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0- Abstract:

In this paper we show an approach to the Ramanujan summation of series formulas, proving that it
is possible a contracted version of them.

1- Introduction.

Srinivasa Ramanujan (1887-1920), the Hindu genius send to G. H. Hardy a letter in 1903 [1]. In this
letter were a few discoveries and advanced (for that time) questions that he made by himself. In this
paper we will focus on part “V: Theorems of summation of series”. We will do a more modern
contraction of the equations with a calculus approach. We will distinguish between “Ramanujan
notation” and “Contracted notation”.

I will use to contract negative parts of sequences my own operator (Subtractory), if you want to
know more about negative-summation operator you can see [2].

As warning I will say that I do not test the veracity of any Ramanujan’s equality so it can be wrong
as we understand the mathematics in a numeric form today.

2- Section V contractions:
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(2.2) Contracted notation
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(6.2) Contracted notation

®© 1 0 1 5
( 2 )+2( P ): JT
n=1(2n—1)5cosh7(2n;1)ﬂ n=1(4n-1p cosh7(4n;1)” 768
(7.1) Ramanujan notation
1 1 1

+ + +..=
(1°+2%)(sinh 3 J'L’—Sinhf[)) ((22+32)(sinh5ﬂ—sinh J'L’)> ((32+42)(sinh 7Jr—sinhﬂ))

1 (# L, cothn—Z tanh® )
" 2sinh 2

(7.2) Contracted notation
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(10.1) Ramanujan notation
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Can always be exactly found if n is any integer positive or negative.

(10.2) Contracted notation
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Can always be exactly found if n is any integer positive or negative.

(11.1) Ramanujan notation
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3- Conclusions.
As you can see almost every summation series from Ramanujan (except integral one) can be

expressed as calculus contracted notation. I think, and this is just a comment, that nowadays we can
do a more technical mathematics, with more precision in our calculus expressions.
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