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Abstract. Definitions and theorems related to non-Archimedean functional analysis on
non-Archemedean field *R% and on complex field *C% = *R% + i*R¥are
considered.Definitions and theorems appropriate to analysis on non-Archemedean
field *R% and on complex field *C% = *R% + i*R¥Zare given in [1]-[2]
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1.0%-algebras

Definition 1.1 (¢*-algebra). Let X be any set. We denote by 2X = P(X) = {A: Ac X}
the set of all subsets of X.A family & < 2% is called a ¢*-algebra (on X) if:

()T e F;

(il) F is closed under complements, i.e. A € & implies X\A € F;

(iii) F is closed under hypercountable unions, i.e. if (An) iS @ hyper infinite
sequence in & then | J .+ An € F.

Proposition 1.1.If F is a s*-algebra on X then:

1. F is closed under hypercountable intersections, i.e. if (An) . iS @ hyper infinite
sequence in F then (] An € .

neN#
2. Xe &.
3. F is closed under hyperfinite unions and hyperfinite intersections.
4. F is closed under set differences.
5. F is closed under symmetric differences.
Proposition 1.2.Suppose & < 2*X is a family of subsets satisfying the following:
1. e &F;
2. & is closed under complements;
3. & is closed under hyperinfinite intersections.
Then & is a ¢*-algebra.
Proposition 1.3.If ().« is a collection of s*-algebras on X, then [ F, is also a

o*-algebra on X.

Proposition 1.4.(c%-algebra generated by subsets). Let K be a collection of subsets
of X. There exists a ¢*-algebra, denoted ¢*(K) such that K < ¢*(K) and for every other
o algebra & such that K = & we have that ¢*(K) c F

We call %(K) the o*-algebra generated by K.

Proof. Define ¢%(K) 2 ({F|F is a o*-algebra on X,K < F}.

This is a o*-algebra with the required properties.

Proposition 1.5.1f K < £ then ¢#(K) < ¢#(£). Also, if K =« F and F is a
o*-algebra, then ¢*(K) < F.

Definition 1.2. (Borel s*-algebra). Given a topological space X, the Borel ¢*-algebra
is the o”-algebra generated by the open sets. It is denoted B#(X).

Specifically in the case X = *R#4, d e N*we have that

Bf 2 B*(*R¥) = ¢*(U|U is an #-open set ).

A Borel-#-measurable set, i.e. a set in B¥(X), is called a #-Borel set.

Measurable functions. Let f be a *R#-valued function defined on a set X. We
suppose that some ¢#-algebra Q < P(X) is fixed.

Definition 1.3. We say that f is #-measurable, if f ([a,b]) € Q for any hyperreals
a,b € *R# such that a < b.

The following three propositions are obvious.

Proposition 1.7. Let f : X - *R¥ be a function. Then the following conditions

are equivalent:

(a) fis #measurable;

(b) f-1([0,b)) € Q for any hyperreal b € *R%;

(€) f1((b,)) e Q for any hyperreal b € *R¥;



(d) f-%(B) € Q for any B € B(R).

Proposition 1.8 Let f and g be #-measurable functions, then

(@) a x f+ B x gis #-measurable for any o, € *R¥;

(b) functions max{f,g} and f x g are #measurable.

In particular, functions f* := max{f,0y,f~ = (-f) *, and [f|= f* + f~ are
#measurable.

82. #Measures

Definition 2.1. A pair (X,¥) where F is a ¢*-algebra on X is call a #measurable
space. Elements of F are called #-measurable sets.

Given a #-measurable space (X,¥), a function p* : F - [0,0"] is called a #measure
on (X,¥) if

1. u*(@) = 0;

2. (Hyper infinite additivity) For all hyper infinite sequences (An) o+ < F of pairwise

disjoint sets in F, we have that u’*(U An> = Ext-Z W (An).
neN# neN#
(X, F,p#) is called a #-measure space.
Definition 2.2. A measure space (X, ¥, y*) is called: (a) hyperfinite if u#(X) < oo*.
(b)lt is called o*-hyperfinite if X = U An where A, € & and p#(An) < o for all n € N#,
neN#
Definition 2.3. Let X be a o*-algebra of subsets of a set X, and let E = (E, ||- ||,,) be
a non Archimedean Banach space.A function p* : £ - EU {*«} is called a
vector-valued #-measure (or E-valued measure) if

() 1 (2) = 0;
(b) M(U An> = Eth u#(An) for any pairwise disjoint sequence An,n € N#,

neN# neN#
AnC %
(c) for any S e X, u#(S) = =, there exists B € X such that B < Sand
0 < [W*(B)]|, < *oo.
Definition 2.4.(a) A function p# : F - *C% U {*o} is called a complex #measure
if
1.u*(®@) =0,

2.u#<U An> = Eth u#(An) for any sequence An,n € N* of pairwise disjoint
neN# neN*

sets from &, and, for any A € F,u#(A) = *wo, there exists B € & such that

B < Aand 0 < |u*(B)], < *oo.

(b) A function p# : F - *R% U {*w} is called a signed #measure if

u(@) =0

u’*(U An> = Ext-Z u#(An) for any sequence An,n € N* of pairwise disjoint
neN# neN?#

sets from &, , and, for any A € &,u#(A) = *oo, there exists B € F such that

B < Aand 0 < |u#(B)|< *oo.

Definition 2.5. If a certain property involving the points of #measure space is true,
except a subset having #-measure zero, then we say that this property is true



#-almost everywhere (abbreviated as #-a.e.).

Definition 2.6. Let f,,n € N* be a hyper infinite sequence of *R#-valued functions
defined on X. We say that:

1. fn -4 f pointwise, if fa(x) —# f(x) for all x € X;

2. fn —»# f almost #-everywhere (#-a.e.), if fa(x) -4 f(x) for all x € X except

a set of #measure 0;

3. fn =4 funiformly, if for any ¢ > 0,¢ = 0O there is n(e) such that

sup{[fn(x) — f(X)|: x € X} < ¢ forall n > n(e).

83. The Lebesgue #-Integral

In the following consideration, we fix a o”-finite #measure space (X, F, u¥).
Definition 3.1.Let A; € F,i = 1,...,n € *N, be such that p#(A) < *« for all i, and
AiNA; =@ foralli +# j. The external function

n
f0) = Ext-) . diza (), 3.1)
Ai € *R¥, is called a simple external function. The Lebesgue external integral
(Lebesgue #-integral) of a simple external function f(x) is defined as

Ext- jx fOodu? = Bxt- 3" Ai(A). (3.2)

The Lebesgue external integral of a simple function is well defined.

Definition 3.2. Suppose that u# is hyperfinite. Let f : X - *R¥ be an arbitrary
nonnegative bounded in *R¥ #measurable external function and let f,, be a hyper
infinite sequence of simple functions which #-converges uniformly to f. Then

the Lebesgue integral of f is

Ext- [ fO0d** = #lim.. OO(Ext- [ fn(x)d#p#). (3.3)
X X
Definition 3.3. Let f : X » *R¥ be a #-measurable function. Then the Lebesgue
#-integral of f is defined by
Ext- j f(x)d*u* = Ext- j f+(x)d*p* — Ext- j f-(x)d*p. (3.4)
X X X
If both of these terms are finite or hyperfinite then the function f is called #-integrable.

In this case we write f € L} = L¥(X,F,u").
Notation 3.1.We will use the following notation. For any A € & :

Ext- j f(x)d*u* = Ext- j f(X) y () d* . (3.5)
A X

Lemma 3.1.(1) Let f : X » *R#% be an arbitrary nonnegative #-measurable function
then

Ext- j f(x)d*u* =
X (3.6)
sup{Ext- IX (D(X)d#u#‘(o is a simple function such that 0 < ¢(x) < f(x)}.

(2) If f,g : X » *R¥ are #-measurable, g is #-integrable, and [f(x)|< g(x), then f
is #-integrable and



‘Ext- [ f(x)d#p#‘ < Bxt- [ goodip. 3.7)
X X

(3) Ext-J.X|f(x) |d#u# = 0if and only if f(x) = 0 #a.e.

(4) If f,f2,...f, : X > *R%,n € *N are integrable then, for A1,42,...,An € *RE,
the linear combination Ext->_" 4ifi is #-integrable and

ex- [ (Bxt- X7, af ) dfu” = Ext- X7, (Ext- [ i), (3.8
(5) Let f € L{(X, &, p#), then the formula

V(A = Extj f(x)d*u* = Extj f(X) y a(X) P (3.9)
A X

defines a signed #-measure on the s*-algebra & .
Notation 3.1. Assume that f,g : X — *R¥ are # integrable functions and such that
f<g#ae.lf
Ext- j fO)dfp? < Extj g(x)d*u

X X
we abbreviate f < g.
Definition 3.4 We say that a hyper infinite sequence {fn};fl of #integrable functions
L%-#-converges to f (or #converges in L{(X,F, u#)) if

Ext- jx|fn —fld*p* »4 Oasn - *o. (3.11)

Theorem 3.1 (The monotone #-convergence theorem) If {fn};fl is a hyper infinite
sequence in L (X, &, p*) such that f; < fj.1 for all j and f(x) = suphen fn(X) then

Ext- j f00d 7 = #-lim ... Ext- j f00d. (3.12)

Theorem 3.2 (The dominated #-convergence theorem) Let f and g be #measurable,
let f, be #-measurable for any n € *N such that [fr(X)|< g(X) #-a.e., and f, -4 f
#-a.e. If g is #integrable then f and f, are also #-integrable and

Ext- j f00d" 7 = #-lim ... Ext- j fn00d*. (3.12)

Definition 3.5.Let {(Xq, F «, U¥)}.ca be a nonempty family of #-measure spaces. We
define the family Q of blocks:

A(Aa1,Aaz, ... Aan) i= Ao1 x Aoz X + + « xAan xH

and define a function: p# : Q - *R% U {*o}:

This function possesses an extension (by additivity) on the algebra A generated
by Q. It is an exercise to show that p is a premeasure on A.
Definition 3.5.If E € X1 x X2 and x3 € X1,X2 € X, we define
Ex, = {Xe Xz: (X1,X) € E} and E*2 = {x € X1 : (X,X2) € E}..
If f : X3 x Xz - *REis a function, we define fy, : X, » *R% and 2 : X; - *R%
by fx, (X) = f(x1,Xx) and f*2(x) = f(x, X2).
Theorem 3.3 (The generalized Fubini’'s theorem) Let u#%, u5 be ¢*-hyperfinite
#measures on (X1,F 1) and (Xz,F 2),



Xy x X2, F1 @ Fo,Yf @ P5) = (X1, F1,47) x (Ko, F2,43), (3.)

and letf e L¥(X1 x Xp,F 1 ® Fo, 14 @ ). Then fy, € L{(Xo, F 2, U5) pf-#a.e.,
and 2 e L¥(Xy,F 1, u§)us-#a.e., and

Jo fwiew = [ | [ reaugjaws=[ [t Jont @)

Chapter lll.Hilbert Spaces over field *C%.
1. Hilbert Spaces over field *C# Basics.

The sequence space | consists of all hyper infinite sequences

3.#-Analytic vectors.Generalized Nelson’s #-analytic

vector theorem.
Let H* be a #-complex Hilbert space over field *C% The most natural way to construct

a #-continuous one-parameter unitary group U(t) : H¥ - H* is to try to make sense
of the power series Ext-Z:jo(itA)“ on a #-dense set of vectors. Notice that this can
certainly be done if A is self-adjoint. For let Eq be the family of spectral projections for
A.Then on each of the spaces Ej_wwmj, Ais a bounded operator and Ext-Z:jo(itA)“/n!
#-converges to Ext-exp(itA) in norm. In particular, for any ¢ € UM>O —MM]

#-limNW#(Em-Z:O %) — Ext-exp(itA). (3.1

Since UM>O Ermwm is #-dense in H*, we see that the group generated by a self-adjoint
operator A is completely determined by the well-defined action of the hyper infinite

ot
series Ext-Zn_o(itA)”/n! on a #-dense set. We will prove the #-converse: namely,

oo#
if A is symmetric and has a #-dense set of vectors to which Ext-Zn_O(itA) "/n! can be

applied, then A is essentially self-#-adjoint. We need several definitions.

Definition1.1. Let A be an operator on a non-Archimedean Hilbert space H*. The set
OO# . 0] .

Cw#(A) = nn=0 D(A") is called the C *_vectors for A. A vector NS C“’#(A) is called an

#-analytic vector for A if
ot n n
ext- 3 IAOIT (3.2

for some t > 0.If Ais self-adjoint, then c* (A) will be #-dense in D(A). However, in

general, a symmetric operator may have no C*"-vectors at all even if A is essentially

self-#-adjoint. We caution the reader to remember that #-analytic vectors and vectors
of

uniqueness (defined below) must be C”’- vectors for A. A vector @ € D(A) can be an
#-analytic vector for an extension of A but fail to be an #-analytic vector for A because



it is not in C**(A).
Definition1.2.Suppose that A is symmetric. For each ¢ € C*"(A), define

D, = {Ext-zr’:l=0anA”<p|N € *N,an € *(Cﬁ}. (3.3

Let HY = #D, and define A, : D, - D, by A, (Ext-3_1  anA") = Ext-3_  anA™ 0.
¢ is called a vector of #-uniqueness if and only if A, is essentially self-#-adjoint on D,,
as an operator on H.

Finally, a subset S — H* is called #-total if the set of hyperfinite linear combinations of
elements of Sis #-dense in H,

Lemma (Generalized Nussbaum’s lemma) Let A be a symmetric operator and
suppose that D(A) contains a #-total set of vectors of #-uniqueness. Then A is
essentially self-#-adjoint.

Proof We will show that Ran(A + i) are #dense in H*. By the fundamental criterion
this will show that A is essentially self-#-adjoint. Suppose v € H* and ¢ > 0 are given
and let Sdenote the set of vectors of #-uniqueness. Since Sis #-total we can find
(an)N, and (wn)N, with v, € Sso that

|| V- Ext-Zthlany/n || , S €l2. (3.4)
Since v, is a vector of #uniqueness, there is a ¢, € D, So that
. -1
lyn— (A+Denll, < £ (Bxt- N Jan]) (3.5)

Setting ¢ = Ext-ZLan(pn we have ¢ € D(A) and |ly - (A+i)o|, < e.

Thus Ran(A +1i) is #-dense. The proof for (A—1i) is the same.

Theorem 3.1. (Generalized Nelson’s #-analytic vector theorem) Let A be a symmetric
operator on a non-Archimedean Hilbert space H*. If D(A) contains a #total set of
#-analytic vectors, then A is essentially self-#-adjoint.

Proof By Generalized Nussbaum’s lemma, it is enough to show that each #-analytic
vector y is a vector of #uniqueness. First notice that 4, always has self-#adjoint
extensions, since the operator

C:Ext-2 N anA'y (3.6)
extends to a conjugation on Hi, which commutes with 4,,. Suppose that B is a
self-#-adjoint extension of 4,, on H}, and let u* be the spectral #measure for B
associated to y. Since y is an #-analytic vector for A,
Ext- YN A" || /n! < *oo (3.7)

forsomet > 0. Let0 < s< t. Then

*o0 n
Bxt- 3,5 S| Bt [ it | <
*[Rg

1/2 1/2

< B35 S| B [ @t Bxt- [ diut | =

(3.8)

RE “RY
* n
Il Bxt- 327 SHIAY [, < oo

Therefore by generalized Fibini’'s theorem



Ext- j (Ext I ST )d# # — Ext- j Ext-(sX|)d*u* < *oo. (3.9)

*[R#
As a result, the function

(v, [EXt-exp(itB) Jy), = Ext- [ [Ext-exp(itx)Jd" " (3.10)

*Rg

has an #-analytic continuation

Ext- j [Ext-exp(izx) ]d" " (3.11)
*R#

to the region |Imz< t. Since

((;'%Z) ‘[ Ext [ (Ext-exptiz 100 -
"R? 20 (3.12)

= Bxt- | [Bxt-exp(ix)* Jd"u? = (v, (iA)v),,

*Rg
we obtain

(v [Bt-exp(isB)ly), = Bx- % U900 = ¢y, A)yy, (3.13

for |g< t. Thus, for [sk t (and therefore for all s), the function (y1,[Ext-exp(isB)]y2).,

is completely determined by the numbers (y1,A"2),,n € *N.

Similar proof shows that (y 1, [Ext-exp(isB)]y2), is determined by the numbers

(y1,AM2),,n € *Nfor any y1,y» € D,. Since D, is #dense in H and Ext-exp(isB)

is unitary, Ext-exp(isB) is completely determined by the numbers (y1,A">),,n € *N

for any v1,y2 € D,.Thus, all self-#-adjoint extensions of A, generate the same unitary

group, so by generalized Stone’s theorem A, has at most one self-#-adjoint extension.

As we have already remarked, A, has at least one self-#-adjoint extension. Thus A, is

essentially self-#-adjoint and y is a vector of unigqueness.

Corollary 1 A #-closed symmetric operator A is self-#-adjoint if and only if D(A)

contains a #-dense set of #-analytic vectors.

The statement of Corollary 1 is not true if “self-#-adjoint” is replaced by “essentially

self-#-adjoint.” A self-#-adjoint operator A may be essentially self-#-adjoint on a
domain

D < D(A) and D may not even contain any #-vectors.

Corollary 2 Suppose that A is a symmetric operator and let D be a #-dense linear set

contained in D(A). Then, if D contains a #-dense set of #-analytic vectors and if D is

invariant under A, then A is essentially self-#-adjoint on D.

Proof Since D is invariant under A, each #-analytic vector for Ain D is also an

#-analytic vector for 4 | D. Thus, by Theorem 3.1 4 | D is essentially self-#-aadjoint.

The reason that one needs the invariance condition in Corollary 2 is that for a vector

v € D to be #-analytic for 4 | D, it must first be C* for 4 | D. This requires that

A" e Dforalln e *N.



84.The generalized Spectral Theorem

8 4.1.The #-continuous functional calculus

In this section, we will discuss the generalized spectral theorem in its many guises.

This structure theorem is a concrete description of all self-#-adjoint operators. There

are several apparently distinct formulations of the spectral theorem. In some sense

they are all equivalent.

The form we prefer says that every bounded self-#-adjoint operator is a multiplication

operator. (We emphasize the word bounded since we will deal extensively with

unbounded self-#-adjoint operators in the next chapter; there is a spectral theorem for

unbounded operators which we discuss in Section § 4.3)

This means that given a bounded self-#-adjoint operator A on a non-Archimedean

Hilbert space H* over field *R# or *C#, we can always find a #measure p* on

a #measure space M and a unitary operator U : H* » L5(M,d*u*) so that

(VAU (x) = F(X)f(x) (4.1.1

for some bounded real-valued #measurable function F on M.

In practice, M will be a union of copies of *R¥ and F will be x so the core of the proof of

the theorem will be the construction of certain #measures. This will be done in
Section

8 4.2 by using the generalized Riesz-Markov theorem. Our goal in this section will be
to

make sense out of f(A), for f a #-continuous function.
In the next section, we will consider the #measures defined by the functionals

f (y f(Ay), 4.1.2
for fixed v € H.
Given a fixed operator A, for which f can we define f(A)? First, suppose that A is an
arbitrary bounded in*R# operator. If f(x) = Ext-Z::l cnX", N € *Nis a polynomial,
we let f(A) = EXt'Z,Tzl cnA". Suppose that f(x) = Ext-Z;fl cnX" is a hyper infinite
power series with radius of #-convergence R. If |A[|, < Rthen hyper infinite power
series Ext-Z;fl cnA" #-converges in £(H*) so it is natural to set

f(A) = Ext-Y, " CoA" (4.1.3

In this last case, f was a function #-analytic in a domain including all of o(A).

The functional calculus we have talked about thus far works for any operator in any
Banach space. The special property of self-adjoint operators or more generally normal
operators is that ||P(A)|ls = SUp.esa)|P(A)| for any polynomial P, so that one can use the
B.L.T. theorem to extend the functional calculus to #-continuous functions. Our major
goal in this section is the proof of:

Theorem 4.1.1. (#-continuous functional calculus) Let A be a self-#-adjoint operator on
a Hilbert space H*. Then there is a unique map ¢ : C*(c(A)) - L(H¥) with the
following properties:

(a) ¢ is an algebraic x-homomorphism, that is,



¢(fg) = ¢(F)$(9), ¢(Af) = 26(F),¢(1) = 1,4(f) = ¢()".
(b) ¢ is #-continuous, that is, ||¢(f) ||£<H#> < C||f|.,.
(c) Let f be the function f(x) = x; then ¢(f) = A.
Moreover, ¢ has the additional properties:
(d) If Ay = Ay, then ¢(f)y = f(L)y.
(e) a[¢(f)] = {f(V)|A € a(A)} [spectral mapping theorem].
(fH 1ff >0, then ¢(f) > 0.
@ le¢®) I, = lIfll .. [this strengthens (b)].
The proof which we give below is quite simple, (a) and (c) uniquely
determine ¢(P) for any hyperfinite polynomial P(x). By the generalized Weierstrass
theorem, the set of polynomials is #-dense in C*(c(A)) so the main part of the proof is
showing that

”P(A)”#Op = ”P(X) ”c#(g(A)) = Supxleo(A)lp(l)l- (4- 1-4)

The existence and uniqueness of ¢ then follow from the generalized B.L.T. theorem.
To prove the crucial equality, we first prove a special case of (e) (which holds for
arbitrary bounded operators):

Lemma 4.1.1.Let P(x) = Ext-3 " Cox", N € *N. Let P(A) = Ext->_" | c,A". Then

o(P(A)) = {P(V)]Ar € a(A)}. (4.1.9

Proof Let 1 € o(A). Since x = A4 is a root of P(x) — P(1), we have

P(X) - P(1) = (x—1)Q(X), so P(A) - P(1) = (A—1)Q(A). Since (A- 1) has no
inverse neither does P(A) — P(A) that is, P(1) € o(P(A)).

Conversely, let u € o(P(A)) and let 14,...,1, be the roots of P(x) — u, that is,
PO) — = a(Ext-[1,(x—2)).1f A1,....An £ o(A), then

PA) - =at(Bxt-[1,(A-2)™) ()

so we conclude that some 4; € o(A) thatis, u = P(1) for some A € o(A).
Definition Let r(A) = Supes(a) |A]- Then r(A) is called the spectral radius of A.

Theorem 4.1.2. Let X be a Banach space, A € £(X) Then limnp.« J[|A"[],, exists
and is equal to r(A) . If Xis a Hilbert space and A is self-#-adjoint, then r(A) = ||A||#op.

Proof The reader can check that 1im”00 ||'N||1/A exists by following the clever
subadditivity argument outlined in Problem IL The crux of the proof of the theorem is to
establish that the radius of convergence of the Laurent series of Rx(T) about oo is just
r(T)1. First notice that the radius of convergence cannot be smaller than r(T)-1 since we
have proven that Rx(T) is analytic on p(T)and{A | |A| > r(T)} cr p(T). On the other hand,
(VI.2) is just the Laurent series about oo and we have seen that where it converges
absolutely, Rx(T) exists. Since a Laurent series converges absolutely inside the circle of
convergence, we conclude that the radius of convergence cannot be larger than r(T)~\
That r(T) = limfl*00 ||77||1/n follows from the vector-valued version of Hadamard’s
theorem which says that the radius of convergence of (VI.2) is just the inverse of

Hm WTnWIfn = lim ||F11/11

A WN-*00

Finally, if X is a Hilbert space and A is self-adjoint, then MH2 — M2H by patrt (/) of



Theorem VI.3. This implies that M2" || = \\A ||2” so

r(A) = lim WAKWIfk = lim M2T~n - MH |

k~*oc  n-*oo

The following theorem is sometimes useful in determining spectra.

Theorem VI. 7 (Phillips) Let X be a Banach space, Te SP(X). Then o(T) = cr(T’) and
Rx(T) = Rx(T)". If XX is a Hilbert space, then <r(T*) — {A 1A e a(T)} and RX(T*) - Rx(T)*.

We note that the Hilbert space case follows from (d) of Theorem VI.3. We now work
out in some detail an example which illustrates the various kinds of spectra.

Example Let Tbhe the operator on ~f1 which acts by

TKi,Ca...-)-«a.Cj.—)

Lemma 4.1.2. Let A be a bounded self-#-adjoint operator. Then

IP(Al: = SUPLeo [P(D)]. (4.1.9

Proof (by Theorem 4.1.2.)
(by Lemma 4.1.1)
Proof of Theorem 4.1.1. Let ¢(P) = P(A). Then ||¢(P)||I<H#> = [IPll c#o(ay SO ¢ has a

unique linear extension to the #-closure of the polynomials in C#*(c(A)). Since the
polynomials are an algebra containing |, containing complex conjugates, and
separating points, this #-closure is all of C*(c(A)). Properties (a), (b), (c), (g) are
obvious and if ¢ obeys (a), (b), (c) it agrees with ¢ on polynomials and thus by
#-continuity on C#(c(A)) To prove (d), note that ¢(P)y = P(1)y and apply
#-continuity. To prove (f), notice that if f > 0, then f = g? with g *R%-valued

and g € C*(o(A)). Thus ¢(f) = ¢(g)? with ¢(g) self-#adjoint, so ¢(f) > 0.

Remark 4.1.1. In addition:

(1) ¢(f) > Oif and only if f > O.

(2) Since fg = of for all f,g, {f(A)[f € C*(c(A))} forms an abelian algebra closed
under adjoints. Since [|¢(f) ||, = |If|l..,, and C*(c(A)) is #complete, {f(A)lf € C*(a(A))}
is #-norm-#-closed. It is thus an non-Archimedean abelian C* algebra of operators.
(3) Ran(¢) is actually the non-Archimedean C* algebra generated by A that is, the
smallest C*-algebra containing A.

(4) This result, that C*(c(A)) and the non-Archimedean C*-algebra generated by A
are #-isometrically isomorphic

(5) (b) actually follows from (a) and Proposition 4.1.1. Thus (a) and (c) alone
determine ¢ uniquely.

Proposition 4.1.1. Suppose that ¢: C#(X) - £(H*) is an algebraic *-homomorphism,
X a #-compact metric space. Then

(@) If f > 0, then ¢(f) > 0.

(b) g1l < NIl

Theorem 4.1.2. (Generalized Weierstrass Approximation Theorem). Let

f € C*([a,b], *R%). Then there is a hyper infinite sequence of polynomials

pn(X),n € *N that #converges uniformly to f(x) on [a,b].

Definition 4.1.1 (Hyperfinite Bernstein Polynomials). For each n € *N, the n-th
Bernstein Polynomial Bi(x,f) of a function f € C#([a,b], *R¥) is defined as

BA(.f) = Ext- X f(K) ( ! )xk(l —x)k, (4.1.3



Theorem 4.1.3.(Generalized B.L.T.theorem) Suppose that Z is a normed space, Y
is a non-Archimedean Banach space, and S c Zis a #-dense linear subspace of Z. If
T : S- Yis abounded linear transformation (i.e. there exists C < *o such that
ITz||, < C ||z||, for all ze §), then T has a unique extension to an element of £(Z,Y).

8 4.2.The spectral #-measures

Theorem 4.2.1.(Generalized Riesz-Markov theorem) Let X be a locally #-compact
non-Archimedean metric space endowed with *R%-valued metric.Let C(X) be the
space of #-continuous #compactly supported *C%-valued functions on X.
For any positive linear functional ® on C%(X), there is a unique #measure x* on X
such that

v e C4(X) : o(f) = Ext-jx fO)d*u*(X).
Theorem 4.2.2.(Generalized Riesz lemma) Let Y be a #-closed proper vector
subspace of a normed space (X, ||+||#) and let « € *R% be any real number
satisfying O < a < 1.Then there exists a vector u € X of unit #norm |ju|# = 1
such that |[u-y||# > aforally €Y.
We are now introduce the #-measures corresponding to bounded in*R# self-#-adjoint
operators. Let A be an bounded in*R¥ self-#-adjoint operator. Let v € H*. Then

f (., H(A), 4.2.0)

is a positive linear functional on C#(c(A)). Thus, by the generalized Riesz-Markov
theorem, there is a unique #-measure pj,(+) on the #compact set o(A) with the

property

WA, = Bt | f)d*us. (4.2.2
a(A)
Definition 4.2.1.The #-measure }(+) is called the spectral #-measure associated with
the vector y € H.
The first and simplest application of the uf (+) is to allow us to extend the functional
calculus to B*(*R¥), the bounded in*R% #Borel functions on *R%. Let g € B*(*R%).

It is natural to define g(A) so that (y,g(A)y), = Ext- J. g(A)d*uf. The polarization
a(A)

identity lets us recover (y,g(A)¢), from the proposed (v,9(A)y), and then

the Generalized Riesz lemma lets us construct g(A).

Theorem 4.2.1.(spectral theorem-functional calculus form) Let A be a

bounded in*R# self-#-adjoint operator on H*. There is a unique map

¢ : B*(*R#) > £(H") so that

(a) ¢ is an algebraic x-homomorphism.

(b) 4 is #-norm #-continuous: ||$(f) || - If]l...

(c) Let f be the function f(x) = x; then ¢(f) = A.

(d) Suppose f.(x) -« f(x) for each x as n - *o0and hyper infinite sequence
Ifall....n € *o is bounded in*R%. Then ¢(f,) —4 ¢(f) as n — *costrongly.
Moreover ¢(+) has the properties:

(e) If Ay = Ay, then ¢(f) = f(L)y.

(f) If f > 0,then ¢(f) > 0.



(9) If BA = AB then ¢(f)B = Bo(f).

Theorem 4.2.1 can be proven directly by extending Theorem 4.1.1.; part (d) requires

the dominated #-convergence theorem. Or, Theorem VII.2 can be proven by an easy

corollary of Theorem VI1.3 below. The proof of Theorem VII.3 uses only the
continuous functional calculus, ¢ extends ¢ and as before we write (I - I(A)t As in the
continuous functional calculus, one has f(A)g(A) = g(A)f(A),

Since ~(IR) is the smallest family closed under limits of form (d) containing all of C(iR),
we know that any ¢(f) is in the Smallest C*-algebra containing A which is also strongly
closed; such an algebra is called a von Neumann or W*-algebra. When we study von
Neumann algebras in Chapter XVIII we will see that this follows from ().

The norm equality of Theorem VILI carries over if we define HZiroo to be the L°°-norm
with respect to a suitable notion of “almost everywhere.” Namely, pick an orthonormal
basis {¢pn} and say that a property is true a.e. if it is true a.e. with respect to each gdr
Then \p(1)\&(#) = WWTr0O0 «

In the next section, we will return to the operators Xa(A) where Xa Is a characteristic
function; this is the most important set of operators in the

8 4.3. Spectral projections

In the last section, we constructed a functional calculus, \-*f{A) for any Borel
function/and any bounded self-adjoint operator A. The most important functions gained
in passing from the continuous functional calculus to the Borel functional calculus are
the characteristic functions of sets.

Definition 4.3.1. Let A be a bounded self-#-adjoint operator and Q2 a #-Borel set

of *R%. Pq = ya(A) is called a spectral projection of A.

As the definition suggests, Pq is an orthogonal projection since yo = y3 = 1

pointwise. The properties of the family of projections{PQ|Q an arbitrary #-Borel set}

is given by the following elementary translation of the functional calculus.

Proposition 4.3.1. The family {Pq} of spectral projections of a bounded

self-#-adjoint operator A, has the following properties:

(a) Each Pq is an orthogonal projection.

(b) Pz = 0; P(aa = | for some a € *RE.

(©) If Q@ = Ext-{J.”, Qn With Qn N Qm = for all n = mthen

Po = s#-limy. (Ext-3°0 ). (4.3.9)
(d) Pa,Pa, = Pana,.

Definition 4.3.2. A family of projections obeying (a)-(c) is called a projection-valued
#measure (p.v.#m.).

We remark that (d) follows from (a) and (c) by abstract considerations.

As one might guess, one can integrate with respect to a p.v.m. If Pq is a p.v.m.,
then (¢, Pa¢), is an ordinary #-measure for any ¢. We will use the symbol
d*(¢,P.¢), to mean integration with respect to this #-measure. By generalized Riesz



lemma methods, there is a unique operator B with (¢,B¢),, = Ext-jf(/l)d#<¢, P1¢).,.
Theorem 4.3.1. If Pg is a p.v.#m. and f a bounded in *R¥ #-Borel function on
supp(Pq), then there is a unique operator B which we denote Ext-.[f(/’L)d#P,l so that

(9,Bo), = Ext— [f(1)d*(,Pig),.

Theorem 4.3.2.(spectral theorem-p.v.#m. form) There is a one-one correspondence
between (bounded) self-#-adjoint operators A and (bounded) projection valued
#measures {Pq} given by:

A {Pa} = {xa(A)}
{Po} » A =Ext—[Ad*P,

8 4.4.The #-continuous functional calculus related to

unbounded in*R% self-#-adjoint operators

In this section we will show how the spectral theorem for bounded in*R#%
self-#-adjoint operators which we developed in § 4.3 can be extended to unbounded
in*R# self-#-adjoint operators. To indicate what we are aiming for, we first prove the
following:

Proposition 4.4.1. Let (M, u*) be a #-measure space with u* a hyperfinite
#-measure. Suppose that f is a #-measurable, *R#-valued function on M which is
finite or hyperfinite a.e.u”. Then the operator T : ¢ - fo on LE(M,d"u*) with domain

D(Tr) = {olfp € L5(M, d"u")} (4.4.1)

is self-#-adjoint and o(Ty) is the essential range of Ts.

Proof Tf is clearly symmetric. Suppose that ¢ s D(Tf) and let

fl if Ne)I*N O otherwise

Then, using the monotone convergence theorem,

lirrVIi= lim lziVrrVII

Thus,/c € 1}(M, fi), so pe D(Tf) and therefore Tf is self-adjoint. That a(Tf) is the

essential range of/follows as in the bounded case (Problem 17 of Chapter VII). |
With more information about /, one can say something about the domains on which Tf
is essentially self-adjoint:
Proposition 4.4.2. Let f and T; obey the conditions in Proposition 4.4.1. Suppose
in addition that f € L}(M,d"u*) for 2 < p < *«. Let D be any #-dense set in
L&(M,d*u*) where g + p™ = 1/2. Then D is a #-core for T.
Proof Let us first show that D is a core for Tft By Holder’s inequality ligll2 =S IHilp
IM,and ILfclU < lirilp blw so Ucz D(Tf)t Moreover, IfgeD(Tf)9 let gn be that function
which is zero where \g(m)\ > n and equal to g otherwise. By the dominated
convergence theorem, gn-+g and fgn -*fg in L2. Since each gn is in 13, we conclude



that 13 is a core for Tf,

Now let D be dense in 13 and let g e 13. Find gne D with g,-+g in 13, Since lign -g||2
Al Hlp llga - gli« and \Tf(gn - g)\2 < ||/]|p |lgn - d||,, g € D(Tf\ D). Thus Lq a D(Tf f D) so
D is a core. |

Unless/eL°°(M, pi) the operator Tf described in Propositions | and 2 will be unbounded.

Thus, we have found a large class of unbounded self-adjoint operators. In fact, we
have

found them all.

Theorem 4.4.1. (spectral theorem-multiplication operator form) Let A be a

self-adjoint operator on a *co-dimensional a non-Archimedean Hilbert space H*

with domain D(A). Then there is a #measure space (M, u*) with u* a hyperfinite

#-measure, a unitary operator U : H* - L§(M,d*u#), and a *R#-valued function f

on M which is finite or hyperfinite u#-a.e. so that

(@) w e D(A) ifand only if f(-)(Uw)(+) € LE(M,d*u*).

(b) If o € U[D(A)], then (UAU1p)(m) = f(m)p(m).

Proof In the proof of Theorem VIII.3 it was shown that A + i and A — i are one to one
and Ran(y4 + /) =K. Since A i are closed, (A £ /)** are closed and therefore bounded
(Theorem 111.12). By Theorem VIIL2, (A + i)-1 and (A — i)"1 commute. The equality

((A - Db, (A+D)~I(A +i)<p) = (A - )~X(A - 1)p$ (A +)<p)

and the fact that Ran(/4 + i) = XK shows that ((A + 0"1)* = (A-i)"1. Thus (A +/)"1 is
normal.

We now use the easy extension of the spectral theorem for bounded self-adjoint
operators to bounded normal operators. The proof of this extension is outlined in
Problems 3,4, and 5 of Chapter VII. We conclude that there is a measure space <M, p}
with p a finite measure, a unitary operator U: XX L2(M, p), and a measurable, bounded,
complex-valued function g(m) so that U(A 4- O-1CZ-1Kw) — g(m)g>(m) for all <p €
L2(M, dp).

Since Ker(J1 + /)"1 is empty, g(1)®0 a.e.J/t], so the function f(m) = g(fti\~l — i is finite
a.e.[a]. Now, suppose ¢ e D(A). Then= +0"V

for some <p e XK and I/ — gU<p. Since fg is bounded, we conclude that /(ng) e
L2(M, dp). Conversely, if/(udp) e L2(M, dp), then there is a (p e XK so that U(p — (f +
1)11dp. Thus, glikp = g(f + 1) I/ = ndp, so ¢ = (J1 + 0” V* which shows that ¢ e £>/4).
This proves (a).

To prove (b) notice that if ¢ e D(A)i then & — (A 4- /)" I<p for some epe XK and A —
<p — rdo. Therefore,

(L/Ad)(T) = (U(p)(m) —1(11cp)(T)

= " o(h(T)

=AT)(Md)(T)

Finally, if Im(/) > 0 on a set of nonzero measure, there is a bounded set B in the upper
half plane so that S — {x|/(x) e B} has nonzero measure. If x is the characteristic
function of Sy then fx e L2(My dp) and Im(x>fx) > & This contradicts the fact that
multiplication by /is self-adjoint (since it is unitarily equivalent to A). Thus/is real-valued.

There is a natural way to define functions of a self-#-adjoint operator by using the

above theorem. Given a bounded #-Borel function h on *R# we define

h(A) = UThnU™? (4.4.2
where Ty is the operator on L5(M, d”u#) which acts by multiplication by the function



h(f(m)). Using this definition the following theorem follows easily from Theorem 4.4.1.
Theorem 4.4.2. (spectral theorem-functional calculus form) Let A be a self-#-adjoint
operator on H¥. Then there is a unique map ¢ from the bounded #-Borel functions on
*R¥ into £(H*) so that

(a) ¢ is an algebraic x-homomorphism.

(b)  is #-norm #-continuous, that is, ||$(h) || £y Ihl..

(c) Let hn(x),n € *N be a hyper infinite sequence of bounded in *R% #-Borel

functions with #lim .+, hn(X) = x

for each x and |hn(x)| < |x| for all xand n € *N. Then, for any v € D(A),

#lim v ¢(hn)y = Ay

(d) If ha(x) »# h(x) pointwise and if the hyper infinite sequence |hn| . ,n € *N

is bounded in *R¥, then ¢(hn) —# ¢(h) strongly.

In addition:

(e) If Ay = Ay then ¢(h) = h(1)y.

(f) If h > 0, then ¢(h) > 0.

The functional calculus is very useful. For example, it allows us to define the
exponential eitA and prove easily many of its properties as a function of t (see the next
section). In the case where A is bounded we do not need the functional calculus to
define the exponential since we can define eitA by the power series which converges in
norm.

The functional calculus is also used to construct spectral measures and can be used
to develop a multiplicity theory similar to that for bounded self-adjoint operators. A vector
@ is said to be cyclic for A if {a(A)cp\g e COO(R)) is dense in XK. If ¢ is a cyclic vector,
then it is possible to represent XK as L2(R, d*) where fi# is the measure satisfying

f g(x)diit(x)"ty9g(A")

in such a way that A becomes multiplication by x. In general, >K decomposes into a
direct sum of cyclic subspaces so the measure space, M9 in Theorem VIIIl.4 can be
realized as a union of copies of U. As in the case of bounded operators we can define
(Tac(A)9 (Tpp(A)9 (Tsing(A)9 and decompose XK accordingly.

Finally, the spectral theorem in its projection-valued measure form follows easily

from the functional calculus. Let Pg be the operator yo(A) where yq is the

characteristic function of the measurable set Q < *R%. The family of operators

{Pqa} has the following properties:

(a) Each Pq is an orthogonal projection.

(b) P@ = O; P(_*wy*w) =1.

() If @ = Ext-|J, %, Q@n With Qn N Qm = & for all n = mthen

Po = s#limy.- (Ext- 3 Pa, ). (4.4.3

(d) Pa,Po, = Pa,ng,.

I

Definition 4.4.1.Such a family is called a projection-valued #-measure (p.v.#m.).
Remark 4.4.1. This is a generalization of the notion of bounded in *R# projection-
valued #measure introduced in § 4.3.In that we only require P+, ) = | rather
than Paq = | for some a € *R%. For ¢ € H*,(p,Pqag), is a well-defined Borel
#-measure on *R% which we denote by d*(p,P.¢), as in § 4.3.



The complex *C{-valued #measure d*(p, P,y ), is defined by polarization. Thus, given
a bounded in *R¥ #Borel function g we can define g(A) by

(9.9(A)), = Bxt-[_, g(1)dXp, Psp),, (4.4.9

It is not difficult to show that this map g —» g(A) has the properties (a)-(d) of
Theorem 4.4.1, so g(A) as defined by (4.4.4) coincides with the definition of g(A)
given by Theorem 4.4.1. Now, suppose g is an unbounded *C%-valued #-Borel
function and let

Dy = {9lEXt-[.., W) d g, Prg), < "o} (4.4.5
Then, Dy is #-dense in H* and an operator g(A) is defined on Dg by
(9.9(A)p), = EXt-[ ., 9(A)d%(p,Pag),. (4.4.9
As in 8§ 4.3, we write symbolically
g(A) = Ext-[, 9g(1)d*P;. (4.4.7)

In particular, for ¢,y € D(A),
(9. AW), = BX- [, 910X, Pag), (4.4.8

if g is *RE-valued, then g(A) is self-#-adjoint on Dy. We summarize:

Theorem 4.4.3. (spectral theorem-projection valued measure form) There is a
one-to-one correspondence between self-#-adjoint operators A and projection-valued
#-measures {Pq} on H* the correspondence being given by

A= Ext-[ _, Ad*P;. (4.4.9

We use the functional calculus developed above to define Ext-exp(itA).
Theorem 4.4.4. Let A be a self-#-adjoint operator and define U(t) = Ext-exp(itA).
Then

(a) For each t € *R¥,U(t) is a unitary operator and U(t + s) = U(t)U(s) for all

st e *RE.

(b) If o € H* and t -4 to, then U(t)p —» U(to)e.

(c) For any v € D(A) : —U(t)lt’/ ¥ L, iAyast 0.

(@) If #lime., o =Y V. exists, then y < D(A).
Proof (a) follows immediately from the functional calculus and the corresponding

statements for the complex-valued function Ext-exp(it1). To prove (b) observe that
IEXt- exp(itA)g — o || = Ext- | el EXEEXR(itA) — 1PPd* P, @), (4.4.10

Since |Ext-exp(it1) — 1| is dominated by the #integrable function g(1) = 2 and

since for each 1 € *R¥ : [Ext-exp(itA) — 1> -4 0 as t -4 O we conclude that

Ut — go||§ -4 0ast -4 0, by the generalized Lebesgue dominated-#-convergence
theorem. Thus t » U(t) is strongly #-continuous at t = 0, which by the group property
proves t » U(t) is strongly #-continuous everywhere. The proof of (c), which again
uses the dominated #-convergence theorem and the estimate |Ext-exp(ix) — 1|* < x|.
To prove (d), we define

D(®) = {u[#lime., 0 204 Y exsts |



and let iBy = #lim,, Ow' A simple computation shows that B is symmetric.

By (c), B> A;soB=A

Definition 4.4.2. An operator-valued function U(t) satisfying (a) and (b) is called a

strongly #-continuous one-parameter unitary group.

Definition 4.4.3. If U(t) is a strongly #-continuous one-parameter unitary group, then
the

self-#-adjoint operator A with U(t) = Ext-exp(itA) is called the infinitesimal generator

of U(t).

Suppose that U(t) is a weakly continuous one-parameter unitary group. Then

I U(t)<p - ipH2 ="\u(t)(p\\2 - (U(t)cp, ip) - (ip, u(t)(p) + liNii2 ~2MI2 -2MI2 =0

as f-»0. Thus (J(t) is actually strongly continuous. As a matter of fact, to conclude
that U(t) is strongly continuous one need only show that U(t) is weakly measurable,
that is, that (U{i)(p, &) is measurable for each <p and . This startling result, proven
by von Neumann, is sometimes useful since in applications one can often show that
(U(t)cpy o) is the limit of a sequence of continuous functions; (U(t)ip, @) is therefore
measurable and by von Neumann'’s theorem U(t) is then strongly #-continuous.
Theorem 4.4.5. Let U(t) be a one-parameter group of unitary operators on a hyper

infinite dimensional Hilbert space H*. Suppose that for all ¢,y € H*, (U(t)y, p), is

#measurable. Then U(t) is strongly #-continuous.

Proof Let ¢ G >K. Then for all <p e X, (E/(f)*, cp) is a bounded measurable function
and

is a linear functional on X of norm less than or equal to a\\p\\. Thus, by the Riesz
lemma

there is a da e XK so that

lim (n(b)da, <p) = (., <p) 0

so that U(b) is weakly and therefore strongly continuous on the set of vectors of the
form {cpa\d 6 >K}. It remains only to show that this set is dense, since by by an e/3
argument we can then conclude that t *-> U(t) is strongly continuous on >K. Suppose that
<pe{da\d e XKyae U}1 and let {dp{n)} be an orthonormal basis for XK. Then for each n,

o=C*w (p) = C1)®{n\ <p) dt

jO

for ail a which implies that (C/(0*A(n>> <p) = 0 except for t e Sn, a set of measure
zero. Choose t0 ¢ U”LiI Then (M(10)dp(*\ cp) — O for all n which implies that g> ~0, since
£/(f0) is unitary. |

The proof of essentia] self-adjointness in Theorem VIII.8 directly implies the following
self-adjointness criterion.

Theorem 4.4.6.Suppose that U(t) is a strongly continuous one-parameter unitary

group. Let D be a #dense domain which is invariant under U(t) and on which U(t) is

strongly #-differentiable. Then i~ times the strong #-derivative of U(t) is essentially

self-#-adjoint on D and its #-closure is the #-infinitesimal generator of U(t).

This theorem has a reformulation which is sufficiently important that we state it as a

theorem.



Theorem 4.4.7. Let A be a self-adjoint operator on H* and D be a #dense linear set

contained in D(A). If for all t, Ext-exp(itA) : D - D then D is a #-core for A.

Theorem 4.4.8.Let U(t) be a strongly #-continuous

one-parameter unitary group on a Hilbert space H*. Then, there is a self-#-adjoint

operator A on H* so that U(t) = Ext-exp(itA).

Proof Part (d) of Theorem VI11.7 suggests that we obtain A by differentiating U(t) at t
= 0. We will show that this can be done on a dense set of especially nice vectors and
then show that the limiting operator is essentially self-adjoint by using the basic criterion.
Finally, we show that the exponential of this limiting operator is just U(t).

Let/e Cq(U) and for each <p e X define

* f(H)U(t)g>dt

-00

Since U(t) is strongly continuous the integral can be taken to be a Riemann integral.
Let D be the set of finite linear combinations of all such <pf for <P e XK and /e C*(R). If
Jjt(x) is the approximate identity introduced in Section VIII,I, then

Remark 4.4.2.Finally, we have the following generalization of Stone’s theorem 4.4.8.

If g is a real-valued Borel function on *R#, then

9(A) = Bxt-[ ., o(1)d*P;

defined on Dy (4.4.5) is self-#-adjoint. If g is bounded, g(A) coincides with #(9) in

Theorem 4.4.2.

We conclude with several remarks. First, Stone’s formula, given in Theorem VII. 13,

relates the resolvent and the projection-valued measure associated with any
self-adjoint

operator. The proof is the same as in the bounded case.

The spectrum of an unbounded self-adjoint operator is an unbounded subset of the

real axis. One can define discrete and essential spectrum; they are still characterized
by Theorems VII.9, VII. 10, and VITI I. Theorem VI1.12 (Weyl's criterion) still holds if one
adds the criterion that the vectors {¢n} must be in the domain of A.

Finally, we note that the measure space of Theorem VIIT4 can always be chosen so
that Proposition 2 is applicable:

The following theorem says that every strongly continuous unitary group arises as the
exponential of a self-#-adjoint operator.

Theorem 4.4.8. Let U(t) = U(ty,...,ty) be a strongly continuous map of *R#" into the
unitary operators on a hyper infinite dimensional Hilbert space H* satisfying

U(t +s) = U(t)U(s) Let D be the set of hyperfinite linear combinations of vectors of
the form

pr = Bxt- [ fOUDI™

where ¢ € H*,f e C§'*(*R#").Then D is a domain of essential self-#-adjointness for
each of the generators A; of the one-parameter subgroups U(0,0, ... 1j,..,0), each

A : D - D and the A; commute, j = 1,...,n. Furthermore, there is a projection-valued
#measure Py on *R#" so that



(9. UMW), = Bxt-[ ., Ext-explit)d*(p, Pay),

for all o,y € HY.

Proof Let Aj be the infinitesimal generator of Uj(li) = U(O0,..., lj,..,, 0). The procedure
used in the proof of Theorem VI11.8 shows that D ¢ D(A))9 Aj: D-+D, and Ujitj): D-+ D.
Theorem VIILII shows that Aj is essentially self-adjoint on D. Because of the relation U(t
+ s)= U(t)U(s), UjUj) commutes with Ui(li) for all li, Xj eU. Therefore, it follows from
Theorem V11I.13, that Ai and Aj commute in the sense defined in the next section; that
is, their spectral projections commute.

Let PIk be the projection-valued measure on R corresponding to Aj. Define a
projection valued measure Psi on R" by defining it first on rectangles r = (a,b,)x Il l x
(a,, bn) by Pr=Pla,,bl)PL.b2)  and then let-

ting Psi be the unique extension to the smallest <r-algebra containing the rectangles,
namely the Borel sets. Notice that, by Theorem VIII. 13, the Plkj commute since the
groups Uj commute. For each <p9 ¢ e XK, (<p, Pud) is a complex-valued measure of
finite mass which we denote by d(g>9 Pxd). Applying Fubini’s theorem we easily
conclude that

f e*>x d(<p, Px d) = (<p, UIHX)..., n,1,)®d)

= (<p, UM |

§4.3.

Suppose that A and B are two unbounded self-#-adjoint operators on a
non-Archimedean Hilbert space H#. We would like to find a reasonable meaning for
the statement: "A and B commute."

This cannot be done in the straightforward way since AB — BA may not make sense
on any vector v € H* for example, one might have (Ran(A)) N D(B) = & in which
case BA does not have a meaning. This suggests that we find an equivalent
formulation of commutativity for bounded self-#-adjoint operators. The spectral
theorem for bounded self-#-adjoint operators A and B shows that in that case

AB — BA = 0if and only if all their projections, {P4} and {Pg}, commute, We take
this as our definition in the unbounded case.

Definition 4.3.1.Two (possibly unbounded in*R¥) self-#-adjoint operators A and B
are said to commute if and only if all the projections in their associated projection-
valued #-measures commute.

Remark 4.3.1.The spectral theorem shows that if A and B commute, then all the
bounded in*R#% #-Borel functions of A and B also commute. In particular, the
resolvents R;(A) and R,(B) commute and the unitary groups Ext-exp(itA) and
Ext-exp(isA) commute.

The converse statement is also true and this shows that the above definition of
"commute” is reasonable:

Theorem 4.3.1. Let A and B be self-#-adjoint operators on a non-Archimedean



Hilbert spaceHilbert space H.

Then the following three statements are equivalent:

(a)  Spectral projections P(,,, and P, commute.

(b)  IfImA and Imy are nonzero, then R, (A)R,(B) — Ru(B)Ri(A) = 0.

(c) Forall sit € *RE,[Ext-exp(itA) ][Ext-exp(isB)] = [Ext-exp(isB) ][Ext- exp(itA)].
Proof The fact that (a) implies (b) and (c) follows from the functional calculus. The
fact that (b) implies (a) easily follows from the formula which expresses the spectral
projections of A and B as strong #-limits of the resolvents (generalized Stone’s
formula) together with the fact that

S#-1im.-., ofieRasis(A)] = P, (4.2.1)

To prove that (c) implies (a), we use some simple facts about the Fourier
transform. Let f € S*(*R¥). Then, by generalized Fubini’'s theorem,

Ext- [, FO((EXt-exp(itA) I, y),d't =
- Ext-[, f(t)(Ext- J o (1B exp(—it/l)]dﬁ(P/j(p,w#))d#t - 4.2.2)
— [27 (Ext- I*Rg?(l)dﬁ(Pﬁgo,w)#) = Jzmi (o, T AW ),
Thus, using (c) and generalized Fubini’'s theorem again,

(0. TA™IBY), =
Ext- [, BXt- [, f(D9(s)(p, [Ext-exp(-itA) ] [EXt-exp(-isB) Jy),d*sdt = (4.2.3)

= (0. 0B TAW),

so, for all f,g € S*(*R¥), T(A)§(B) — §(B)T(A) = 0.
Since the Fourier transform maps S*(*R#%) onto S*(*R#) we conclude that
f(A)g(B) = g(B)f(A) for all f,g € S*(*R¥). But, the characteristic function, y (ap)
can be expressed as the pointwise #-limit of a hyperinfinite sequence f,,n € *N
of uniformly bounded functions in S*(*R#). By the functional calculus,

s#limn. fn(A) = Pl
Similarly,we find uniformly bounded g, € S*(*R¥) #converging pointwise to
X (cq) and

s#limn.+ gn(B) = P&g).
Since the f, and g, are uniformly bounded in*R¥ and

fa(A)gn(B) = gn(B)fn(A)

for each n € *N, we conclude that P{,;,, and Pg. 5, commute which proves (a).

Chapter IV.Non-Archimedean Banach spaces endroved



with*R#-valued norm.

1.Definitions and examples

A non-Archimedean normed space with*R%-valued norm (#-norm) is a pair (X, || ]| »)
consisting of a vector space X over a non-Archimedean scalar field *R¥or complex
field *C% together with a distinguished norm ||+||» : X - *R%. Like any norms, this
#-norm induces a translation invariant distance function, called the canonical or (norm)
induced non-Archimedean *R%-valued metric for all vectors x,y € X, defined by

d*(xy) = [IX=ylls = Iy — x|+ (1.1
Thus (1.1) makes X into a metric space (X,d*). A hyper infinite sequence (xn)%'; is
called d*-Cauchy or Cauchy in (X,d*) or | -||4 -Cauchy if for every hyperreal r € *RE,
r > 0, there exists some N € N* such that

d*(Xn, Xm) = [[Xn = Xmll, < T, 1.2

where mand n are greater than N. The canonical metric d” is called a #-complete
metric if the pair (X,d¥) is a #-complete metric space, which by definition means for
every d*-Cauchy sequence (x,)%; in (X,d*), there exists some x € X such that

#0im [ Xn — X[|# = O (1.3)

where because ||xn — X||# = d#(xn,X), this hyper infinite sequence’s #-convergence to x
can equivalently be expressed as: #-lim,,_ .+ Xn = X in (X,d¥).

Definition 1.1. The normed space (X, ||+||#) is a non-Archimedean Banach space
endroved with*R%-valued norm if the #-norm induced metric d* is a #-complete
metric, or said differently, if (X,d¥) is a #-complete metric space. The #norm ||-|» of a
#normed space (X, ||+||) is called a #-complete #norm if (X, ||+||») is a
non-Archimedean Banach space endroved with*R#-valued #-norm.

Remark 1.1.For any #normed space (X, ||+]|,), there exists an L-semi-inner product
(+,*)4 Xx X - *RE such that ||x]|, = /(x,x), forall x € X; in general, there may be
infinitely many L-semi-inner products that satisfy this condition. L-semi-inner products
are a generalization of inner products, which are what fundamentally distinguish
non-Archimedean Hilbert spaces from all other non-Archimedean Banach spaces.
Characterization in terms of hyper infinite series,see ref. [1].

The vector space structure allows one to relate the behavior of hyper infinite Cauchy
sequences to that of #-converging hyper infinite series of vectors.

Remark 1.2.A #-normed space X is a non-Archimedean Banach space if and only if

each absolutely #-convergent hyper infinite series Extz:f:l Vn in X #-converges in

OO# OO#
X,i.e., Ext- Z [vall < oo implies that Ext- Zvn #-converges in X.
n=1 n=1

2.Linear operators,isomorphisms

If X and Y are #-normed spaces over the same ground field *R%, the set of all
#-continuous *R¥-linear maps T : X - Y is denoted by B*(X,Y).In hyper infinite-
dimensional spaces, not all linear maps are #-continuous. A linear mapping from a
#-normed space X to another normed space is #-continuous if and only if it is
bounded or hyper bounded on the #-closed unit ball of X. Thus, the vector space



B#(X,Y) can be endroved with the operator norm
ITH = sup{l Tl | x € X [IX]lu < 1} 2.1

For Y a non-Archimedean Banach space, the space B#(X,Y) is a Banach space with

respect to this #-norm.

If X is a non-Archimedean Banach space, the space B#(X) = B#(X, X) forms a unital

Banach algebra; the multiplication operation is given by the composition of linear
maps.

Definition 2.1.1f X and Y are #-normed spaces, they are #isomorphic #-normed
spaces

if there exists a linear bijection T : X —» Y such that T and its inverse T are

#-continuous. If one of the two spaces X or Y is #-complete then so is the other space.

Two #-normed spaces X and Y are #-isometrically isomorphic if in addition, T is an

#-isometry, that is, ||[T(X)|| = ||x]|| for every x € X.

Definition 2.2.Let {X, ||+||} be standard Banach space.Forx € *X and ¢ > 0,6 = 0

we define the open =-ball about x of radius ¢ to be the set

B:(X) = {y € "X|"l[x-yll <&}

Definition 2.3.Let {X, ||+||} be standard Banach space, Y c Xthus *Y < *X and let

x € *X.Then xis an x-accumulation point of *X if for every

e> 0,6 = 0,YN(B:(X)\{x}) + .

Definition 2.4.Let {X, |||} be a standard Banach space, let Y < *X,Y is x-closed if

every x-accumulation point of Y is an element of .

Definition 2.5.Let {X, |||} be standard Banach space.We shall say that internal hyper

infinite sequence {X,}n—,” in *X x-converges to x € *X as n - *wif for any

g > 0,6 ~ Othere is N € *N such that forany n > N : *||x, = X|| < &.

Definition 2.6.Let {X, ||| },{Y,|l-||} be a standard Banach spaces. A linear internal

operator A : D(A) < *X - *Yis x-closed if for every internal hyper infinite

sequence {Xn}n,” in D(A) *-converging to x € *X such that Ax, - y € *Y as

n - *oo one has x € D(A) and Ax = y. Equivalently, Ais x-closed if its graph is
x-closed

in the direct sum *X & *Y.

Given a linear operator A : *X - *Y, not necessarily x-closed, if the x-closure of its

graph in *X & *Y happens to be the graph of some operator, that operator is called

the x-closure of A, and we say that A is x-closable. Denote the x-closure of A by x-A.

It follows that A is the restriction of x-A to D(A).

A x-core (or x-essential domain) of a x-Aclosable operator is a subset C = D(A) such

that the x-closure of the restriction of Ato Cis x-A.

Definition 2.7. The graph of the linear transformation T : H - H is the set of pairs

{o, To)l(p € D(T))}.

The graph of T, denoted by I'(7), is thus a subset of H x H which is a
non-Archimedean

Hilbert space with inner product ((¢1,¥1),{(Q2,w2)).

T is called a #-closed operator if I'(T) is a #-closed subset of H x H.

Definition 2.8. Let T1 and T be operators on H. If I'(T1) > I'(T), then T; is said to be
an

extension of T and we write T; © T. Equivalently, T; > T if and only if D(T1) > D(T)



and T1p = To for all ¢ € D(T).

Definition 2.9. An operator T is #-closable if it has a #-closed extension. Every
#-closable

operator has a smallest #-closed extension, called its #-closure, which we denote by
#-T.

Theorem 2.1.1f T is #-closable, then T(#T) = #L(T).

Definition 2.10.Let T be a #-densely defined linear operator on a non-Archimedean

Hilbert space H. Let D(T*) be the set of ¢ € H for which there is an £ € H with

(Ty, @) = (v,&) for ally € D(T).

For each ¢ € D(T*), we define T*p = &. T* is called the #-adjoint of T. Note that

@ € D(T*) if and only if |(Ty, )| < C|lw| for all y € D(T). We note that S c T implies

T < S~

Theorem 2.2. Let T be a #-densely defined operator on a non-Archimedean Hilbert

space H.

Then:(i) T* is #-closed.

(ii) T is #-closabie if and only if D(T*) is #dense in which case T = T**.

(iii) If T is #-closabie, then (#-T)* = T*.

Definition 2.11. Let T be a #-closed operator on a Hilbert space H. A complex number

A € *C# isin the resolvent set,p(T),if Al — T is a bijection of D(T) onto H with a

a finitely or hyper finitely bounded inverse. If 1 € p(T), Ri(T) = (Al = T) L is called the

resolvent of T at A.

The definitions of spectrum, point spectrum, and residual spectrum are the same for

unbounded operators as they are for bounded operators. We will sometimes refer to

the spectrum of nonclosed, but closabie operators. In this case we always mean the

spectrum of the closure.

3. Symmetric and self-#-adjoint operators: the basic

criterion for self-#-adjointness.

Definition 3.1. A #-densely defined operator T on a non-Archimedean Hilbert space is

called symmetric (or Hermitian) if T < T*, that is, if D(T) < D(T*) and Tg = T*¢ for

all o € D(T).

Equivalently, T is symmetric if and only if (Te,w) = (¢, Ty) for all ¢,y € D(T)

Definition 3.2. T is called self-adjoint if T = T*, that is, if and only if T is symmetric and

D(T) = D(T*).

A symmetric operator is always #-closable, since D(T*) o D(T) is #dense in H. If Tis

symmetric, T* is a closed extension of T so the smallest #-closed extension T** of T

must be contained in T*. Thus for symmetric operators, we have

T < T* < T*.For #-closed symmetric operators,T = T** < T* and, for self-adjoint

operators, T = T* = T*

From this one can easily see that a #-closed symmetric operator T is self-adjoint if

and only if T* is symmetric.

The distinction between #-closed symmetric operators and self-adjoint operators is
very

important. It is only for self-adjoint operators that the spectral theorem holds

and it is only self-adjoint operators that may be #-exponentiated to

give the one-parameter unitary groups which give the dynamics in



QFT. Chapter X is mainly devoted to studying methods for proving that operators are

self-adjoint. We content ourselves here with proving the basic criterion for
selfadjointness.

First, we introduce the useful notion of essential self-adjointness.

Definition 3.3 A symmetric operator T is called essentially self- #-adjoint if its
#-closure #-T is self- #-adjoint. If T is #-closed, a subset D — D(T) is called a core for T
if

#-T|D=T.

If T is essentially self-#-adjoint, then it has one and only one self-#-adjoint extension.

The importance of essential self-#-adjointness is that one is often given a nonclosed

symmetric operator T. If T can be shown to be essentially self-#-adjoint, then there is

uniquely associated to Ta self-adjoint operator T = T**. Another way of saying this is
that if A is a self-#-adjoint operator, then to specify A uniquely one need not give the

exact domain of A (which is often difficult), but just some #-core for A

Chapter V. Semigroups of operators on a
non-Archimedean Banach spaces.
81.Semigroups on non-Archimedean Banach spaces and

their generators.

A family of #-bounded operators {T(t)|0 < t < «o*} on external hyper infinite
dimensional

non-Archimedean Banach space X endoved with *R%, - valued norm ||-||, is called a

strongly #-continuous semigroup if:

@ T =1

(b)  T(YT(t) = T(s+t) for all st € *RE,

(c) Foreach g € Xt » T(t) is #continuous mapping.

We will see that strongly continuous semigroups are the “exponentials,”

T(t) = Ext-exp(—tA), of a certain class of operators. .

We begin by studying a special class of semigroups:

Definition 1.1. A family {T(t)|0 < t < «*} of bounded or hyper bounded operators on

external hyper infinite dimensional Banach space X is called a contraction semigroup

if it is a strongly #-continuous semigroup and moreover |[T(t)|ls < 1 for all t € [0,0%).

Note that the all theorems about general strongly #-continuous semigroups are easy

generalizations of the corresponding theorems for #-contraction semigroups. Thus,

we study the special case first. We then briefly discuss the general theory and

conclude the section by studying another special class, #-holomorphic semigroups.

Proposition 1.1. Let T(t) be a strongly #-continuous semigroup on a

non-Archimedean Banach space X and set Ap = #lim.., o Arp where

D(A) = {p| #lim., o Arp exists}. Then Ais

#-closed and #-densely defined. A is called the infinitesimal generator of T(t). We will

also say that A generates T(t) and write T(t) = Ext-exp(—tA).

Proof.Let T(t) be a contraction semigroup on a Banach space X. We obtain the

generator of T(t) by #differentiation. Set A; = t~2(I — T(t)) and define

D(A) = {p| #lim¢,, o Atp exists}.
For ¢ € D(A), we define Ap = #limw., o Aip. Our first goal is to show that D(A) is



#-dense. For ¢ € X, we set

S
9s = Ext- [ T()gdt. 2.1
0
Forany r > 0, we get
S
T(Ngs = Bxt- [ T(t+ nedt (2.2)
0

thus

Arps = - (Ext [rt+ne - T(t)go]d#t> _

0

- (Ext j T(t)(od#t> + 4 (Ext j T(t)<pd#t>-

From Eq.(2.3) one obtains #lim.., 0 Arps = —T(S)p + ¢. Therefore, for each ¢ € X

(2.3)

and s > 0, s € D(A). Since s™1ps —# ¢ as -4 0, A is #-densely defined.
Furthermore, if o € D(A), then A/ T(t)p = T(t)Arp, so T(t) : D(A) - D(A) and
#
L TO0 = -AT(p = ~TMA (2.4
Ais also #-closed, for if on € D(A), #lim .+ pn = @, and #lim .« Apn = v, then

#lim e, 0Ap = #lim ., o#lim o[~ (TMPa — pn) | =

r
#lim ., o#lim e L (Ext- j T(t)Agpnd#t) _

S

r
#lime, o % (Ext- J. T(t)wdﬁ)

S

(2.5)

S0 ¢ € D(A) and Ap = v.
The formal Laplace transform

- i 5= (Ext- j (Ext-exp(—At) ) (Ext- exp(tA))d#t> (2.6)
0

suggests that all u € *C# with Rep < 0 are in p(A). This is in fact true and the
formula (2.6) holds in the strong sense. For suppose that ReA > 0. Then, since
| Ext-exp(—tA) || < 1, the formula (2.7)

ot

Rp = Ext- j(Ext- exp(—At) ) (Ext- exp(—tA) p)d*t 2.7)
0

defines a hyper bounded linear operator of #norm less than or equal to (Rel)™.



Moreover, forr > 0,

ARp = -1 (Ext- j(Ext- exp(—At) ) (Ext- exp(—(t + r)A) — Ext- exp(tA))god#t> -
0

1 - Ext-expir) (Ext- [ Ext-exp-t) (Ext- exp(tA))god#t> ; (2.9
0

;

Ext- exp(Ar

# (Ext j(Ext- exp(—At)) (Ext- exp(—tA))god#t>
0

soasrt -4 0,ARp -4 (¢ — ARp). Thus Rp € D(A) and ARp = ¢ — ARp which

implies (A + A)Rp = ¢. In addition, for ¢ € D(A) we have ARp = RAp since

A(Ext- j (Ext-exp(—t) ) (Ext- exp(tA))god#t> -
0

oot

Ext- [ (Ext-exp(-At))A(EXt- exp(~tA) Jpdt = (2.9
0

ot

Ext- j (Ext- exp(—At) ) (Ext- exp(—tA) )Apdt.
0

The first equality follows by approximation with external hyperfinite Riemann
sums (see [1]) from the facts that (Ext- exp(—4t) ) (Ext-exp(—tA))e and
A(Ext-exp(—At) ) (Ext-exp(—tA)) are #-integrable, A is #-closed. Thus, for ¢ € D(A),
R(A+A)p = ¢ = (A + A)Rp which implies that

R=(Q+A™ (2.10
The properties of A which we have derived are also sufficient to guarantee that A
generates a contraction semigroup. In fact, we only need information about real
positive A.
Theorem 1.1. (Generalized Hille-Yosida theorem) A necessary and sufficient
condition that a #-closed
linear operator A on a Banach space X generate a contraction semigroup is that
(i) (-*,0) = p(A)
(i) (A + A1, forall 2 > 0.
Furthermore, if A satisfies (i) and (ii), then the entire #-open left half-plane is
contained in p(A) and

ot

(A+A) 1o = —Ext- j(Ext- exp(—At) ) (Ext- exp(—tA) )d*t (2.11)
0

for all € X and A with ReA > 0. Finally, if T1(t) and T»(t) are contraction semigroups
generated by A; and A; respectively, then Ta(t) = T1(t) for some t implies that
Al * A2.
Proof. Since we showed above that conditions (i) and (ii) are necessary and that
(2.11)



holds, we need only show sufficiency. So, suppose that A is a #-closed operator on X
satisfying (i) and (ii). For A > 0, define A® = 1 — 2%2(1 + A)~1. We will show that as
A — o, A® -, Astrongly on D(A) and then construct Ext-exp(—tA) as the strong
#-limit of the semigroups Ext-exp(—tA™).For ¢ € D(A), AWg = A(1 + A)tAp.
Moreover, by (ii),

#1im AL+ A Lo — @] = #1im __+[-(1 + A)LAp] = 0. (2.12)
By condition (ii) the family {A(2 + A)~Y|]A > O} is #-uniformly hyperfinitely bounded
in #-norm, so since D(A) is #dense, #lim,__+«[A(1 + A)ly] = w forall y € X.
Thus #lim,__«A® ¢ = Ag for all ¢ € D(A). Since A is hyperfinitely bounded, the
semigroups Ext-exp(—tA®)) can be defined by hyper infinite power series. Since

|Ext-exp(—tA@D) ||, = [ (Ext-exp(—At))(Ext-exp(tA2(A + A)™) |, <

o (2.13)
nq2n .
< (Ext- exp(—lt))(Ext- Z % (A +A)™* ||2> <1
n=0
they are contraction semigroups. For all u,A,t > 0, and all ¢ € D(A), we have
[Ext-exp(—tA™W) ] — [Ext-exp(—tAW)]p =
(2.149)

t
Ext- [ O (Ext- exp(—sA™) ) (Bxt-exp(—(t— H)AW))p)l's
0

SO,

I[Ext-exp(—tA™) o — [Ext-exp(-tAU)]o |, <
t
Ext- III (Ext-exp(—sAW) ) (Ext-exp(—(t = ) A ) [ AW — AP | d's < (2.15)
0

< t[|[AWg - AWg]|..

We have used the fact that Ext-exp(—tA®)) and [Ext-exp(—(t — S)A®))] commute
since {A®]1 > 0} is a commuting family. Since we have proven above that
#lim .« AP = Ap, {Ext-exp(-tA®)} is Cauchy as 1 - «” for each t > 0 and

¢ € D(A). Since D(A) is #dense and the Ext-exp(—tA®)) are uniformly hyperfinitely
bounded, the same statement holds for all ¢ € X. Now, define

T(t)p = #lim . +[Ext-exp(—tA®)g]. (2.16)

T(t) is a semigroup of contraction operators since these properties are preserved
under strong #-limits. The above inequality shows that the #-convergence in Eq.(2.16)
is uniform for t restricted to a hyperfinite interval, so T(t) is strongly #-continuous since
Ext-exp(—tA®)) is. Thus, T(t) is a contraction semigroup.It remains to show that the

infinitesimal generator of T(t), call it A, is equal to A. For all t
and ¢ € D(A),

t
[Ext-exp(—tAD )p] — ¢ == —|:Ext- j J (2.17)

0
so, since #lim,__: A®¢p = Ap, we have



t
T(p — ¢ = —[ Ext- j T(S)Agod#5:|. (2.18)
0

Thus, Ktq) -4 Ap ast -4 0. Therefore D(K) > D(A) and A I D(A) = A. For A > 0,

~ _1
(A + A)~* exists by hypothesis and (l +A> exists by the necessity part of the
theorem.

82 Hypercontractive semigroups

In the previous section we discussed LE-contractive semigroups. In this section we will
prove a self-adjointness theorem for operators of the form A+ V where Vis a
multiplication operator and A generates an £5-contractive semigroup that satisfies a
strong additional property.

Definition 2.1. Let (M, u*) be a #measure space with z#*(M) = 1 and suppose that A
is a positive self-adjoint operator on £3(M,d?u*). We say that Ext-exp(—tA) is a
hypercontractive semigroup if:

(i) Ext-exp(—tA) is L£5-contractive;

(ii) for some b > 2 and some constant Cy, there isa T > 0 so that

| Ext-exp(—tA)p |, < Collg ||, for all € L3(M, d*u*).

By Theorem X.55, condition (i) implies that Ext-exp(—tA) is a strongly #-continuous
contraction semigroup for all p < «*. Holder’s inequality shows that

ellg < Nl-llg (1)
if p > g.Thus the £5-Spaces are a nested family of spaces which get smaller as p gets
larger; this suggests that (ii) is a very strong condition. The following proposition

shows
that b plays no special role.
Proposition 2.1. Let Ext-exp(—tA) be a hypercontractive semigroup on £%(M, d”u*).
Then for all p,q € (1,0%), there is a constant Cpq and a tpq > 0 so that if t > tp then
IExt-exp(~tA)¢ ||, < Cyqlloll, for all ¢ e L4,
Proof. The case where p < g follows immediately from (i) and (1). So suppose that
p > q. Since Ext-exp(—tA) : £2 - £P and Ext-exp(—tA) : £3" — £%" the generalized
Riesz-Thorin theorem implies that there is a constant C so that for all r > 2,
| Ext-exp(—tA)o |, < Cllell,,,,- We now consider two cases. First, if g > 2 we choose
n large enough so that 2(b/2)" > p. Then [[Ext-exp(—-nTA)@|| 54,5 < Cll@|l, so the
conclusion follows if 2 < g,p > 2(b/2)", by using (1), and hypothesis (i). If 1 < g < 2,
then we choose n large enough so that 2(b/2)" > p and q > ¢ where
ct+(2(b/2)"1 = 1. Since Ais self-adjoint and Ext-exp(—nTA)¢ is a bounded or hyper
bounded map from £2 to £2?" (Ext-exp(—-nTA))* = Ext-exp(—nTA) is a bounded or
hyper bounded map from £§ to £2. Thus Ext-exp(—2nTA) is a bounded or hyper
bounded map from £5 to £2”?". Since ¢ < q < p < 2(b/2)", (1) implies the proposition.
Theorem 2.1. The operator —+d*2/dx? + xd*/d*x on £Z(*R¥, m,*Ext-exp(-x2)d*x )
is positive and essentially self-adjoint on the set of hyperfinite linear combinations of
Hermite polynomials, and generates a hypercontractive semigroup.



As a preparation for our main theorem, we prove the following result.

Theorem 2.2 Let (M, u) be a #measure space with u(M) = 1 and let Hq be the
generator of a hypercontractive semigroup on £3(M,du). Let V be a real-valued
measurable function on (M, u*) such that V € £5(M,d*u#) for all p € [1,00%) and
Ext-e™ e £3(M,d*u*) for all t > 0. Then Ho + V is essentially self-#-adjoint on
C~"(Ho) N D(V) and is bounded below. C*"(Ho) = Ny D(HP)

Chapter VI. Singular Perturbations of Selfadjoint
Operators on a non-Archimedean Hilbert space.

81. Introduction

We study the sum A + B of two #-selfadjoint operators on a non-Archimedean

Banach spaces, and we find sufficient conditions for C = A + B to be #-selfadjoint.

Our technique is to approximate B by a hyperinfinite sequence of bounded
#-selfadjoint

operators Bn,n € *N and so to approximate C by #-selfadjoint operators C, = A + Biy.

We answer three questions separately:

1.When do the operators C,, have a #-lim C? 2.When is C a #-selfadjoint operator?

3.WhenisC = A+B?

In Theorem 8 we give a set of estimates on the relative size of A and B which

ensure a positive answer to all three questions. Hence these estimates show that

A+ B = Cis #-selfadjoint. In another paper [5], we use Theorem 2.8 to prove

the existence of a self-interacting, causal quantum field in 4-dimensional

space-time. Formally this field theory is Lorentz covariant and has non-trivial

scattering; this application was the motivation for the present work.

In order to investigate the meaning of #lim,.-, C,, we give a new definition for

the strong #-convergence of a hyperinfinite sequence of operators. Consequences

of this definition

are worked out in Section 2. In Section 3 we give estimates on operators C,

which are sufficient to ensure that the #-lim.-, C,, = C exists and that C is maximal

symmetric or #-selfadjoint. This result is given in Theorem 5 and Corollary 6.

In Section 4 we investigate whether #-lim,.+, C, = Cis equal to A+ B.

We combine this work in Theorem 8, our second main theorem, where B is

a singular, but nearly positive #-selfadjoint perturbation of a positive #-selfadjoint

operator A. To illustrate this theorem, let A > | and let B be essentially #-selfadjoint on

D* = (e D(AM). (1.0
Assume now that, for some g > 0 and some q,
A--ABA-(-F) and APBA* (1.1

are #-densely defined, bounded operators. Also, for some positive a,s € *RE,
satisfying 2a+ ¢ < 1, suppose that there is a constant b € *R#% such that, as bilinear
formson D x D,

0<aA+B+b (1.2



and
0 < eA? + [AY2 [AY2 B]] + b. (1.3

Then A + B is #-selfadjoint.
We see from this example that neither the operator B nor the bilinear form B
need be bounded relative to A.
While it may not appear evident, the conditions (1.1)-(1.3) are closely related
to a more easily understandable estimate on D¥ x D¥,
A? + B%c(A+B)? +c. (1.9
In fact, estimates (1.1)-(1.3) are chosen because they allow us not only to prove (1.4),
but also the similar inequality where B is replaced by B.
Let us now see that if A+ B is #-selfadjoint, then (1.4) must hold for every
vector in D(A + B) = D(A) N D(B).
Proposition 1.1. Let A and B be #-closed operators. Then A + B is #-closed if and
only if there is a constant ¢ € *R¥ such that for all y € D(A+ B)

AV, + 1By lly < [(A+ Byl +cllvll, (1.5
and (1.5) is equivalent to (1.4) on D(A + B) x D(A+ B).
Proof: Certainly (1.5) implies that A + B is #-closed. Conversely, assume that
A+ B is #-closed and introduce the #-norms on D(A+ B) = D(A) N D(B),
Il = Il + IAY DL, + Byl (1.6
and

Il =yl + A+ By, (1.7)
Then D(A+ B), [|-| 4, is @ non-Archimedean Banach space because A + B is #-closed.
The identity map from D(A + B), || +|| ,, to D(A+ B), |- ,, has a #-closed graph because
A,B, and A + B are c#-losed. By the #-closed graph theorem, the identity map is
#-continuous; hence

I llsy < Clly 4o 1.7)

Proposition 1.2.Let A > |, B be #-selfadjoint operators with D¥ < D(B) and
suppose (1.2) and (1.3) hold. Then (1.4) is valid on D# x D¥.

Proof The operators A?,B?,AB, BA, and AY2BA'? define bilinear forms

on D¥ x D¥*. Using (1.2) and (1.3), we have the inequality:

AZ + B2 = (A+B)2 - 2A2BAY2 _ [A2 [AY2 B]] < (A+B)%2+(2a+¢)A?+2Ab+b
which establishes (1.4).

§2. Strong #-Convergence of Operators

Let £(C) be the graph of the operator C. For any hyperinfinite sequence {C,},n € *N
of #-densely defined operators we define

L:(C) = {¢, xlp = #liMn.vco §n,¢n € D(Cn), x = #liMno Cridpn (8)

In general, £+, will not be the graph of an operator. If the hyperinfinite sequence
{Ci}, n e *N#-converges strongly on a #-dense domain D to an operator C*, namely,

Cry = #Ilimn.+ Ciy,y € D,
then £+ is the graph of some operator C*. In particular, if each C, is self #-adjoint,



and if the C,, #-converge on a #-dense set D to an operator C defined on D,
then £+, = £-,(C+») and C, is a symmetric extension of C.

Definition 2.1. G #CONVERGENCE. The hyperinfinite sequence of operators
Cn,n € *N #-converge strongly to C-, in the sense of graphs, written

Cn —>H#G C*oc (8l)

if £+, is the graph of a #-densely defined operator C+, .
Remark 2.1.Note that for a hyperinfinite sequence of uniformly bounded operators
{Ch} ooy SUch that C, »4c C+o, C-y, is the usual strong #limit of the operators

Cn,n € *N and is everywhere defined.

Definition 2.2.R#CONVERGENCE. Let the resolvents Ry(2) = (Ch—2)1,n € *N
exist for some z € *C#, and be uniformly bounded in n. The operators C, #-converge
strongly to C-, in the sense of resolvents, written

Ch »#r Cio 8"

if the resolvents Rn(z) #-converge strongly to an operator R(z), which has a #-densely
defined inverse.

Remark 2.2.Note thatln that case, the operator C-,, = R™%(2) + zexists for all z € *C#
for which the strong #-limit of the R,(2) exists, and R(2) + zis independent of z
Remark 2.3.Note that G #-convergence is weaker than R #-convergence, in the case
Cn = Cj, at least, because, as we shall show, in this case Cp -4 C-+, implies

Ch —»u#c C+. It seems likely that G #-convergence is strictly weaker than

R #-convergence; this could be established by giving an example for which

C; = Ch »#c C+ with C+, not maximal symmetric. The importance of

G #-convergence is that it is technically easier to verify-and gives less information
about the #-limit-than R #-convergence, while automatically selecting the correct
domain in the case that R #-convergence also holds. The most familiar examples of
G #-convergence occur where there is C, strong #-convergence on a #dense domain.
A less trivial example occurs where there is D(C,) is independent of n,but apparently

D(C) N D(Cn) = {0}

We have the following connection between G and R #-convergence for a hyperinfinite
sequence of #-selfadjoint operators.

Proposition 3.Let Cy,n € *N be #-selfadjoint.

(@) The domain D+, = {¢|{¢,;{} e L+, for some ;(} is #-dense in H and oniy if
Ch —#c C+o,and in this case C- is necessarily symmetric.

(b) If Ra(2) = (Ch—2)7%,n € *N #-converges to a bounded operator R(2) for an
unbounded set of Zs with ||zR, (2) ||, bounded uniformly inz € *C{ and n € *N
and if C, »s C+s,then each R(z) is invertible.

(c) If Ra(2) #-converges to an invertible R(z), then C,, -4 C.

(d) If Cp —»4r C,then C, 46 Crs, £+ = £(C),and C is maximal symmetric.

(e) Conversely, if C, »4c C, where C is maximal symmetric, then C, -4 C.

In case the #-limit of the C,,,n € *N is actually selfadjoint, there are further
connections between G and R #-convergence.

Theorem 4.

(@) Ch -4 C,and C = C*.



(b) Cn —>#R C, and C = C*.

(c) The hyper infinite sequences {Rn(2)} and {[Rn(2)]*},n € *N #-converge
strongly and #limn,.+» Rn(2) is invertible for some z

(d) Statement (c) holds for all non-real z € *C#

83.Estimates on a G #-convergent hyper infinite

segquence

In this section we give estimates which are sufficient to assure that it G #-convergent
sequence of operators is R #-convergent, and that the limit is maximal symmetric or
selfadjoint. In order to measure the rate of #-convergence, we introduce a selfadjoint
operator N > | and the associated non-Archimedean Hilbert spaces H; with the scalar
product

W) = (NH2y, N2y (3.1)

By standard identifications we have for A > 0 : H, < Ho < H_1 and Ho = H.
If D : H, - Hp is a#-densely defined, bounded operator from H, to Hg, we let
||D||#a,ﬁ denote its #-norm. Setting ||D||, = [|D| 4, we obtain

1D, 5 = INFZDN=2]. (3.2

Let Cn,n € *N be a hyper infinite sequence of selfadjoint operators, and consider
the following three conditions.

(i) Suppose that C, — Cy, is a #-densely defined, bounded operator from H;to H_,, for
some A,and that as n,m » *o

ICn = Cmll 4, —=# 0. (3.3

(i) Suppose that, for some p and for an unbounded set of z = x+iy € *C% in the
sector [x| < const x |y|,

IR\ 4, < M@, (3.4)

where the bound M(2) is uniform in n € *N.
(i) Suppose that, for the above Zs,

IR@ I, < M@ (3.5)

Theorem 5. Let Cp,n € *N be a hyper infinite sequence of #-selfadjoint operators
with a common domain, such that
Ch —»uc C.
If conditions (i) and (ii) hold, then
Ch-w C
and C is maximal symmetric.
Corollary 6. If in addition to the hypothesis of Theorem 5, condition (iii) also holds,
then C is #-selfajoint.
Remark 3.1.(1) If u = 0'in (ii), then the resolvents #-converge uniformly.
(2) If the C, are uniformly semibounded from below, then we may choose
the zin condition (ii) to be infinite large negative numbers. In that case the conclusion
of Theorem 5is that C,, -4« C = C*.



8 4.Estimates for singular perturbations
In this section we consider a singular perturbation B of a #-selfadjoint operator A.
We give estimates on B which ensure that the sum A + B is #-selfadjoint.
Abbreviation 4.1.We abbreviate A* instead #A.
Definition 4.1. A #-core of an operator C is a domain D contained in D(C) such
that C = (C | D)*.
Lemma7. Let A/An,n € *N,B,Bn,n € *Nand C, = A,+B,,n € *N be
#-selfadjoint operators with a common #-core D. Assume the hypotheses of
Theorem 5 and Corollary 6 for Cn,n € *N and suppose also that, for 6 € D,
[(A=An)0|l,+ [[(B—Bn)d|l, »» 0asn - *o (4.9
and
1A0 2+ [|Brf|| 2 < const.x||0] 2 + const. x||Cnf ||3, (4.10)

with constants independent of n. Then A + B is #-selfadjoint and C, -« A+ B.
Remark 4.1.As hypothesis for our next theorem, our second main result, we assume
that N < A and that N and A commute. Let

D(A) = [oeen AGA) (4.11)

the elements of D"*(A) are called C™* vectors for A. Assume that D"*(A) is a #-core
for the #-selfadjoint operator B. Also assume that, as bilinear forms on D™ x D",
and for some « and ¢ in the indicated ranges,

O<aN+B+const.,0< a < 1/2 (4.12
and
0 < A? + congt x B + [AY2,[AY2,B]] + const., 20 + ¢ < 1. (4.13
Let B be a bounded operator from H, to H_, and from H, to Hz for some «, 8 and
v, > 0 (H, is defined following Theorem 4.) If v > 2, assume that for all ¢ > 0
0 < gN#+2 4+ [NW+D/2 INw+D2 B]] + const.  (4.14)

as bilinear forms on D™ x D™, for some u > v - 2.
Theorem 8. Under the above hypothesis, A+ B is #-selfadjoint.
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