell-Mann matrices do not consider at all the existence of 𝜓0 and 

𝜓𝑥𝑦𝑧 , it is possible that we should consider these two elements zero from the beginning. 

Anyhow, above relations would correspond to the most general case. 

 

We have also worked in the bra-ket product using geometric algebra. For the Euclidean 

case we have the equation (where the cross sign means reverse and the asterisk means 

conjugate, both mean the same in Cl3,0): 

 

𝜓†𝜓 = 𝜓∗𝜓 = 
= (𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥 �̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�)(𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥 �̂��̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�) = 

= (𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� − 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥 �̂��̂� − 𝜓𝑥𝑦 �̂��̂� − 𝜓𝑥𝑦𝑧 �̂��̂��̂�)(𝜓0 + 𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥 �̂��̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑥𝑦𝑧 �̂��̂��̂�) = 

= 𝜌 + 𝑗 
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Being 𝜌 the probability density: 

 

𝜌 = 𝜓0
2 + 𝜓𝑥

2 + 𝜓𝑦
2 + 𝜓𝑧

2 + 𝜓𝑦𝑧
2 + 𝜓𝑧𝑥

2 + 𝜓𝑥𝑦
2 + 𝜓𝑥𝑦𝑧

2      (29.2) 

 

And 𝑗 the fermionic current: 
 

𝑗 = 2(𝜓𝑥𝜓0 − 𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑧𝜓𝑧𝑥 +𝜓𝑦𝑧𝜓𝑥𝑦𝑧)�̂� + 2(𝜓0𝜓𝑦 +𝜓𝑥𝜓𝑥𝑦 − 𝜓𝑧𝜓𝑦𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧)�̂�

+ 2(𝜓0𝜓𝑧 −𝜓𝑥𝜓𝑧𝑥 + 𝜓𝑦𝜓𝑦𝑧 +𝜓𝑥𝑦𝜓𝑥𝑦𝑧)�̂�       (29.3) 

 

We have made the same in the case of orthogonal but not orthonormal metric, leading to: 

𝜓†𝜓 = 𝜓∗𝜓 = 𝜌 + 𝑗      (32) 
But in this case: 

 
 

𝜌 = 𝜓0
2 +𝜓𝑥

2𝑔𝑥𝑥 + 𝜓𝑦
2𝑔𝑦𝑦 +𝜓𝑧

2𝑔𝑧𝑧 +𝜓𝑦𝑧
2𝑔𝑦𝑦𝑔𝑧𝑧 + 𝜓𝑧𝑥

2𝑔𝑧𝑧𝑔𝑥𝑥 +𝜓𝑥𝑦
2𝑔𝑥𝑥𝑔𝑦𝑦 + 𝜓𝑥𝑦𝑧

2𝑔𝑥𝑥𝑔𝑦𝑦𝑔𝑧𝑧 (33) 

 

And: 

 

𝑗 = 2(𝜓0𝜓𝑥 − 𝜓𝑦𝜓𝑥𝑦𝑔𝑦𝑦 + 𝜓𝑧𝜓𝑧𝑥𝑔𝑧𝑧 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧𝑔𝑦𝑦𝑔𝑧𝑧)�̂�

+ 2(+𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦𝑔𝑥𝑥 − 𝜓𝑦𝑧𝜓𝑧𝑔𝑧𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧𝑔𝑧𝑧𝑔𝑥𝑥)�̂�

+ 2(+𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥𝑔𝑥𝑥 + 𝜓𝑦𝜓𝑦𝑧𝑔𝑦𝑦 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧𝑔𝑥𝑥𝑔𝑦𝑦)�̂�      

 

We have shown also that the g-2 issue of the muon could be perfectly related to gravita-

tional issues (to non-Euclidean space). The difference of the values of g-2 of the muon are: 

 

𝑎𝑚 − 𝑎𝑡 = 2,79𝐸 − 09 

 

And the effect of the non-Euclidean metric on the surface of Earth is: 

 

𝑔𝑥𝑥 − 1 = 1,392262𝐸 − 09        

 

𝑎𝑚 − 𝑎𝑡
𝑔𝑥𝑥 − 1

=
2,79𝐸 − 09

1,392262𝐸 − 09
= 2,00 

 

As we can check, the change in g-2 value is just the double of the gravitational effects 

(this means, in the same order). So, gravitational effects could indeed affect the g-2 value 

of the muon on the surface or Earth as commented. 

 

Bilbao, 24th August 2023 (viXra-v1). 

Bilbao, 24th September 2023 (viXra-v2) 
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A1. Annex A1. Bra-Ket product in Euclidean metric 

 

If we operate: 

 
𝜓∗𝜓 = (𝜓0 + 𝜓𝑥𝑥 + 𝜓𝑦�̂� + 𝜓𝑧�̂� − 𝜓𝑦𝑧�̂��̂� − 𝜓𝑧𝑥�̂�𝑥 − 𝜓𝑥𝑦𝑥�̂� − 𝜓𝑥𝑦𝑧𝑥�̂��̂�)(𝜓0 + 𝜓𝑥𝑥 + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂�

+ 𝜓𝑧𝑥�̂�𝑥 + 𝜓𝑥𝑦𝑥�̂� + 𝜓𝑥𝑦𝑧𝑥�̂��̂�) = 

      𝜓0
2 +𝜓0𝜓𝑥𝑥 + 𝜓0𝜓𝑦�̂� + 𝜓0𝜓𝑧�̂� + 𝜓0𝜓𝑦𝑧�̂��̂� + 𝜓0𝜓𝑧𝑥�̂�𝑥 + 𝜓0𝜓𝑥𝑦𝑥�̂� + 𝜓0𝜓𝑥𝑦𝑧𝑥�̂��̂� + 

𝜓𝑥𝜓0�̂� + 𝜓𝑥
2 + 𝜓𝑥𝜓𝑦𝑥�̂� − 𝜓𝑥𝜓𝑧�̂�𝑥 + 𝜓𝑥𝜓𝑦𝑧𝑥�̂��̂� − 𝜓𝑥𝜓𝑧𝑥�̂� + 𝜓𝑥𝜓𝑥𝑦�̂� + 𝜓𝑥𝜓𝑥𝑦𝑧�̂��̂� + 

𝜓𝑦𝜓0�̂� − 𝜓𝑦𝜓𝑥𝑥�̂� + 𝜓𝑦
2 + 𝜓𝑦𝜓𝑧�̂��̂� + 𝜓𝑦𝜓𝑦𝑧�̂� + 𝜓𝑦𝜓𝑧𝑥𝑥�̂��̂� − 𝜓𝑦𝜓𝑥𝑦𝑥 + 𝜓𝑦𝜓𝑥𝑦𝑧𝑧𝑥 + 

𝜓𝑧𝜓0�̂� + 𝜓𝑧𝜓𝑥�̂�𝑥 − 𝜓𝑧𝜓𝑦�̂��̂� + 𝜓𝑧
2 −𝜓𝑧𝜓𝑦𝑧�̂� + 𝜓𝑧𝜓𝑧𝑥𝑥 + 𝜓𝑧𝜓𝑥𝑦𝑥�̂��̂� + 𝜓𝑧𝜓𝑥𝑦𝑧𝑥�̂� 

−𝜓𝑦𝑧𝜓0�̂��̂� − 𝜓𝑦𝑧𝜓𝑥𝑥�̂��̂� + 𝜓𝑦𝑧𝜓𝑦�̂� − 𝜓𝑦𝑧𝜓𝑧�̂� + 𝜓𝑦𝑧
2 +𝜓𝑦𝑧𝜓𝑧𝑥𝑥�̂� − 𝜓𝑦𝑧𝜓𝑥𝑦 �̂�𝑥 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧𝑥 − 

−𝜓𝑧𝑥𝜓0�̂��̂� − 𝜓𝑧𝑥𝜓𝑥�̂� − 𝜓𝑧𝑥𝜓𝑦𝑥�̂��̂� + 𝜓𝑧𝑥𝜓𝑧𝑥 − 𝜓𝑧𝑥𝜓𝑦𝑧𝑥�̂� + 𝜓𝑧𝑥
2 +𝜓𝑧𝑥𝜓𝑥𝑦�̂��̂� + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧�̂� − 

−𝜓𝑥𝑦𝜓0�̂��̂� + 𝜓𝑥𝑦𝜓𝑥�̂� − 𝜓𝑥𝑦𝜓𝑦𝑥 − 𝜓𝑥𝑦𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦𝜓𝑦𝑧�̂�𝑥 − 𝜓𝑥𝑦𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦
2 +𝜓𝑥𝑦𝜓𝑥𝑦𝑧�̂� − 

−𝜓𝑥𝑦𝑧𝜓0�̂��̂��̂� − 𝜓𝑥𝑦𝑧𝜓𝑥�̂��̂� − 𝜓𝑥𝑦𝑧𝜓𝑦�̂�𝑥 − 𝜓𝑥𝑦𝑧𝜓𝑧𝑥�̂� + 𝜓𝑥𝑦𝑧𝜓𝑦𝑧𝑥 + 𝜓𝑥𝑦𝑧𝜓𝑧𝑥�̂� + 𝜓𝑥𝑦𝑧𝜓𝑥𝑦 �̂� + 𝜓𝑥𝑦𝑧
2
 

 

And now if we take only the scalars we get: 

 

𝜓0
2 + 𝜓𝑥

2 + 𝜓𝑦
2 + 𝜓𝑧

2 + 𝜓𝑦𝑧
2 + 𝜓𝑧𝑥

2 + 𝜓𝑥𝑦
2 + 𝜓𝑥𝑦𝑧

2
 

We will call this sum 𝜌: 
  

𝜌 = 𝜓0
2 + 𝜓𝑥

2 +𝜓𝑦
2 + 𝜓𝑧

2 + 𝜓𝑦𝑧
2 + 𝜓𝑧𝑥

2 +𝜓𝑥𝑦
2 + 𝜓𝑥𝑦𝑧

2   (29.2) 

 

If we separate the components that multiply by �̂� we get: 

 

𝜓0𝜓𝑥 + 𝜓𝑥𝜓0 − 𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑧𝜓𝑧𝑥 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧 + 𝜓𝑧𝑥𝜓𝑧 − 𝜓𝑥𝑦𝜓𝑦 + 𝜓𝑥𝑦𝑧𝜓𝑦𝑧
= 2(𝜓𝑥𝜓0 − 𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑧𝜓𝑧𝑥 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧) 

In �̂� we get: 

𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦 + 𝜓𝑦𝜓0 −𝜓𝑧𝜓𝑦𝑧 − 𝜓𝑦𝑧𝜓𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧 + 𝜓𝑥𝑦𝜓𝑥 + 𝜓𝑥𝑦𝑧𝜓𝑧𝑥
= 2(𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦 − 𝜓𝑧𝜓𝑦𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧) 

In �̂� we get: 

 

𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥 + 𝜓𝑦𝜓𝑦𝑧 +𝜓𝑧𝜓0 +𝜓𝑦𝑧𝜓𝑦 − 𝜓𝑧𝑥𝜓𝑥 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧 + 𝜓𝑥𝑦𝑧𝜓𝑥𝑦
= 2(𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥 + 𝜓𝑦𝜓𝑦𝑧 +𝜓𝑥𝑦𝜓𝑥𝑦𝑧) 

In �̂��̂�: 

𝜓0𝜓𝑦𝑧 + 𝜓𝑥𝜓𝑥𝑦𝑧 + 𝜓𝑦𝜓𝑧 − 𝜓𝑧𝜓𝑦 − 𝜓𝑦𝑧𝜓0 + 𝜓𝑧𝑥𝜓𝑥𝑦 − 𝜓𝑥𝑦𝜓𝑧𝑥 − 𝜓𝑥𝑦𝑧𝜓𝑥 = 0 

 

In �̂��̂�: 

 

 

𝜓0𝜓𝑧𝑥 −𝜓𝑥𝜓𝑧 + 𝜓𝑦𝜓𝑥𝑦𝑧 +𝜓𝑧𝜓𝑥 − 𝜓𝑦𝑧𝜓𝑥𝑦 −𝜓𝑧𝑥𝜓0 + 𝜓𝑥𝑦𝜓𝑦𝑧 −𝜓𝑥𝑦𝑧𝜓𝑦 = 0 

In �̂��̂�: 

𝜓0𝜓𝑥𝑦 +𝜓𝑥𝜓𝑦 − 𝜓𝑦𝜓𝑥 + 𝜓𝑧𝜓𝑥𝑦𝑧 + 𝜓𝑦𝑧𝜓𝑧𝑥 − 𝜓𝑧𝑥𝜓𝑦𝑧 − 𝜓𝑥𝑦𝜓0 −𝜓𝑥𝑦𝑧𝜓𝑧 = 0 

In �̂��̂��̂�: 

𝜓0𝜓𝑥𝑦𝑧 + 𝜓𝑥𝜓𝑦𝑧 + 𝜓𝑦𝜓𝑧𝑥 +𝜓𝑧𝜓𝑥𝑦 −𝜓𝑦𝑧𝜓𝑥 −𝜓𝑧𝑥𝜓𝑦 − 𝜓𝑥𝑦𝜓𝑧 − 𝜓𝑥𝑦𝑧𝜓0 = 0 

 

If we call vector 𝑗 (fermionic current) the sum in �̂�, �̂� and �̂� , we get: 

 

https://onlinelibrary.wiley.com/doi/full/10.1002/mma.8934
https://en.wikipedia.org/wiki/Schwarzschild_metric
https://news.fnal.gov/2020/06/physicists-publish-worldwide-consensus-of-muon-magnetic-moment-calculation/
https://news.fnal.gov/2020/06/physicists-publish-worldwide-consensus-of-muon-magnetic-moment-calculation/
https://muon-g-2.fnal.gov/result2023.pdf
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𝑗 = 2(𝜓𝑥𝜓0 −𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑧𝜓𝑧𝑥 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧)�̂�

+ 2(𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦 − 𝜓𝑧𝜓𝑦𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧)�̂�

+ 2(𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥 + 𝜓𝑦𝜓𝑦𝑧 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧)�̂�       (29.3) 

 

So, in total we have: 

 

𝜓∗𝜓 = 𝜌 + 𝑗       (29.1) 
 

With: 

 

𝜌 = 𝜓0
2 + 𝜓𝑥

2 +𝜓𝑦
2 + 𝜓𝑧

2 + 𝜓𝑦𝑧
2 + 𝜓𝑧𝑥

2 +𝜓𝑥𝑦
2 + 𝜓𝑥𝑦𝑧

2   (29.2) 

And: 

 

𝑗 = 2(𝜓𝑥𝜓0 −𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑧𝜓𝑧𝑥 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧)�̂�

+ 2(𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦 − 𝜓𝑧𝜓𝑦𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧)�̂�

+ 2(𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥 + 𝜓𝑦𝜓𝑦𝑧 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧)�̂�       (29.3) 

 

 
 

A2. Annex A2. Showing that the bra-ket product in Geometric Al-
gebra is equivalent to the operations in Matrix Algebra 
 
 

For this Annex, we will use the paper [55], that is very clear on how to operate with matri-

ces in Quantum mechanics. I used the same paper in [5] to make a one-to-one map of Dirac 

equation between geometric algebra and matrix algebra.  

 

If we consider a general spinor in matrix algebra: 

 

𝜓 = (

𝜓1
𝜓2
𝜓3
𝜓4

) = (

𝜓1𝑟 + 𝑖𝜓1𝑖
𝜓2𝑟 + 𝑖𝜓2𝑖
𝜓3𝑟 + 𝑖𝜓3𝑖
𝜓4𝑟 + 𝑖𝜓4𝑖

)  

 

 

In [5] we obtained the following relations to make a mapping between Geometric Algebra 

and matrix algebra with the coordinate frame (or frame orientation) used in [5]: 

𝜓1𝑟 = −𝜓𝑦 

𝜓1𝑖 = −𝜓𝑥 

𝜓2𝑖 = 𝜓𝑧 
𝜓3𝑟 = −𝜓𝑦𝑧 

𝜓3𝑖 = 𝜓𝑧𝑥 

𝜓4𝑟 = 𝜓𝑥𝑦  

 

Also, we obtained the following two equations, but with an opposite sign. In this case, we 

have to reverse their sign for the one-to-one map to work. This does not lose any generality 

as these relations completely free, we are just changing nomenclatures, to be able to com-

pare apples with apples (to have the coordinate system pointing in the same direction in 

both cases). 

𝜓2𝑟 = −𝜓𝑥𝑦𝑧 

𝜓4𝑖 = −𝜓0 
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So, applying these relations, we get: 

 
 

𝜓 = (

𝜓1
𝜓2
𝜓3
𝜓4

) =

(

 
 

−𝜓𝑦 − 𝑖𝜓𝑥
−𝜓𝑥𝑦𝑧 + 𝑖𝜓𝑧
−𝜓𝑦𝑧 + 𝑖𝜓𝑧𝑥
𝜓𝑥𝑦 − 𝑖𝜓0 )

 
 
=

(

 
 

−𝜓𝑦 − 𝜓𝑥�̂��̂��̂�

−𝜓𝑥𝑦𝑧 + 𝜓𝑧�̂��̂��̂�

−𝜓𝑦𝑧 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥𝑦 − 𝜓0�̂��̂��̂� )

 
 
   

𝜓† = (𝜓∗)𝑇 = (−𝜓𝑦 + 𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 −𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 − 𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 +𝜓0�̂��̂��̂�) 
 

We see in [5]that the probability is defined as: 

 

𝜌 = �̅� 𝛾0𝜓 = 𝜓†𝛾0𝛾0𝜓 = 𝜓†𝜓 

 

This is: 

 

𝜌 = 𝜓†𝜓 = 

(−𝜓𝑦 + 𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 −𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 + 𝜓0�̂��̂��̂�)

(

 
 

−𝜓𝑦 − 𝜓𝑥�̂��̂��̂�

−𝜓𝑥𝑦𝑧 +𝜓𝑧�̂��̂��̂�

−𝜓𝑦𝑧 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥𝑦 − 𝜓0�̂��̂��̂� )

 
 

= 𝜓𝑦
2 + 𝜓𝑥

2 +𝜓𝑥𝑦𝑧
2 + 𝜓𝑧

2 + 𝜓𝑦𝑧
2 + 𝜓𝑧𝑥

2 +𝜓𝑥𝑦
2 + 𝜓0

2
 

 

As you can check this value is the same as the one, we have obtained in 29.2 using Geo-

metric Algebra. 

 

Also, following [5] we have that the gamma matrices used in matrix algebra are: 

 

 

𝛾0 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) 

𝛾1 = (

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

) 

 

𝛾2 = (

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0
−𝑖 0 0 0

) 

𝛾3 = (

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

) 

 

𝛾5 = (

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

) 

 

If we perform the following products that we will need later, we get: 

 

 

𝛾0𝛾1 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

) = (

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

) 
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𝛾0𝛾2 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

0 0 0 −𝑖
0 0 𝑖 0
0 𝑖 0 0
−𝑖 0 0 0

) = (

0 0 0 −𝑖
0 0 𝑖 0
0 −𝑖 0 0
𝑖 0 0 0

) 

 

𝛾0𝛾3 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)(

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

) = (

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

) 

 

 

Now, checking [5] we see that: 

 

𝑗𝜇 = �̅�𝛾𝜇𝜓 = 𝜓†𝛾0𝛾𝜇𝜓 

If we start with the x axis that corresponds with μ=1 we have: 

 

𝑗𝑥 = 𝑗1 = �̅�𝛾1𝜓 = 𝜓†𝛾0𝛾1𝜓 

 

We have calculated the product of the γ’s before, so operating we have: 

 

(−𝜓𝑦 +𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 − 𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 +𝜓0�̂��̂��̂�) (

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

)

(

 
 

−𝜓𝑦 − 𝜓𝑥�̂��̂��̂�

−𝜓𝑥𝑦𝑧 + 𝜓𝑧�̂��̂��̂�

−𝜓𝑦𝑧 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥𝑦 − 𝜓0�̂��̂��̂� )

 
 

= (−𝜓𝑦 + 𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 − 𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 + 𝜓0�̂��̂��̂�)

(

 
 

𝜓𝑥𝑦 − 𝜓0�̂��̂��̂�

−𝜓𝑦𝑧 +𝜓𝑧𝑥�̂��̂��̂�

−𝜓𝑥𝑦𝑧 + 𝜓𝑧�̂��̂��̂�

−𝜓𝑦 −𝜓𝑥�̂��̂��̂� )

 
 

= −𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑥𝜓0 + 𝜓𝑥𝑦𝑧𝜓𝑦𝑧 + 𝜓𝑧𝜓𝑧𝑥 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧 + 𝜓𝑧𝑥𝜓𝑧 − 𝜓𝑥𝑦𝜓𝑦 +𝜓0𝜓𝑥
= 2(−𝜓𝑦𝜓𝑥𝑦 + 𝜓𝑥𝜓0 + 𝜓𝑥𝑦𝑧𝜓𝑦𝑧 + 𝜓𝑧𝜓𝑧𝑥) 

 

We can see that above result is the same as the one obtained in Geometric Algebra (29.3). 

 

For the axis y we make the same. 

 

𝑗𝑦 = 𝑗2 = �̅�𝛾2𝜓 = 𝜓†𝛾0𝛾1𝜓 

 

 

 

(−𝜓𝑦 + 𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 − 𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 + 𝜓0�̂��̂��̂�) (

0 0 0 −𝑖

0 0 𝑖 0

0 −𝑖 0 0

𝑖 0 0 0

)

(

 
 

−𝜓𝑦 − 𝜓𝑥�̂��̂��̂�

−𝜓𝑥𝑦𝑧 + 𝜓𝑧�̂��̂��̂�

−𝜓𝑦𝑧 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥𝑦 −𝜓0�̂��̂��̂� )

 
 

= (−𝜓𝑦 + 𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 −𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 + 𝜓0�̂��̂��̂�) (

0 0 0 −�̂��̂��̂�

0 0 �̂��̂��̂� 0

0 −�̂��̂��̂� 0 0

�̂��̂��̂� 0 0 0

)

(

 
 

−𝜓𝑦 − 𝜓𝑥�̂��̂��̂�

−𝜓𝑥𝑦𝑧 + 𝜓𝑧�̂��̂��̂�

−𝜓𝑦𝑧 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥𝑦 −𝜓0�̂��̂��̂� )

 
 
= 
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(−𝜓𝑦 +𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 − 𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 +𝜓0�̂��̂��̂�)

(

 
 

−𝜓𝑥𝑦�̂��̂��̂� − 𝜓0
−𝜓𝑦𝑧�̂��̂��̂� − 𝜓𝑧𝑥
+𝜓𝑥𝑦𝑧�̂��̂��̂� + 𝜓𝑧
−𝜓𝑦�̂��̂��̂� + 𝜓𝑥 )

 
 

= (−𝜓𝑦 + 𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 − 𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 + 𝜓0�̂��̂��̂�)

(

 
 

−𝜓0 −𝜓𝑥𝑦�̂��̂��̂�

−𝜓𝑧𝑥 − 𝜓𝑦𝑧�̂��̂��̂�

𝜓𝑧 +𝜓𝑥𝑦𝑧�̂��̂��̂�

𝜓𝑥−𝜓𝑦�̂��̂��̂� )

 
 

= 𝜓𝑦𝜓0 + 𝜓𝑥𝜓𝑥𝑦 + 𝜓𝑥𝑦𝑧𝜓𝑧𝑥 − 𝜓𝑧𝜓𝑦𝑧 − 𝜓𝑦𝑧𝜓𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧 + 𝜓𝑥𝑦𝜓𝑥 + 𝜓0𝜓𝑦
= 2(𝜓𝑦𝜓0 +𝜓𝑥𝜓𝑥𝑦 + 𝜓𝑥𝑦𝑧𝜓𝑧𝑥 − 𝜓𝑧𝜓𝑦𝑧) 

 

Again, with the same result as 29.3 

 

Axis z: 

 

𝑗𝑧 = 𝑗3 = �̅�𝛾3𝜓 = 𝜓†𝛾0𝛾3𝜓 

 

(−𝜓𝑦 +𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 − 𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 +𝜓0�̂��̂��̂�) (

0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

)

(

 
 

−𝜓𝑦 − 𝜓𝑥�̂��̂��̂�

−𝜓𝑥𝑦𝑧 +𝜓𝑧�̂��̂��̂�

−𝜓𝑦𝑧 + 𝜓𝑧𝑥�̂��̂��̂�

𝜓𝑥𝑦 −𝜓0�̂��̂��̂� )

 
 

= (−𝜓𝑦 + 𝜓𝑥�̂��̂��̂� −𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� −𝜓𝑦𝑧 − 𝜓𝑧𝑥�̂��̂��̂� 𝜓𝑥𝑦 + 𝜓0�̂��̂��̂�)

(

 
 

−𝜓𝑦𝑧 +𝜓𝑧𝑥�̂��̂��̂�

−𝜓𝑥𝑦 + 𝜓0�̂��̂��̂�

−𝜓𝑦 −𝜓𝑥�̂��̂��̂�

𝜓𝑥𝑦𝑧 − 𝜓𝑧�̂��̂��̂� )

 
 

= 𝜓𝑦𝜓𝑦𝑧 − 𝜓𝑥𝜓𝑧𝑥 + 𝜓𝑥𝑦𝑧𝜓𝑥𝑦 + 𝜓𝑧𝜓0 + 𝜓𝑦𝑧𝜓𝑦 − 𝜓𝑧𝑥𝜓𝑥 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧 + 𝜓0𝜓𝑧
= 2(𝜓𝑦𝜓𝑦𝑧 − 𝜓𝑥𝜓𝑧𝑥 +𝜓𝑥𝑦𝑧𝜓𝑥𝑦 + 𝜓𝑧𝜓0) 

 

Same result as 29.3 for the z axis. 

 

So, it has been shown that selecting a coherent position of the axes between matrix algebra 

and geometric algebra we get the same results, as expected. 

 

It is to be remarked that the matrix algebra in this case, clearly is not optimized. We have 

4x4 matrices that only use 4 items maximum different than zero. Geometric Algebra is 

much more compact in this case, avoiding unnecessary redundancies. 

 

 

A3. Annex A3. Bra-Ket product in non-Euclidean metric (Orthogo-
nal but not orthonormal) 

 

We apply the following relations, when performing the multiplication: 

 

 

�̂�2 = ‖�̂�‖2 = 𝑔𝑥𝑥 

�̂�2 = ‖�̂�‖2 = 𝑔𝑦𝑦 

                �̂�2 = ‖�̂�‖2 = 𝑔𝑧𝑧       (31) 
�̂��̂� = −�̂��̂� 

�̂��̂� = −�̂��̂� 

�̂��̂� = −�̂��̂� 

 
𝜓∗𝜓 = (𝜓0 +𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦�̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�)(𝜓0 +𝜓𝑥�̂� + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥�̂��̂� + 𝜓𝑥𝑦 �̂��̂� + 𝜓𝑥𝑦𝑧�̂��̂��̂�) = 

      𝜓0
2 + 𝜓0𝜓𝑥�̂� + 𝜓0𝜓𝑦�̂� + 𝜓0𝜓𝑧�̂� + 𝜓0𝜓𝑦𝑧�̂��̂� + 𝜓0𝜓𝑧𝑥 �̂��̂� + 𝜓0𝜓𝑥𝑦 �̂��̂� + 𝜓0𝜓𝑥𝑦𝑧�̂��̂��̂� + 

𝜓𝑥𝜓0�̂� + 𝜓𝑥
2‖�̂�‖2 +𝜓𝑥𝜓𝑦�̂��̂� − 𝜓𝑥𝜓𝑧�̂��̂� + 𝜓𝑥𝜓𝑦𝑧�̂��̂��̂� − 𝜓𝑥𝜓𝑧𝑥‖�̂�‖

2�̂� + 𝜓𝑥𝜓𝑥𝑦‖�̂�‖
2�̂� + 𝜓𝑥𝜓𝑥𝑦𝑧‖�̂�‖

2�̂��̂� + 

𝜓𝑦𝜓0�̂� − 𝜓𝑦𝜓𝑥�̂��̂� + 𝜓𝑦
2‖�̂�‖2 + 𝜓𝑦𝜓𝑧�̂��̂� + 𝜓𝑦𝜓𝑦𝑧‖�̂�‖

2�̂� + 𝜓𝑦𝜓𝑧𝑥 �̂��̂��̂� − 𝜓𝑦𝜓𝑥𝑦‖�̂�‖
2�̂� + 𝜓𝑦𝜓𝑥𝑦𝑧‖�̂�‖

2𝑧�̂� + 

𝜓𝑧𝜓0�̂� + 𝜓𝑧𝜓𝑥�̂��̂� − 𝜓𝑧𝜓𝑦�̂��̂� + 𝜓𝑧
2‖�̂�‖2 −𝜓𝑧𝜓𝑦𝑧‖�̂�‖

2�̂� + 𝜓𝑧𝜓𝑧𝑥‖�̂�‖
2�̂� + 𝜓𝑧𝜓𝑥𝑦 �̂��̂��̂� + 𝜓𝑧𝜓𝑥𝑦𝑧‖�̂�‖

2�̂��̂� 
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−𝜓𝑦𝑧𝜓0�̂��̂� − 𝜓𝑦𝑧𝜓𝑥�̂��̂��̂� + 𝜓𝑦𝑧𝜓𝑦‖�̂�‖
2�̂� − 𝜓𝑦𝑧𝜓𝑧‖�̂�‖

2�̂� + 𝜓𝑦𝑧
2‖�̂�‖2‖�̂�‖2 +𝜓𝑦𝑧𝜓𝑧𝑥‖�̂�‖

2�̂��̂� − 𝜓𝑦𝑧𝜓𝑥𝑦‖�̂�‖
2�̂��̂� + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧‖�̂�‖

2‖�̂�‖2�̂� − 

−𝜓𝑧𝑥𝜓0�̂��̂� − 𝜓𝑧𝑥𝜓𝑥‖�̂�‖
2�̂� − 𝜓𝑧𝑥𝜓𝑦�̂��̂��̂� + 𝜓𝑧𝑥𝜓𝑧‖�̂�‖

2�̂� − 𝜓𝑧𝑥𝜓𝑦𝑧‖�̂�‖
2�̂��̂� + 𝜓𝑧𝑥

2‖�̂�‖2‖�̂�‖2 + 𝜓𝑧𝑥𝜓𝑥𝑦‖�̂�‖
2�̂��̂� + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧‖�̂�‖

2‖�̂�‖2�̂� − 

−𝜓𝑥𝑦𝜓0�̂��̂� + 𝜓𝑥𝑦𝜓𝑥‖�̂�‖
2�̂� − 𝜓𝑥𝑦𝜓𝑦‖�̂�‖

2�̂� − 𝜓𝑥𝑦𝜓𝑧�̂��̂��̂� + 𝜓𝑥𝑦𝜓𝑦𝑧‖�̂�‖
2�̂��̂� − 𝜓𝑥𝑦𝜓𝑧𝑥‖�̂�‖

2�̂��̂� + 𝜓𝑥𝑦
2‖�̂�‖2‖�̂�‖2 +𝜓𝑥𝑦𝜓𝑥𝑦𝑧‖�̂�‖

2‖�̂�‖2�̂� − 

−𝜓𝑥𝑦𝑧𝜓0�̂��̂��̂� − 𝜓𝑥𝑦𝑧𝜓𝑥‖�̂�‖
2�̂��̂� − 𝜓𝑥𝑦𝑧𝜓𝑦‖�̂�‖

2�̂��̂� − 𝜓𝑥𝑦𝑧𝜓𝑧‖�̂�‖
2�̂��̂� + 𝜓𝑥𝑦𝑧𝜓𝑦𝑧‖�̂�‖

2‖�̂�‖2�̂� + 𝜓𝑥𝑦𝑧𝜓𝑧𝑥‖�̂�‖
2‖�̂�‖2�̂� + 𝜓𝑥𝑦𝑧𝜓𝑥𝑦‖�̂�‖

2‖�̂�‖2�̂�

+ 𝜓𝑥𝑦𝑧
2‖�̂�‖2‖�̂�‖2‖�̂�‖2 

 

The scalar part is: 
𝜌 = 𝜓0

2 + 𝜓𝑥
2‖𝑥‖2 + 𝜓𝑦

2‖�̂�‖2 + 𝜓𝑧
2‖�̂�‖2 +𝜓𝑦𝑧

2‖�̂�‖2‖�̂�‖2 + 𝜓𝑧𝑥
2‖�̂�‖2‖�̂�‖2 + 𝜓𝑥𝑦

2‖𝑥‖2‖�̂�‖2

+ 𝜓𝑥𝑦𝑧
2‖𝑥‖2‖�̂�‖2‖�̂�‖2 

 

 

𝜌 = 𝜓0
2 +𝜓𝑥

2𝑔𝑥𝑥 + 𝜓𝑦
2𝑔𝑦𝑦 +𝜓𝑧

2𝑔𝑧𝑧 +𝜓𝑦𝑧
2𝑔𝑦𝑦𝑔𝑧𝑧 + 𝜓𝑧𝑥

2𝑔𝑧𝑧𝑔𝑥𝑥 +𝜓𝑥𝑦
2𝑔𝑥𝑥𝑔𝑦𝑦 +𝜓𝑥𝑦𝑧

2𝑔𝑥𝑥𝑔𝑦𝑦𝑔𝑧𝑧 

 

 

In x axis: 
 

𝜓0𝜓𝑥 +𝜓𝑥𝜓0 −𝜓𝑦𝜓𝑥𝑦‖�̂�‖
2 + 𝜓𝑧𝜓𝑧𝑥‖�̂�‖

2 +𝜓𝑦𝑧𝜓𝑥𝑦𝑧‖�̂�‖
2‖�̂�‖2 + 𝜓

𝑧𝑥
𝜓
𝑧
‖�̂�‖2 − 𝜓

𝑥𝑦
𝜓
𝑦
‖𝑦‖2 + 𝜓

𝑥𝑦𝑧
𝜓
𝑦𝑧
‖𝑦‖2‖�̂�‖2 

 

2(𝜓0𝜓𝑥 − 𝜓𝑦𝜓𝑥𝑦‖�̂�‖
2 + 𝜓𝑧𝜓𝑧𝑥‖�̂�‖

2 +𝜓𝑦𝑧𝜓𝑥𝑦𝑧‖�̂�‖
2‖�̂�‖2) 

 

𝜓0𝜓𝑥 + 𝜓𝑥𝜓0 − 𝜓𝑦𝜓𝑥𝑦𝑔𝑦𝑦 +𝜓𝑧𝜓𝑧𝑥𝑔𝑧𝑧 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧𝑔𝑦𝑦𝑔𝑧𝑧 + 𝜓𝑧𝑥𝜓𝑧𝑔𝑧𝑧 − 𝜓𝑥𝑦𝜓𝑦𝑔𝑦𝑦 + 𝜓𝑥𝑦𝑧𝜓𝑦𝑧𝑔𝑦𝑦𝑔𝑧𝑧 

 

2(𝜓0𝜓𝑥 − 𝜓𝑦𝜓𝑥𝑦𝑔𝑦𝑦 + 𝜓𝑧𝜓𝑧𝑥𝑔𝑧𝑧 +𝜓𝑦𝑧𝜓𝑥𝑦𝑧𝑔𝑦𝑦𝑔𝑧𝑧) 

 

In y axis: 
+𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦‖𝑥‖

2 +𝜓𝑦𝜓0 −𝜓𝑧𝜓𝑦𝑧‖�̂�‖
2 − 𝜓𝑦𝑧𝜓𝑧‖�̂�‖

2 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧‖�̂�‖
2‖�̂�‖2 + 𝜓𝑥𝑦𝜓𝑥‖𝑥‖

2

+ 𝜓𝑥𝑦𝑧𝜓𝑧𝑥‖𝑥‖
2‖�̂�‖2 

 

2(+𝜓0𝜓𝑦 +𝜓𝑥𝜓𝑥𝑦‖𝑥‖
2 − 𝜓𝑧𝜓𝑦𝑧‖�̂�‖

2 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧‖�̂�‖
2‖�̂�‖2) 

 

+𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦𝑔𝑥𝑥 + 𝜓𝑦𝜓0 − 𝜓𝑧𝜓𝑦𝑧𝑔𝑧𝑧 − 𝜓𝑦𝑧𝜓𝑧𝑔𝑧𝑧 +𝜓𝑧𝑥𝜓𝑥𝑦𝑧𝑔𝑧𝑧𝑔𝑥𝑥 +𝜓𝑥𝑦𝜓𝑥𝑔𝑥𝑥 +𝜓𝑥𝑦𝑧𝜓𝑧𝑥𝑔𝑥𝑥𝑔𝑧𝑧 

2(+𝜓0𝜓𝑦 +𝜓𝑥𝜓𝑥𝑦𝑔𝑥𝑥 − 𝜓𝑦𝑧𝜓𝑧𝑔𝑧𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧𝑔𝑧𝑧𝑔𝑥𝑥) 

 

In z axis: 
  

+𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥‖𝑥‖
2 + 𝜓𝑦𝜓𝑦𝑧‖�̂�‖

2 + 𝜓𝑧𝜓0 + 𝜓𝑦𝑧𝜓𝑦‖�̂�‖
2 − 𝜓𝑧𝑥𝜓𝑥‖𝑥‖

2 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧‖𝑥‖
2‖�̂�‖2

+ 𝜓𝑥𝑦𝑧𝜓𝑥𝑦‖𝑥‖
2‖�̂�‖2 

 

2(+𝜓0𝜓𝑧 −𝜓𝑥𝜓𝑧𝑥‖𝑥‖
2 + 𝜓𝑦𝜓𝑦𝑧‖�̂�‖

2 +𝜓𝑥𝑦𝜓𝑥𝑦𝑧‖𝑥‖
2‖�̂�‖2) 

 

+𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥𝑔𝑥𝑥 + 𝜓𝑦𝜓𝑦𝑧𝑔𝑦𝑦 +𝜓𝑧𝜓0 +𝜓𝑦𝑧𝜓𝑦𝑔𝑦𝑦 − 𝜓𝑧𝑥𝜓𝑥𝑔𝑥𝑥 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧𝑔𝑥𝑥𝑔𝑦𝑦 +𝜓𝑥𝑦𝑧𝜓𝑥𝑦𝑔𝑥𝑥𝑔𝑦𝑦 

 

2(+𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥𝑔𝑥𝑥 + 𝜓𝑦𝜓𝑦𝑧𝑔𝑦𝑦 +𝜓𝑥𝑦𝜓𝑥𝑦𝑧𝑔𝑥𝑥𝑔𝑦𝑦) 

In yz plane: 
 

+𝜓0𝜓𝑦𝑧 + 𝜓𝑥𝜓𝑥𝑦𝑧‖�̂�‖
2 +𝜓𝑦𝜓𝑧 − 𝜓𝑧𝜓𝑦 −𝜓𝑦𝑧𝜓0 +𝜓𝑧𝑥𝜓𝑥𝑦‖�̂�‖

2 −𝜓𝑥𝑦𝜓𝑧𝑥‖�̂�‖
2 − 𝜓𝑥𝑦𝑧𝜓𝑥‖�̂�‖

2 = 0 

 

 

In zx plane: 
+𝜓0𝜓𝑧𝑥 − 𝜓𝑥𝜓𝑧 + 𝜓𝑦𝜓𝑥𝑦𝑧‖�̂�‖

2 +𝜓𝑧𝜓𝑥�̂��̂� − 𝜓𝑦𝑧𝜓𝑥𝑦‖�̂�‖
2 − 𝜓𝑧𝑥𝜓0 +𝜓𝑥𝑦𝜓𝑦𝑧‖�̂�‖

2 − 𝜓𝑥𝑦𝑧𝜓𝑦‖�̂�‖
2 = 0 

 

 

In xy plane: 
 

+𝜓0𝜓𝑥𝑦 +𝜓𝑥𝜓𝑦 − 𝜓𝑦𝜓𝑥 + 𝜓𝑧𝜓𝑥𝑦𝑧‖�̂�‖
2 + 𝜓𝑦𝑧𝜓𝑧𝑥‖�̂�‖

2 − 𝜓𝑧𝑥𝜓𝑦𝑧‖�̂�‖
2 − 𝜓𝑥𝑦𝜓0 −𝜓𝑥𝑦𝑧𝜓𝑧‖�̂�‖

2 = 0 

In xyz plane: 
 

+𝜓0𝜓𝑥𝑦𝑧 +𝜓𝑥𝜓𝑦𝑧 + 𝜓𝑦𝜓𝑧𝑥 + 𝜓𝑧𝜓𝑥𝑦 −𝜓𝑦𝑧𝜓𝑥 −𝜓𝑧𝑥𝜓𝑦 − 𝜓𝑥𝑦𝜓𝑧 − 𝜓𝑥𝑦𝑧𝜓0 = 0 

 

 

Again, we only have the probability (scalars) and the fermionic current (vectors). The 

planes and the trivector sum zero. 

 

So, summing up: 

 

𝜓†𝜓 = 𝜓∗𝜓 = 𝜌 + 𝑗      (32) 
 

Being for this case (orthogonal but non-orthonormal, non-Euclidean case): 
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𝜌 = 𝜓0
2 +𝜓𝑥

2𝑔𝑥𝑥 + 𝜓𝑦
2𝑔𝑦𝑦 +𝜓𝑧

2𝑔𝑧𝑧 +𝜓𝑦𝑧
2𝑔𝑦𝑦𝑔𝑧𝑧 + 𝜓𝑧𝑥

2𝑔𝑧𝑧𝑔𝑥𝑥 +𝜓𝑥𝑦
2𝑔𝑥𝑥𝑔𝑦𝑦 + 𝜓𝑥𝑦𝑧

2𝑔𝑥𝑥𝑔𝑦𝑦𝑔𝑧𝑧 (33) 

 

And: 

 

𝑗 = 2(𝜓0𝜓𝑥 − 𝜓𝑦𝜓𝑥𝑦𝑔𝑦𝑦 + 𝜓𝑧𝜓𝑧𝑥𝑔𝑧𝑧 + 𝜓𝑦𝑧𝜓𝑥𝑦𝑧𝑔𝑦𝑦𝑔𝑧𝑧)�̂�

+ 2(+𝜓0𝜓𝑦 + 𝜓𝑥𝜓𝑥𝑦𝑔𝑥𝑥 − 𝜓𝑦𝑧𝜓𝑧𝑔𝑧𝑧 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧𝑔𝑧𝑧𝑔𝑥𝑥)�̂�

+ 2(+𝜓0𝜓𝑧 − 𝜓𝑥𝜓𝑧𝑥𝑔𝑥𝑥 + 𝜓𝑦𝜓𝑦𝑧𝑔𝑦𝑦 + 𝜓𝑥𝑦𝜓𝑥𝑦𝑧𝑔𝑥𝑥𝑔𝑦𝑦)�̂�      

 
 

A4. Annex A4. Bra-Ket product in non-Euclidean metric (Non or-
thogonal and not orthonormal) 
 

We apply the following relations: 

 

�̂�2 = ‖�̂�‖2 = 𝑔𝑥𝑥 

�̂�2 = ‖�̂�‖2 = 𝑔𝑦𝑦 

                �̂�2 = ‖�̂�‖2 = 𝑔𝑧𝑧       (30) 
�̂��̂� = 2𝑔𝑥𝑦 − �̂��̂� 

�̂��̂� = 2𝑔𝑦𝑧 − �̂��̂� 

�̂��̂� = 2𝑔𝑧𝑥 − �̂��̂� 
 
 

 

𝜓∗𝜓 = (𝜓0 + 𝜓𝑥𝑥 + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂� + 𝜓𝑧𝑥𝑥�̂� + 𝜓𝑥𝑦�̂�𝑥 + 𝜓𝑥𝑦𝑧�̂��̂�𝑥)(𝜓0 + 𝜓𝑥𝑥 + 𝜓𝑦�̂� + 𝜓𝑧�̂� + 𝜓𝑦𝑧�̂��̂�

+ 𝜓𝑧𝑥�̂�𝑥 + 𝜓𝑥𝑦𝑥�̂� + 𝜓𝑥𝑦𝑧𝑥�̂��̂�) = 

      𝜓0
2 +𝜓0𝜓𝑥𝑥 + 𝜓0𝜓𝑦�̂� + 𝜓0𝜓𝑧�̂� + 𝜓0𝜓𝑦𝑧�̂��̂� + 𝜓0𝜓𝑧𝑥�̂�𝑥 + 𝜓0𝜓𝑥𝑦𝑥�̂� + 𝜓0𝜓𝑥𝑦𝑧𝑥�̂��̂� + 

𝜓𝑥𝜓0�̂� + 𝜓𝑥
2‖�̂�‖2 + 𝜓𝑥𝜓𝑦𝑥�̂� + 𝜓𝑥𝜓𝑧𝑥�̂� + 𝜓𝑥𝜓𝑦𝑧𝑥�̂��̂� + 𝜓𝑥𝜓𝑧𝑥𝑥�̂�𝑥 + 𝜓𝑥𝜓𝑥𝑦‖𝑥‖

2�̂� + ‖𝑥‖2𝜓𝑥𝜓𝑥𝑦𝑧�̂��̂� + 

𝜓𝑦𝜓0�̂� + 𝜓𝑦𝜓𝑥�̂�𝑥 + 𝜓𝑦
2‖�̂�‖2 + 𝜓𝑦𝜓𝑧�̂��̂� + ‖�̂�‖

2𝜓𝑦𝜓𝑦𝑧�̂� + 𝜓𝑦𝜓𝑧𝑥�̂��̂�𝑥 + 𝜓𝑦𝜓𝑥𝑦�̂�𝑥�̂� + 𝜓𝑦𝜓𝑥𝑦𝑧�̂�𝑥�̂��̂� + 

𝜓𝑧𝜓0�̂� + 𝜓𝑧𝜓𝑥�̂�𝑥 + 𝜓𝑧𝜓𝑦�̂��̂� + 𝜓𝑧
2‖�̂�‖2 + 𝜓𝑧𝜓𝑦𝑧�̂��̂��̂� + 𝜓𝑧𝜓𝑧𝑥‖�̂�‖

2�̂� + 𝜓𝑧𝜓𝑥𝑦 �̂�𝑥�̂� + 𝜓𝑧𝜓𝑥𝑦𝑧�̂�𝑥�̂��̂� 

+𝜓𝑦𝑧𝜓0�̂��̂� + 𝜓𝑦𝑧𝜓𝑥�̂��̂�𝑥 + 𝜓𝑦𝑧𝜓𝑦 �̂�‖�̂�‖
2 + 𝜓𝑦𝑧𝜓𝑧�̂��̂��̂� + 𝜓𝑦𝑧

2‖�̂�‖2‖�̂�‖2 + 𝜓𝑦𝑧𝜓𝑧𝑥�̂��̂��̂�𝑥 + 𝜓𝑦𝑧𝜓𝑥𝑦�̂��̂�𝑥�̂�

+ 𝜓𝑦𝑧𝜓𝑥𝑦𝑧�̂��̂�𝑥�̂��̂� 

+𝜓𝑧𝑥𝜓0𝑥�̂� + 𝜓𝑧𝑥𝜓𝑥𝑥‖�̂�‖
2 + 𝜓𝑧𝑥𝜓𝑦𝑥�̂��̂� + 𝜓𝑧𝑥𝜓𝑧𝑥�̂�𝑥 − 𝜓𝑧𝑥𝜓𝑦𝑧𝑥�̂��̂��̂� + 𝜓𝑧𝑥

2 + 𝜓𝑧𝑥𝜓𝑥𝑦𝑥�̂�𝑥�̂� + 𝜓𝑧𝑥𝜓𝑥𝑦𝑧𝑥�̂�𝑥�̂��̂�

+ 

+𝜓𝑥𝑦𝜓0�̂�𝑥 + 𝜓𝑥𝑦𝜓𝑥�̂�‖𝑥‖
2 + 𝜓𝑥𝑦𝜓𝑦�̂�𝑥�̂� + 𝜓𝑥𝑦𝜓𝑧�̂�𝑥�̂� + 𝜓𝑥𝑦𝜓𝑦𝑧�̂�𝑥�̂��̂� + 𝜓𝑥𝑦𝜓𝑧𝑥�̂�𝑥�̂�𝑥 + 𝜓𝑥𝑦

2‖�̂�‖2‖𝑥‖2

+ 𝜓𝑥𝑦𝜓𝑥𝑦𝑧‖𝑥‖
2‖�̂�‖2�̂� + 

+𝜓𝑥𝑦𝑧𝜓0�̂��̂�𝑥 + 𝜓𝑥𝑦𝑧𝜓𝑥‖𝑥‖
2�̂��̂� + 𝜓𝑥𝑦𝑧𝜓𝑦�̂��̂�𝑥�̂� + 𝜓𝑥𝑦𝑧𝜓𝑧�̂��̂�𝑥�̂� + 𝜓𝑥𝑦𝑧𝜓𝑦𝑧�̂��̂�𝑥�̂��̂� + 𝜓𝑥𝑦𝑧𝜓𝑧𝑥�̂��̂�𝑥�̂�𝑥

+ 𝜓𝑥𝑦𝑧𝜓𝑥𝑦‖𝑥‖
2‖�̂�‖2�̂� + 𝜓𝑥𝑦𝑧

2‖𝑥‖2‖�̂�‖2‖�̂�‖2 

 

And then for the non-simplified products above, you can use the following relations: 
 

𝑥�̂� = 2𝑔𝑧𝑥 − �̂�𝑥 

𝑥�̂�𝑥 = (2𝑔𝑧𝑥 − �̂�𝑥)𝑥 = 2𝑔𝑧𝑥𝑥 − �̂�‖𝑥‖
2 

 

�̂�𝑥 = (2𝑔𝑥𝑦 − 𝑥�̂� ) 

�̂��̂�𝑥 = �̂�(2𝑔𝑧𝑥 − 𝑥�̂�) = 2𝑔𝑧𝑥�̂� − �̂�𝑥�̂� = 2𝑔𝑧𝑥�̂� − (2𝑔𝑥𝑦 − 𝑥�̂�)�̂� = 2𝑔𝑧𝑥�̂� − 2𝑔𝑥𝑦�̂� + 𝑥�̂��̂� 

�̂�𝑥�̂� = (2𝑔𝑥𝑦 − 𝑥�̂�)�̂� = 2𝑔𝑥𝑦�̂� − 𝑥‖�̂�‖
2 

�̂�𝑥�̂��̂� = (2𝑔𝑥𝑦�̂� − 𝑥‖�̂�‖
2)�̂� = 2𝑔𝑥𝑦�̂��̂� − 𝑥�̂�‖�̂�‖

2 

 

�̂��̂� = 2𝑔𝑦𝑧 − �̂��̂� 

�̂��̂��̂� = (2𝑔𝑦𝑧 − �̂��̂�)�̂� = 2𝑔𝑦𝑧�̂� − �̂�‖�̂�‖
2 

�̂�𝑥�̂� = (2𝑔𝑧𝑥 − 𝑥�̂�)�̂� = 2𝑔𝑧𝑥�̂� − 𝑥�̂��̂� = 2𝑔𝑧𝑥�̂� − 𝑥(2𝑔𝑦𝑧 − �̂��̂�) = 2𝑔𝑧𝑥�̂� − 2𝑔𝑦𝑧�̂� + 𝑥�̂��̂� 

�̂�𝑥�̂��̂� = (2𝑔𝑧𝑥 − 𝑥�̂�)�̂��̂� = 2𝑔𝑧𝑥�̂��̂� − 𝑥�̂��̂��̂� = 2𝑔𝑧𝑥�̂��̂� − 𝑥(2𝑔𝑦𝑧 − �̂��̂�)�̂� = 2𝑔𝑧𝑥�̂��̂� − 2𝑔𝑦𝑧𝑥 + 𝑥�̂�‖�̂�‖
2 

 

�̂��̂� = 2𝑔𝑦𝑧 − �̂��̂� 

�̂��̂�𝑥 = (2𝑔𝑦𝑧 − �̂��̂�)𝑥 = 2𝑔𝑦𝑧�̂� − �̂�(2𝑔𝑧𝑥 − 𝑥�̂�) = 2𝑔𝑦𝑧�̂� − 2𝑔𝑧𝑥�̂� +  (2𝑔𝑥𝑦 − 𝑥�̂� )�̂�

= 2𝑔𝑦𝑧𝑥 − 2𝑔𝑧𝑥�̂� +  2𝑔𝑥𝑦�̂� − 𝑥�̂��̂� 

�̂��̂��̂� = (2𝑔𝑦𝑧 − �̂��̂�)�̂� = 2𝑔𝑦𝑧�̂� − �̂�‖�̂�‖
2 

�̂��̂��̂��̂� = (2𝑔𝑦𝑧 − �̂��̂�)�̂��̂� = 2𝑔𝑦𝑧�̂��̂� − ‖�̂�‖
2�̂��̂� = 2𝑔𝑦𝑧�̂��̂� − ‖�̂�‖

2(2𝑔𝑥𝑦 − �̂��̂�) = 2𝑔𝑦𝑧�̂��̂� − 2‖�̂�‖
22𝑔𝑥𝑦 + ‖�̂�‖

2�̂��̂� 
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�̂��̂�𝑥�̂� = �̂�(2𝑔𝑥𝑦�̂� − 𝑥‖�̂�‖
2) = 2𝑔𝑥𝑦�̂��̂� − ‖�̂�‖

2�̂�𝑥 = 2𝑔𝑥𝑦(2𝑔𝑦𝑧 − �̂��̂�) − ‖�̂�‖
2�̂�𝑥

= 4𝑔𝑥𝑦𝑔𝑦𝑧 − 2𝑔𝑥𝑦�̂��̂� − ‖�̂�‖
2�̂�𝑥 

 

�̂��̂�𝑥�̂��̂� = (4𝑔𝑥𝑦𝑔𝑦𝑧 − 2𝑔𝑥𝑦�̂��̂� − ‖�̂�‖
2�̂�𝑥)�̂� = 4𝑔𝑥𝑦𝑔𝑦𝑧�̂� − 2𝑔𝑥𝑦‖�̂�‖

2�̂� − ‖�̂�‖2(2𝑔𝑧𝑥�̂� − �̂�‖𝑥‖
2)

= 4𝑔𝑥𝑦𝑔𝑦𝑧�̂� − 2𝑔𝑥𝑦‖�̂�‖
2�̂� − 2𝑔𝑧𝑥‖�̂�‖

2�̂� + ‖�̂�‖2‖𝑥‖2�̂� 

 
 

𝑥�̂� = 2𝑔𝑧𝑥 − �̂�𝑥 

𝑥�̂��̂� = 𝑥(2𝑔𝑦𝑧 − �̂��̂�) = 2𝑔𝑦𝑧�̂� − 𝑥�̂��̂� 

𝑥�̂�𝑥 = 2𝑔𝑧𝑥𝑥 − �̂�‖𝑥‖
2 

𝑥�̂��̂��̂� = 𝑥(2𝑔𝑦𝑧�̂� − �̂�‖�̂�‖
2) = 2𝑔𝑦𝑧𝑥�̂� − 𝑥�̂�‖�̂�‖

2 = 2𝑔𝑦𝑧(2𝑔𝑧𝑥 − �̂�𝑥) − 𝑥�̂�‖�̂�‖
2

= 4𝑔𝑦𝑧𝑔𝑧𝑥 − 2𝑔𝑦𝑧�̂�𝑥 − 𝑥�̂�‖�̂�‖
2 

 

𝑥�̂�𝑥�̂� = 𝑥(2𝑔𝑧𝑥 − 𝑥�̂�)�̂� = 2𝑔𝑧𝑥𝑥�̂� − ‖𝑥‖
2�̂��̂� = 2𝑔𝑧𝑥𝑥�̂� − ‖𝑥‖

2(2𝑔𝑦𝑧 − �̂��̂�)

= 2𝑔𝑧𝑥𝑥�̂� − 2𝑔𝑦𝑧‖�̂�‖
2 + ‖𝑥‖2�̂��̂� 

 

 

𝑥�̂�𝑥�̂��̂� = 𝑥(2𝑔𝑧𝑥 − 𝑥�̂�)�̂��̂� = 2𝑔𝑧𝑥𝑥 − ‖𝑥‖
2(2𝑔𝑦𝑧�̂� − �̂�‖�̂�‖

2) = 2𝑔𝑧𝑥�̂� − 2𝑔𝑦𝑧‖𝑥‖
2�̂� − ‖�̂�‖2‖�̂�‖2�̂� 

 

�̂�𝑥�̂� = 2𝑔𝑥𝑦�̂� − 𝑥‖�̂�‖
2 

�̂�𝑥�̂� = (2𝑔𝑥𝑦 − 𝑥�̂�)�̂� = 2𝑔𝑥𝑦�̂� − 𝑥�̂��̂� 

�̂�𝑥�̂��̂� = �̂�(2𝑔𝑥𝑦 − �̂�𝑥)�̂� = 2𝑔𝑥𝑦�̂��̂� − ‖�̂�‖
2(2𝑔𝑧𝑥 − �̂�𝑥) = 2𝑔𝑥𝑦�̂��̂� − 2𝑔𝑧𝑥‖�̂�‖

2 + ‖�̂�‖2�̂�𝑥 

 

�̂�𝑥�̂�𝑥 = �̂�𝑥(2𝑔𝑧𝑥 − 𝑥�̂�) = 2𝑔𝑧𝑥�̂�𝑥 − ‖𝑥‖
2�̂��̂� = 2𝑔𝑧𝑥(2𝑔𝑥𝑦 − 𝑥�̂� ) − ‖𝑥‖

2�̂��̂� = 4𝑔𝑧𝑥𝑔𝑥𝑦 − 2𝑔𝑧𝑥𝑥�̂� 

 

 

�̂��̂�𝑥 = 2𝑔𝑦𝑧𝑥 − 2𝑔𝑧𝑥�̂� +  2𝑔𝑥𝑦�̂� − 𝑥�̂��̂� 

‖𝑥‖2�̂��̂� = ‖𝑥‖2(2𝑔𝑦𝑧 − �̂��̂�) = 2𝑔𝑦𝑧‖𝑥‖
2 − ‖𝑥‖2�̂��̂� 

�̂��̂�𝑥�̂� = 4𝑔𝑥𝑦𝑔𝑦𝑧 − 2𝑔𝑥𝑦�̂��̂� − ‖�̂�‖
2�̂�𝑥 

�̂��̂�𝑥�̂� = (2𝑔𝑦𝑧�̂� − 2𝑔𝑧𝑥�̂� +  2𝑔𝑥𝑦�̂� − 𝑥�̂��̂�)�̂� = 2𝑔𝑦𝑧𝑥�̂� − 2𝑔𝑧𝑥�̂��̂� + 2𝑔𝑥𝑦‖�̂�‖
2 − ‖�̂�‖2�̂��̂� 

�̂��̂�𝑥�̂��̂� = 4𝑔𝑥𝑦𝑔𝑦𝑧�̂� − 2𝑔𝑥𝑦‖�̂�‖
2�̂� − 2𝑔𝑧𝑥‖�̂�‖

2𝑥 + ‖�̂�‖2‖�̂�‖2�̂� 

�̂��̂�𝑥�̂�𝑥 = �̂��̂�𝑥(2𝑔𝑧𝑥 − 𝑥�̂�) = 2𝑔𝑧𝑥�̂��̂�𝑥 − ‖𝑥‖
2�̂��̂��̂�

= 2𝑔𝑧𝑥(2𝑔𝑦𝑧�̂� − 2𝑔𝑧𝑥�̂� +  2𝑔𝑥𝑦�̂� − 𝑥�̂��̂�) − ‖𝑥‖
2(2𝑔𝑦𝑧�̂� − �̂�‖�̂�‖

2)

= 4𝑔𝑧𝑥𝑔𝑦𝑧�̂� − 4𝑔𝑧𝑥𝑔𝑧𝑥�̂� + 4𝑔𝑥𝑦�̂� − 2𝑔𝑧𝑥𝑥�̂��̂� − 2‖𝑥‖
2𝑔𝑦𝑧�̂� + ‖𝑥‖

2‖�̂�‖2�̂� 

 

As you can imagine, this is a complete nightmare. It is better to make the operation once 

we know exactly which metric to use and no to try to go the most general case. Anyhow, 

with the use of a computer with a Geometric Algebra program, for sure, we can get the 

final result. I leave it to you as homework before you commit suicide. 

 
 
 

 


