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Abstract

Developing Planck scale physics requires addressing problem of time, quantum reduction, determinism
and continuum limit. In this article on the already known foundations of quantum mechanics, a set of
proposals of dynamics is built on fully constrained discrete models: 1) Self- Evolution - Flow of time in
the phase space in a single point system, 2) Local Measurement by Local Reduction through quantum
di¤usion theory, quantum di¤usion equation is rederived with di¤erent assumptions, 3) Evolution of a
multipoint discrete manifold of Systems through a foliation chosen dynamically, and 4) Continuum limit,
and determinism are enforced by adding terms and averaging to the action. The proposals are applied to
the various physical scenarios such as: 1) Minisuperspace reduced cosmology of isotropic and homogenous
universe with scalar �eld, 2) Expanding universe with perturbation, and 3) Newtonian Universe. Ways
to experimentally test the theory is discussed.

�Updates regrading this research will be made available at twitter.com/qstaf. The o¢ cial website for this research is
www.qstaf.org. and the author can be contacted through the website.
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1 Overview

1.1 The problem

The purpose of this paper is to address problems related to combining quantum mechanics and general
relativity. They are as follows:
1. Problem of time: Physics is used to make predictions. Knowing the past, physics helps predict the

future. Without time subject of physics is useless. In classical gravity time-evolution clearly is present. The
Wheeler-Dewitt equation, which is the fundamental equation for quantum gravity, contains time evolution
internally, and we need a way to extract time evolution from it in a quantum general relativistic context.
2. Since general relativity is a description of the macroscopic universe, quantum general relativity requires

addressing the quantum reduction problem. So developing a theory of quantum gravity requires including
quantum reduction theory. Usually the di¢ culty maintaining superposition closely relates to the mass of
the quantum system. Higher the energy of a particle or photon more it acts with particle nature. For
example a proton, which is massive, is a smaller wave-packet than an electron, even though they have equal
charge. This suggests strength of gravitational �eld may be related to the size of a wave-packet. And so the
gravitational �eld associated need to be linked to appearance of decoherence. For example, Roger Penrose [3]
have already promoting gravity as a quantum reduction. A systematic theory for quantum reduction using
gravity is not yet available and it needs to be developed.
3. Quantum States are not covariant objects, and they depend on the space-time foliation. So quantum

reduction depends on foliation. We need a way to objectively describe the quantum reductive evolution and
the issue of foliation on the manifold on which the process depends.
4. Because of non-perturbative nature of quantum gravity one may need to approach it like lattice gauge

theory. This leads to discretizing space-time and �elds. Also quantum reduction leads to randomness. These
leads to problems in recovering back the continuum physics. So we need way to recover back continuum
classical physics addressing the issues of smoothness and determinism.
The goal of this article is to outline a framework of proposals for Planck scale physics, such that it 1)

has time (dynamics), quantum reduction and continuum limit as integral parts of the basic foundations, 2)
is simple and intuitive, 3) has proper physical motivation, 4) is based on simple scienti�cally established
notions and concepts, and 5) makes minimal assumptions.
Revision info: This paper is a modi�ed version of the Quantum Gravity Framework1.0 [24]. This paper

is somewhat conceptually di¤erent from that of the previous version. It is more advanced overall with more
calculations, and sample applications of the basic principles.

1.2 Outline of the paper and Assumptions

In section 2, I elaborately discuss the proposals for dynamics, which are conceptual in nature. The proposals
discussed there apply to the discrete models that are constrained by the Hamiltonian constraint only. This
means, we assume, we have already solved the gauge constraints and di¤eomorphism constraints, by re-
stricting the kinematical Hilbert space. First a proposal for quantum evolution of a single point system with
quantum variables is discussed. Then I discuss the inclusion of quantum reduction to the single point universe
through Bloch (Lindblad) equations and quantum di¤usion theory. Then I discuss multipoint universe such
as physics on a manifold. Quantum reduction using quantum di¤usion or Bloch equation requires a preferred
foliation. So a proposal is introduced to obtain a preferred foliation through minimizing a functional (chosen
experimentally) which depend on the dynamical variables of gravitational �elds. Various possible choices for
the functional is given. Finally, a proposal is introduced to enforce smoothness and determinism by adding
an extra term and averaging to the action. Various possible choices for the extra term is given.
In section 3, I discuss how to put together all the four proposals. In section 4, I apply the proposals

to various physical scenarios such as: 1) Minisuperspace reduced cosmology of Isotropic and homogenous
universe with scalar �eld, 2) Expanding universe with perturbation, 3) Newtonian Universe. In section 5,
ways to experimentally test the theory is discussed.
This article aims to develop a framework of proposals, which are more of guidelines, to develop Planck

scale physics with time and reduction. It is precisely not quantum general relativity, because some aspects
of the conceptual proposals of quantum mechanics and general relativity are not subsumed, such as unitarity
and foliation independence. Primarily this article was intended to address the issues of time and reduction,
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by developing a theory of Planck scale process. But since the framework is built on discrete models, a fourth
proposal is added to impose continuum limit. But the framework aims to reproduce general relativity and
quantum mechanics consistent with the experiments at the appropriate scales. Not all the elements of the
framework is new, but some are already well known, such as Bloch and quantum di¤usion equations. But I
want to embed them in a proper framework so that they can be used to develop Planck scale physics.
I assume that the metric in the internal con�guration space is positive de�nite unless speci�ed. We follow

the following conventions in this article: 1) It is assumed that �h = c = G = 1, unless speci�ed 2) Einstein�s
summation convention is assumed over indices of internal spaces.

2 A Framework of Proposals

2.1 Self Evolution in a single point universe

2.1.1 The Theory

Consider a single point universe, with one simple quantum system living on it. Assume that simple quantum
system is described by a Hamiltonian constraint only. Let the internal con�guration space of the quantum
system is of dimension d, and is made of canonical variables p� and q�. Let m�� , a function of q�; is the
metric in the internal con�guration space. Hereafter I will use m�� and its inverse m��(assuming it exists),
to raise and lower indices. Let me de�ne a scalar product using the metric:

< a; b >= a�b�m
�� :

I will assume m�� is positive de�nite for now. The Langrangian as usual is

L(p�; q�; N) = p� _q
� �NH(p� ; q
):

Let me assume that a typical Hamiltonian is as follows (without the Lapse):

H(p�; q�) =
< p; p >

2
+ V (q�) = m��p�p� + V (q


) (1)

=
p�p

�

2
+ V (q
): (2)

In this case the classical dynamic equations are

dq�

dt
= NfH; q�g = N

@H
@p�

; (3a)

dp�
dt

= NfH; p�g = �N @H
@q�

: (3b)

The propagator is

G(q�; q0�;�t) =
1

(2�)
d

Z
exp(ip��q

�)�(H(q�; p�))dpD:

We see here that the �t term is absent in the right hand side. So the propagator is a function of the
con�gurational variables only:

G(q�; q0�) =
1

(2�)
d

Z
exp(ip��q

�)�(H(q�; p�))dpD: (4)
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This form of the propagator is what is to be expected. This is because t is a coordinate variable, it can be
changed by an arbitrary (smooth) rescaling of the lapse (temporal di¤eomorphism). So the physical evolution
should not depend on it. Practically we read time by reading observables, for example the position of a clock�s
needles. The q�s are the most basic observables and so the physical time may have to be extracted from
them, for example, assuming that one of them acts as an internal time variable. But, this way of choosing
the time variable is arbitrary and subjective. We need a more objective way to choose the time variable.
We need to de�ne a set of concepts so that we understand time evolution in a fully constrained system.

Consider the con�guration space. We need to use the understanding of classical physics to describe the
�ow of time in the Hamiltonian constrained system. Various solutions to the problem of time was reviewed
by Isham [15]. In the schemes described there, our approach will be to identify time after quantization.
Usually in the semi-classical approach using the Wheeler-Dewitt equation, WKB wave-function is assumed
to exist. Then using the Hamilton-Jacobi equation derived from it, the phase of the wave-function is related
to time (for example [16], [17]). Our proposal is closely related this. But assumptions of validity of WKB
approximation is too strict a requirement. Here we will make no such assumptions, and try to develop time
evolution by linking the classical trajectory given by equations (3a) and quantum path integral in equation
(4), only assuming that both of them exist.
In classical analysis doing the constrained system analysis is straight forward. It is a trajectory (q�(�); p�(�))

in the phase space given by equations (3a). The con�guration space is just enough to formulate the propos-
als. Given _q�(0); q�(0); we usually have the curve q�(�) as a solution satisfying the initial conditions. The
tangent to each point is _q�(�):
Consider a smooth trajectory Q�(�). Consider a D � 1 dimensional one parameter family of �at hyper-

plane S� in the con�guration space going through a point Q�(�) and the normal be v�(�) = _Q�(�). Let
me denote this hyperplane by S(v�(�); Q�(�)) or in short S(�). Let q� = (t; qIs );where t is the coordinate
along the normal v�s (�), and q

I
s are D� 1 coordinates on the hyperplane orthogonal to it. We can use these

coordinates to study physics on these hyperplanes S(v�(�); Q�(�)) in the neighborhood of the region near
the point. Let  � (q

I
s ) be a wavefunction on this hyperplane. Then we can derive a propagator for evolving

this wavefunction with respect to the one parameter family of hyperplane as I will discuss next.
If q� 2 S(�); from the equation for the hyperplane we have,

v�(�)(q� �Q�(�)) = 0:

Let e�i be the global unit vectors, where i varies from 0 to D� 1, with e�0 v�(�) > 0: Let ei� be the inverse
of e�i : Let E

�
I are the unit vectors on the surface S = S(�) where I varies from 1 to D � 1. The metric

on the hyperplane is ��� = (m�� � �v��v�): We can get E�I by projecting e
�
I to S; E�I = ���e

�
I . Let Q

�(�)

be the origin on S; then the hyperplane coordinate of point in the e�I basis is q
�
s = Q�(�) � q�; implying

q�s v� = 0:In the E
�
I basis the hyperplane coordinates are q

I
s = EI�q

�
s ;where E

I
� = ���e

I
�.
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Let us associate a normalized wavefunction  (qIs ; �) to the surface S(�). If q
0� 2 S0 = S(� + d�); the

propagator between S to S0 is given by,

~G(q�; q0�;S; S0) =
1

(2�)d

Z
vs;�p�<0

exp(ip�(q
� � q0�))�(H)dpD: (5a)

I have used the condition vs;�p� < 0 to de�ne a casual propagator, such that the time evolution along v�:
Let me assume the width of the wavefunction �qs(�); de�ned by

< qIs (�) >=

Z
qIs j (qJs ; �)j2dqD�1s ; (6a)

�qs(�)
2 =

Z
(qIs (�)� < qIs (�) >)(qs;I(�)� < qs;I(�) >)j (qJs ; �)j2dqD�1s ; (6b)

remains much smaller than the radius of curvature of Q(�): Then qIs are good coordinates to study the
evolution of the  (qIs ; �).

~G(S; S0) be the operator form of ~G(qI ; q0I ;S; S0) in the qI ; q0I coordinates. The propagator needs to be
normalized as follows:

G(S; S0) = lim
S00�>S

~G(S; S0) ~G(S; S
00
)�1: (7)

This renormalization removes factors of integration from �(H), so that limS0�>S G(q
I ; q0I ;S; S0) = �(qI�q0I):

Proposal 1: Self-Evolution: The temporal �ow of time in a quantum Hamiltonian constrained system is
described by 1) Wavefunction  � (q

I
s ) on the one parameter family of hyperplanes S(�) = S� ( _Q

�(�); Q�(�)),
for a given Q�(�); 2) The propagator between the wavefunctions on the hyperplane given by equation (7), 3)
The path Q�(�) considered as a C1 smooth function of � : 4) Given an arbitrary path Q�(�); one can evolve
the wavefunction  � (q

I
s ) normal to the hyperplane S( _Q

�(�); Q�(�)):at each instant � :The physical value of
Q�(�) is such that <  � jp̂Is p̂sI + q̂Is q̂sI j � > is a minimum for all possible of q�s (�)

1 :

The S(�) = S� ( _Q
�(�); Q�(�)) represents the classical information contained, which can be derived from

the Euler-Langrange Equations or Hamilton equations, while  � (q
I
s ) represents the quantum information.

1This principle is di¤erent from that of the �rst proposal in Quantum Gravity Framework [24]. There the quantum state
of system is de�ned on the con�guration space. Time is de�ned as extra parameter associated with the state. Time evolution
happens as the quantum state amplitudes simultaneously change at each point of the con�guration space. But in version 2.0
time is considered as an internal coordinate. The evolution happens on a one parameter sequence of cross-sections of the
con�guration space, similar to conventional relativistic quantum mechanics. It is not clear which version is correct regarding
the quantum state. Comments are welcome as www.qstaf.org/skm-article2.
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Then �s is very large, the Q�(�) evolve close to its classical expected value given by Hamilton equations.
Because of this 
 becomes close to zero. Now this is just a generalization of what a person experiences in
relativistic quantum mechanics. He observes the physics around himself as it happens on the hyperplane
orthonormal to the direction along which he travels, with he being the center.
Given an arbitrary path Q�(�);one can evolve the wavefunction along  � (q

I
s ) along the hyperplane

S� ( _Q
�(�); Q�(�)):The physical value of Q�(�) is such that 
 is a minimum for all possible Q�(�):But there

could be more than one solution for this. Also if �qs(�) is two high compared to norm of < qs(�) > (equation
(6a)) then it is not sensible to think Q�(�) as the unique classical information associated with the quantum
evolution. Proposal 2 that we will discuss in the next section will improve this situation.
Using this proposal 1 as a guideline, let me derive the Hamiltonian associated to the continuous evolution

of the wavefunction on a parameter family of hyperplanes S� . Let me calculate the Hamiltonian for the self-
evolution, from surface S = S(�) to S0 = S(� + d�). The details of the calculation is given in appendix A:
The propagator for the evolution of the wave function from S(�) to S0 = S(� + d�) is,

G(q
0I
s0 ; q

I
s ;��) =

Z
p��v�<0

exp(i(psI�q
I
s �Hs(p

s
I ; q

0I
s0 ; Q

�(�))��))dqIs ; (8)

where

Hs(p
s
I ; q

I
s ; Q

�(�)) = psIq
J
s h

I
J � pv(jvj+ qIs

d �E�I
d�

�v�); (9)

jvj = jdQ
�

d�
j;

and

hIJ = �EI�
d �E�J
d�

:

Assuming m�� = ��� . Using

pv =
q
�pIspsI � 2V (Q�(�) + qIs �E�I );

we can calculate the e¤ective classical equation of motion for the Hamiltonian Hs

_qIs = qJs h
I
J �

@pv
@psI

(jvj+ qKs
d �E�K
d�

�v�); (10)

_psJ = �psIhIJ +
@pv
@qJs

(jvj+ qKs
d �E�K
d�

�v�) + pv(
d �E�J
d�

�v�): (11)

Examples of application of these equations is given in Appendix A.

2.1.2 Recovering the usual Classical motion

Let me show that we can recover the classical Hamilton motion from the equations (10) and (11) with the
condition of minimality of 
. Let ��� = ��� . Let initially qIs = 0 and p

s
I = 0:
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pv =
q
�pIspsI � 2V (Q�(�) + qIs �E�I );

@pv
@psI

= �p
I
s

pv
;

@pv
@qJs

= � 1

pv

@V (Q�(�) + qIs
�E�I )

@qJs
:

Using the initial conditions qIs = 0 and p
s
I = 0, we need to solve for _q

I
s = 0 and _p

s
J = 0 to get the equations

of motion for Q�(�): Using these,

pv =
p
�2V (Q�(�));

_qIs = 0 =) � @pv
@pI

(jvj) = 0;

=) pIs = 0:

_psJ = 0 implies,

@pv
@qJs

(jvj) + pv(
d �E�J
d�

�v�) = 0;

� 1

pv

@V (Q�(�) + qIs �E
�
I )

@qJs
(jvj) + pv(

d �E�J
d�

�v�) = 0;

� 1

pv

@V (Q�(�) + qIs
�E�I )

@qJs
(jvj2)� pv( �E�J

dv�
d�
) = 0:

Using initially �E�J = ��J for � 6= 0;

� jvj2
(pv)2

@V (Q�)

@Q�
� (d

2Q�
d�2

) = 0:

Since � is a arbitrary parameter v is de�ned upto an arbitrary scale. So by setting jvj = pv; we get,

d2Q�
d�2

= �@V (Q
�)

@Q�
; � 6= 0:

Evolution of Q0 is determined by the condition jvj = pv, which is equivalent to the Hamiltonian constraint.
This and the above equation both are equivalent to equations (3a).

2.1.3 Algorithm for evolution

Let me write out the algorithm for evolving the wavefunction using proposal 1:

1. First a wavefunction  (qIs ; �) is given on initial hyperplane S(�) with normal vector �
�(�): Let the

expectation value of the wavefunction be Q�(�) in the global coordinates. Let Q�(�) be the origin of
the coordinates qIs in S(�). Let < psI > be p� in global coordinates. Let me assume that the norm of
p� is small compared that of ��(�).

2. Evolve the wavefunction  (qIs ; �) along �
�(�) to a new hyperplane S(� +d�) with normal ��(� +d�) =

m��p� going through pointQ�(�)+d���(�). SetQ�(�+d�) = Q�(�)+d���(�) as origin of coordinates
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on the new hyperplane. The Propagator and Hamiltonian for evolution was given in equation (8) and
equation (9). Using equation (9), the modi�ed Schrodinger equation is

d (qIs ; �) = iHs(p
s
I ; q

I
s ; Q

�(�))d� : (12)

3. Repeat steps 1 and 2:

The above evolution ensures minimization of <  � jp̂Is p̂sI + q̂Is q̂sI j � > at each step.

2.1.4 Application to Physics

Let me apply discuss the application of the theory to general relativity coupled to electromagnetic �eld
and scalar �eld. The canonical coordinates are (hab; �ab) for gravity, (Aa; Ea) of Electromagnetic �eld, and
(�; �) for the scalar �eld. Since we are studying a single point system, without the interaction terms, the
Hamiltonian constraint is

Hnon�int = +
1

2

�
�2 +m2h�2

�
+
1

2
(E2)� 1

cg
(�2 � �ab�ab);

where cg is the gravitational coupling constant. Now our basis is made of tensors and scalars. Our basis e�i
is actually made of collection di¤erent tensor bases: dxa
dxb, dxa and 1; where 1 is the basis for scalar �eld.
They belong to di¤erent spaces. But it does physically make sense in uni�ed theories such as in Kaluza-
Klein theory, where tensor, vector and scalar �elds becomes components of higher dimensional tensor, and
in string theory the �elds are just various string components. Nevertheless to apply the method discussed
in this section, we need to name the 10 pairs of conjugate variables, as q� and p�: For example:

q0 = �; q2 = A1; q
3 = A2; q

4 = A3;

q5 = h11; q
6 = h22; q

7 = h33; q
8 = h12; q

9 = h23; q
10 = h32:

p0 = �; p2 = E1; p3 = E2; p4 = E3;

p5 = �11; p6 = �22; p7 = �33; p8 = �12; p9 = �23; p10 = �32:

Some of these terms are redundant because the di¤eomorphism constraint, and gauge constraints need to
be imposed, which is another separate problem. In section four, I solve these constraints explicitly assumming
small curvature approximation.
The Hamiltonian constraint can be rewritten in terms of the p and q variables and the theory we developed

in this section can be applied. The kinetic term in term of p0s and q0s would be too complicated for display,
unless we use some uni�ed theory of �elds. So I don�t explicitly show it here. Computer simulation to analyze
the behavior of such a system, where all the relevant variables can be directly entered into the program.
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2.2 Quantum Reduction for single point system

Consider the single point system discussed in the last subsection. The modi�ed Schrödinger equation (12)
derived describes the evolution of the system in the direction v�. The equation results in the system evolving
into a macroscopic superposition state. To prevent this we need continuous reduction of the system which
removes the macroscopic superposition. The general form of continuous reduction of a quantum system
is given by the Bloch equations in the Lindblad form [21] governing evolution of density matrix (reviewed
in [22]):

_� = i[�̂; Ĥ] +
X
m

(2L̂m�̂L̂
+
m � L̂+mL̂m�̂� �̂L̂+mL̂m); (13)

where � is the density matrix and Lm are the operators representing observables to be continuously measured.
This equation has been extensively studied and has been useful in various experimental situations [23]. It
describes an ensemble of identical quantum systems and does not tell how each individual system evolves.
It is not the most natural and explicit form to use to describe an individual quantum system. So, we need
to consider the equivalent equation, given by Percival, Gisin and Diosi [6], which describes the stochastic
motion of the quantum system state j > of a quantum system:

dj > = �iĤd� j > +
X
m

(L̂m� < L̂m >)j > dzm
p
d� (14)

+
X
m

(2 < L̂m > L̂m � L̂+mL̂m� < L̂+m >< L̂m >)j > d�;

where d� is the time interval of evolution in the non-relativistic quantum mechanics. The dzm are complex
numbers representing Gaussian distributed independent random variables. More explicitly, the real and
imaginary parts of dzm are Gaussian random variables such that the statistical expectation values are given
by,

M(dzm) = 0; M(dzmdzn) = 0; M(dzmdz�n) = 2�mn; (15)

where M refers to the statistical mean.
Let me clarify how the third term works a little bit. Consider that j > is expanded as a superposition

of the eigenstates of L̂m: As j > evolves, the third term tends to reduce the amplitude of an eigenstate in
the sum to the extent to which its eigenvalue is far away from the expectation value of < L̂m >. Because
of this j > evolve such that the amplitudes of the components are peaked close to < L̂m >, a semiclassical
state. In equation (14) the second terms randomizes the system, third term classicalizes the system. These
are natural components of macroscopic quantum reduction.
Percival applies this to quantum �eld theory and indicates that the resultant theory is non-unitary [7].

But, in case of quantum gravity the universe cannot be described by unitary evolution alone because that
would lead to superposition of macroscopic states. Clearly, experimentally, whenever the quantum state of
a system evolves into a superposition of macroscopic quantum states it probabilistically evolves to one of
the macroscopic states. So, for a macroscopic universe, the quantum evolution must be described by an
equation that has three components: a deterministic unitary component, a stochastic component, and a
component that prevents macroscopic superposition. The modi�ed Schrödinger equation (14) is the most
natural form of it and the three terms in the right hand side of the equation give the necessary components
in the respective order.
In general the stochastic evolution can de�ned upto a norm of j � >. The norm of j � > is not physically

relevant. The physical interpretation of the theory comes through its relation to density matrix which doesn�t
depend on the norm of j � >

� =
M(j � ><  � j)
<  � j � >

;
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which evolves by the Lindblad equation. The M is the statistical mean with respect to the random variables
z: The eigenstates and eigenvalues of � gives the possible physical states j � > of the quantum system and
probabilities for observing them respectively.
In the appendix C a general stochastic evolution equation motivated by equation (14) is derived. The

derivation is based on [8], but di¤erent in details. Let me brie�y summarize the derivation in the appendix
C. A general stochastic evolution equation is

jd >= �j > dt+ �mj > zm
p
dt;

where � and � are operators on j >; and zmobeys equation (15). Summation over repeated indices is
assumed.
Let me solve d(<  j >) = 0; assuming that dt and zm are free variables, and, � and � are independent

of dt and zm. As shown in the appendix C, the constraints are too strong that they will eliminate the
quantum di¤usion equation (14) itself.
We need to take a di¤erent route. First let me solveMd(<  j >) = 0; assuming � and � are independent

of dt and zm:The general solution for � is

� = iH + 
� < 
 > ��+m�m; (16)

assuming � and � are independent of dt and zm. Here H is a Hermitian operator, and 
 is an arbitrary
operator.
Now let me for solve d(<  j >) = 0 assuming, dt are the free variables, �; � are independent of dt.

Further a solution for � can be obtained by adding a real number to equation (16) to keep the norm constant.
To summarize we have the �nal form of the dynamics equations are

jd � >= �j > dt+ �mj > zm
p
dt; (17)

where

� = iH � 
 � �+m�m + c; (18a)

�m = Lm� < Lm >; (18b)

c = �1
2
< �+m�n > (z

m�z n � 2�mn)+ < 
 > � < 2�+�m > zm
p
dt: (18c)

The c is a c�number and is a random function of z. The c is also dependent on
p
dt. I will assume that

zm
p
dt can be neglected hereafter, unless speci�ed otherwise.
We can derive the evolution equation for � =M(j ̂ ><  ̂j); from equation (18a) (without neglecting

p
dt

term). The evolution equation of � is

d�

dt
= �(~�+) + (~�)�+ �m��

+
m; (19)

~� = iH + 
� < 
 > ��+m�m:

Here the
p
dt term does not show up.

To get the quantum di¤usion equation and the Lindblad equation we need to set [8],

�m = Lm� < Lm >;


 = < Lm > L+m � Lm < L+m > :

In this case, using the evolution equation (19) it easy see that the system in long term approaches the
expected probability distribution for Copenhagen interpretation.
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Let me state the second proposal of dynamics.

Proposal 2: Local Quantum Reduction - Given a path Q�(�), the quantum state of a single point
quantum system along with the self-evolution also undergoes continuos reduction with respect to observables
Li through semiclassicalization and randomization given by equation below.

dj � > = iHsj � > d� +
X
m

�mj � > dzm

q
j _Q�j�� + (
 �

X
m

�+m�m)j � > j _Q�j�� ; (20)


 = ��+ < Lm > L+m � Lm < L+m > :

with Hs is from equation (9); �i = Li� < Li >; with � is Hermitian operator to subject the evolution to
further reduction.

Physical relevance of � will be evident in the fourth proposal. Since the c term is ignored, j � > is not
assumed to be normalized. So

< Li >=
<  � jLij � >
<  � j � >

:

The iHsj � > term is self-time Hamiltonian derived from proposal 1 in equation (12). The �� is the time
measure from the �rst proposal of dynamics, and the operators L̂m are simple functions of the conjugate
variables psI and q

I
s to undergo continuous reduction.

Usually for the applications of the Bloch equation (13) to study the evolution of the density matrix
of a quantum system, the Lm�s are to be determined by what are to be measured in the experimental
context. But, here in the second proposal of dynamics we assume that the Lm�s are fundamental quantities
in quantum gravity to be determined experimentally. The natural and simplest choice for the Lm�s are
given by psI and q

I
s , or some simple functions of them. These observables need to be gauge invariant and

di¤eomorphism invariant as expected by the theory studied. Introducing di¤eomorphism invariance requires
studying multipoint system, which will be discussed in the next to subsections.
The fermionic �elds have zero expectation values. So these cannot contribute to the Lm�s. The fermionic

particles can be measured by measuring the bosonic �elds they generate. For example, superposition of a
particle wavefunction at di¤erent points, results in superposition of �elds generated by it such as gravitational
and electromagetic �elds. Continous reduction of these �elds with Lm�s, reduces fermionic �elds.
The combined quantum system forms a complete reality by itself and there is no outside observer to

make reduction. The system needs to be understood as undergoing continuous reduction by itself instead of
being considered as undergoing measurement.
There is no necessity that one needs the quantum di¤usion theory. It might be simple to just use the

Bloch equations (13). A detailed study of the model might help whether one can just restrict to the density
matrix formalism of the theory. Also since the reference frame with respect to which the quantum di¤usion
occurs keeps changing according to proposal one. This might interfere with the reduction process and make
quantum di¤usion theory problematic for reduction process. But if the reduction occurs faster than the
curving of Q�(�); which determines the reference frame, then the theory will remain sensible.
The new modi�ed Hamiltonian can be directly included in the algorithm discussed in the last section.

This can randomize the evolution of Q�(�) and quantum state. This randomness can reduced and smooth
evolution can be reproduced by introducing many-body interaction and continuity conditions in the next
two proposals.
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2.3 Quantum Evolution and Reduction for Multipoint Universe

The �rst proposal of dynamics focused on a quantum system at a single point that evolved according
to a single time parameter. In quantum gravity we want to evolve the quantum states from one spatial
hypersurface to another spatial hypersurface. In a spatial hypersurface there is in�nite number of points,
with a quantum system at each point. So let me discuss how to understand time evolution in a many-point
quantum system. If there are many interacting fully constrained quantum systems, then for each point x;
there are one set of conjugate variables px;�, q�x (D dimensional space internal space). To each point we
can apply theory discussed in proposal one, then there will one classical curve Q�x(�x) for each point, one
hyperplance Sx� ( _Q

�
x(�x); Q

�
x(�x), and one free (dummy) parameter �x for each point.

Let me assume that space is discretized and is made of countable number of points. Let B be the number
of points, and for simplicity let us assume B is �nite. Assume that the quantum system at each point x
is described by an identical Hamiltonian constraint Hx only, and it has an interaction term that involves
adjacent quantum systems. Each step of the evolution depends on how Q�(�x) varies with ��x. Now
consider the propagator de�ned by proposal 1 in equation (7). For each system at x; we have one curve
Q�x(�) assigned. Then the combined one step propagator is

~G(fq�s;x; q
0�
s0;x;Sx; S

0
x;8xg; ) =

1

(2�)BD

Z
v�s;xp�;x<0;8x

Y
x

fexp(ip�;x(q�x � q0�x ))�(Hx)dp
D
x g; (21)

G(fSx; S0x;8xg) = lim
S00x�>Sx;8x

~G(fSx; S0x;8xg)
~G(fSx; S00x ;8xg)

:

The repeated application of the one-step propagator for in�nitesimal ��x smoothly evolves all the sys-
tems. The sequence of the quantum states, de�nes the states of the system at various consecutive instants.
As the combined system evolves the classical expectation value of the momentum and the con�guration
variables p�;x and q�x also evolve. Let me apply it for F steps. From equation (21) we have:

G(fq�x;0; q
�
x;F ;8xg) =

Z FY
k=1

[G(fq�x;k; q
�
x;k�1;Sx(�k); Sx(�k�1);8xg)] (22)

(
Y
x

F�1Y
k=I+1

dqx;k):

Here Q�x(�x) is a free variable at each point of the discretized spacial surface. Apply the principal 1
extremal proposal yields a curve Q�x(�x) for each point. But since �x is a dummy variable we can �x the
arbitrariness. This done by using the condition j _Q�x(�x)j = pv;x, where pv;x is the classical momentum along
_Q�x(�x). Then ��x physically represents the proper time.
Now let me apply this to physics with gravity, scalar �eld and vector �eld. The Hamiltonian constraint

with interaction term is

HT = +
1

2

�
hhab@a�@b�+ �

2 +m2h�2
�
+
1

2
(E2 +B2)�

�
cghR+

1

cg
(
1

2
�2 � �ab�ab)

�
:

As discussed in section 2.1.2 variables can be rewritten in terms of p� and q�. The ultimate expression
for the above Hamiltonian constraint will be cumbersome. Important thing to note here is that there will
one time parameter �x for each point. Assume that above Hamiltonian constraint is discretized in a cubic
lattice made of B cubes. Then we can apply the above theory.
Each step of the evolution depends on the values of ��x. Let � be a continuous time parameter, which

varies from � = 0 to � = T . Let me de�ne ��x = nx(�) �� ; where the nx(�) are continuous functions of
� , one of them for each point x. The repeated application of the one-step propagator for in�nitesimal ��
evolves the quantum state. The nx(�) functions de�nes the various ways to foliate the discrete geometry,
whose topology is B point 
 1D, described by the above Hamiltonian constraints. nx(�) is essentially is the
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lapse.
Now if we want to include the reduction at each point discussed in proposal 2, it depends on the foliation,

as it is not covariant. Given a foliation described by certain choice of nx(�);we generalize proposal one
and two, given a path q�s;x(�) for each point, the combined quantum state of all points of the manifold can
made to undergo continuos reduction with respect to fundamental �eld variables Li;x at each point, through
semiclassicalization and randomization given by equation below:

dj � >= iHs;xj � > nx(�)d�+
X
m;x

�m;xj � > dzm;x

q
j _Q�s jnx(�)��+(
x�

X
m;x

�+m;x�m;x)j � > nx(�)j _Q�s j�� :

(23)

where Hs;x is from equation (9); 
x = ��x+ < Lm;x > L+m;x � Lm;x < L+m;x >; and �i;x = Li;x� < Li;x >,
the su¢ x x indicates the point to which the quantities corresponds.
Now we need to pick a foliation that is be relevant to do the reduction process. Now there are three

questions to be addressed: 1) whether the reduction process occurs along a preferred foliation, 2) what is the
choice of the foliation along which the reduction occurs, and 3) whether this can be addressed as experimental
questions. If reduction happens along a preferred foliation, this process will correlate information along the
hypersurfaces of this foliation. This correlation is a physically measurable e¤ect.
If the answer to the �rst question is yes, we can try to guess what could be the most natural foliation

along which the reduction might occur. For this, consider the set up used for studying canonical general
relativity. Consider a space time with metric g�� and one parameter spacial foliation St; where St is the
spacial hypersurface for a given t: This can foliation can be speci�ed by function t(x); x is a point on space
time, with t = constant describes the surface St. We can choose t to be the time coordinate. Consider the
vector �eld, T 
 = ( @@t )


 . T 
 generates a one parameter family of space-time di¤eomorphism, such that a
given initial surface St1 is mapped to a di¤erent surface St2 of the foliation. So specifying T 
 is another way
to de�ne the foliation. The universe is described by combination of ideal space times such as 1) Homogenous
and Isotropic: Robertsen-Walker metric, 2)Static: Schwarzschild metric, 3) Stationary type: Kerr-Metric,
and Reisnesser-Nordstrom metric, listed below:

ds2 = a(t)2( dt2 � dx2 + dy2 + dz2); (24)

ds2 = N(r) dt2 �R(r)dr2 � r2d
; (25)

ds2 = N(r; �; �)dt2 � h(r; �; �)abdxadxb � 2Nadxadt: (26)

Space-Time Type-> Homogenous and Isotropic Static type Stationary type
Metric equation(24) equation(25) equation(26)
Most Natural Foliation t = constant t = constant t = constant
@
@t conformal killing conformal killing conformal killing
d
dt
�hab 0 0 0

R 0 0 6= 0
��ab 0 0 6= 0

The most natural foliation for each case is given in the table above.
Consider the static case - Schwarzschild space time. The physical information is contained in the distri-

bution of matter and the gravitational �eld around it. All this information is transferred unchanged along
the foliation in which it is static. Our quantum measurement experiments are usually done along the time
parameter along the time-like killing vector ( @@t )


 . Any motion of the measurement instruments or earth
itself is too non-relativistic to alter the direction of �ow compared to ( @@t )


 . Also consider the linear gravity.
To �rst order the gravity is described by gravitational potential. On the Schwarzschild case the gradients
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are parallel to the hypersurfaces of the static foliation t =constant. To �rst order these static surfaces are
the directions along which gravitational forces act. So these hypersurfaces are unique in this way.
In case of the Robertson Walker metric, similar to Schwarzschild metric, most calculations quantum or

semiclassical is done along the foliation given by scale factor as cosmological time. Long distance correlation
in Cosmic Microwave background (CMB) has been derived using quantum correlations during in�ation using
scale factor as time. Until now all the observations of Cosmic microwave background is consistent with such
a theoretical analysis.
From the above two case we can seen that the foliation de�ned by the conformal killing vector ( @@t )


 is
appears to a good candidate. Let me de�ne tensor C�� de�ned as a function of space-time metric g�� by

C��(g�� ; T
�) = $T (g��)�

1

4
(g
�$T (g
�))g�� ;

where $T is the lie derivative along T�:For a vector T� to be conformal killing , C�� is to be zero.
One can see from the table that there are many ways to identify the natural foliations. This are listed

below:

1. Trace free momentum ��ab is zero,

2. The scalar curvature of the hypersurfaces R is zero,

3. Trace free transverse component of hab or �ab is zero,

4. Hypersurface volume V =
R
<
p
h > dx3 is maximum (not mentioned in the table),

5. If �hab = h�
1
3hab, with h = det(hab);then d�hab

dt = 0;and

6. C��(g�� ; T �) is zero.

The �rst four are clearly true for spherical static case and cosmological case. The last two are also
true for these two space times and also for stationary types such as rotating and/or charged case. The real
physical space-time, is a combination of many types of metric and the six conditions hold only approximately.
So we need to consider a physical choice of foliation such that it �ts very closely to the natural time-like
hypersurfaces associated to them. Instead of considering the tensors to be zero, we need specify a norm like
functional on these tensors, to measure how small they are. Let me consider them on by one:

1. �(�ab) =
R
��ab�

ab
p
h
dx3:

2. �(hab) =
R
R
p
hdx3:

3. �(�ab) =
R �TTab �

ab
TTp
h

dx3; TT stands for trace free transverse component.

4. �(hab) =
R
h
2
3
d�hab
dt

d�hab
dt

p
hdx3:

5. For measuring the smallness of C�� ;consider the most obvious norm:Z
C��C


�pgd4x =
Z
g�
g��C��(g�� ; T

�)C
�(g�� ; T
�)
p
gd4x

The second line makes the depends on g�
 and T � to be explicit. Since the metric is Lorentzian,
the measure is not positive de�nite. So the smallness of

R
C��C


�pgd4x does not imply smallness
of components of C�� : To surmount this, metric can be Euclideanized so that the norm is positive
de�nite.

�(g�� ; T
�) =

Z
g�
E g��E C��(g

E
�� ; T

�)C
�(g
E
�� ; T

�)
p
gEd

4x

where gE�� is the Euclidean version of the Lorentzian metric g�� , and g
��
E is the inverse of gE�� :
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6. �(hab) = �
R
<
p
h > dx3; smallness of this norm measures the largeness of the volume.

7. Also one can consider using the full canonical momentum of gravitational �eld to de�ne � :

� =

Z
(
�ab�ab
cgh

)
p
hdx3

=

Z
(cg

KabKab

h
)
p
hdx3:

8. One also need investigate a more general way to de�ne � using the kinetic terms of the integral spin
�elds, without including Dirac �elds (as the �eld expectation value are zero):

� =

Z
(�2� +

1

2
E2 +

��ab��ab
cgh

)
1p
h
dx3

where K�� is the full extrinsic curvature. But, in most cases away from singularities, the gravitational
term dominates because, cg is very large.

Now let me propose the following

Proposal 3: Global Quantum Reduction - The quantum evolution and reduction process occurs along
a spatial foliation such that the C1smooth functions nx(�) take smooth values, such that relative probability
weight is given by exp(�cr�), where cr is a fundamental constant, where � is one of the measures in the
above list, to be discovered and veri�ed experimentally.

One can assume � being minimum is su¢ cient to determine the foliation. But minimality of � may not
necessarily give a unique foliation. That is why I have chosen a statistical form for proposal three. There
are various possible candidates for describing the foliation of the three types of geometries: The �rst �ve
choices �ts with the canonical form of dynamics. The last choice is covariant.
When there are more than mixture bodies evolving in expanding universe, the minimal foliation is made

merging of various types of foliations. This is illustrated in the �gure below. Close to the cosmic celestial
bodies such planets or stars, the foliation is determined by purely Schwarzschild metric, the minimal surfaces
are normal to time-like vector along with the body moves. Between the celestial these surfaces deform slowly
through intermediate foliation, whose normals are some weighted average of the velocity vectors of the planets
depending the position and the masses of the bodies. In between galaxies we have surfaces described by
constant scale factor.
Particles such as atoms or elementary particles do not disturb appreciably the gravitational �eld deter-

mined by large celestial bodies. So they evolve and decohere along these special foliations as I have discussed
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in proposal 3. One might think that proposal 3 is not in the spirit of General relativity as it depends on the
foliation. But this not true, because we have not chosen the foliation kinematically. The foliation is chosen
here dynamically based on values of gravitional canonical �eld variables.
The various alternative proposals for � need to be investigated theoretical and experimentally to look

for a precise theory. The continuous reduction of the quantum state correlates the classical and quantum
information along the hypersurfaces. Now for the �0s suggested the correlation happens along the slightly
random hypersurfaces that are close to the physically intuitive ones. This may be physically observable
e¤ects, as mentioned before, that may have useful consequences. So this e¤ect needs to be studied more
theoretically and/or experimentally.

2.3.1 Interpretation

The � is de�ned as a global evolution parameter. The evolution along � could physically mean two di¤erent
things:

1. 3D Evolving block model: This is the Newtonian way of interpretation: � is a global time parameter
along which a curved 3D semi-classical universe undergoes quantum evolution. The past is semiclas-
sical. Future is non existent. The present evolves along a unique foliation of 4D metric, which is
probabilistically chosen from many possible foliations from proposal 3. Consciousness of all observers
evolve along � :

2. 4D Block Universe Model: � is simply a global foliation parameter of a 4D block universe model.
Observers physical time is a proper time parameter along his world line as usually de�ned in relativity.
But, this interpretation does not explain why observer time �ows unlike the �rst interpretation.

Which one of this may be right physical interpretation can only be decided by if possible by experimental
study.

2.3.2 Algorithm for evolution

Let me discuss the algorithm for evolving a piece of a Planck scale sized spatial slice of reality.
1) Discretize the region into cubes of size L3 in coordinate units. Discretize the Hamiltonian constraint.

To each cube x assign quantities discussed in algorithm 2:1:2:All the quantities have su¢ x x:The Hamiltonian
constraint is a function of near by points of x0s:To the e¤ective Hamiltonian Hs;x add the quantum di¤usion
term.
2) First wavefunction  (fq�x;s;8xg; �) is given on the product of initial hypersurfaces Sx(�) with normal

vector ��x(�):Let the expectation value of the wavefunction be Q
�
x(�) in the global coordinates. The Q

�
x(�)

needs to the origin of the coordinates qIx;s in Sx(�). Let < pIx;s > be px;� in global coordinates. Let me
assume the norm of < px;�;s > is small compared that of ��x(�).
3) Choose values for nx(�);and evolve each the global wavefunction wavefunction  (fq�x;s;8xg; �):To to

this at each x evolve  (fq�x;s;8xg; �) from Q�x(�) along �
�
x(�) to a new hypersurface Sx(� + d�) with normal

��x(�+d�) = m��
x px;� going through point Q�x(�)+nx(�)d��

�
x(�). Set Q

�
x(�+d�) = Q

�n
x (�)+nx(�)d��

�(�)
as origin of coordinates on the new hypersurface. The Propagator and Hamiltonian for evolution was given
in equation (8) and equation (9).
4) Calculate �(�);where � is de�ned by one proposal three, or one of the alternatives discussed before.
5) Change value of nx(�). Repeat steps 3 and 4:The probability nx(�) of values is given by exp(�cr�)

The most probable nx(�) is for which �(�) is minimum.
6) The  (fq�x;s;8xg; � + d�) for which �(�) is minimum is the most probable new initial wavefunction.

Now start over from step 2.
If cr is large enough, then the evolution happens such that � is minimum. To study evolution of quantum

particles in Schwarzschild or Cosmological case, the most probable nx(�) can be chosen easily. These cases
will be later studied in this article.
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2.4 Deterministic, Continuum Limit and Scale invariance

Let me assume that nature is made of large number of interacting identical discrete quantum systems at
the Planck scale. The stochastic evolution in proposal three in the many body system, results in random
evolution of the system, as the classical expectation values evolve randomly. Whatever discrete quantum
model one proposes at a microscopic scale (atomic, nuclear or Planck), the model need to have a proper
relation to the macroscopic classical world. One of the important aspects of this is the continuum limit. For
this theories has to provide smoothness and deterministic evolution in the macroscopic limit.
Achieving continuum and deterministic limit for a discrete model is always a di¢ cult problem. But

nature seems to be continuous and deterministic at macroscopic scale. One simple way to solve this problem
is given by the following proposal.

Proposal 4: Every subsystem has several mechanisms built into it explicitly such that the expectation values
of quantum variables of nearby or adjacent identical quantum systems are very close to each other. They
are such as 1) There are imaginary decay term in the action to keep the quantum variables adjacent to each
other, 2) Every system is a collection of large of subsystems each having quantum variables qIx;s and random
variables zm; xattached to it and evolving according the �rst three principles, and 3) The e¤ective variables of
every system is got by weighted averaging of the random and quantum variables of the underlying subsystems;
Fundamental Commutators are smoothened as a consequence of this.

Let me discuss the three parts of the proposal 4 one by one. First let me discuss the �rst part: A simple
way to realize the �rst part of the proposal is to add an extra imaginary term to the action (20)

S �! S + i
X
x;s

(
1

2
�x(q

�
y;s)j _Q�x;sj)nx(�)�� ;

such that �x are
1) smooth real functions of the variables q̂�x;s with a lower bound,
2) functions of quantum variables at x and adjacent (or nearby) quantum systems to point x, and
3) are increasing functions as jq�x � q�x0 j� >1:
Now the new single-step propagator (without the quantum di¤usion and global reduction) is

~G(fq�x ; q0�x ;Sx; S0x;8xg; )

=
1

(2�)BD

Z
v�s;xp�;x>0;8x

Y
x

fexp(ip�;x(q�x � q0�x )�
X
x

�x(q
�
y;s)j _q�x;sjnx(�)��)�(Hx)dp

D
x g:

The new term with �x need to be added to Hamiltonian Hs;x in the algorithm discussed in the last
section to enforce smoothness. The negative sign of �x in the evolution equation makes sure that j � >
wavefunction weights jq�x � q�x0 j; 8�, for every pair of quantum systems adjacent to each other in the discrete
model.
A simple choice for �x is

�x(q
�
y ) =

X
�;Adjacent x0

jq�x � q�x0 j2:

But the problem with this function is that it will suppress the di¤erences between q�x and q
�
x0
, erasing out

the physics in long term. So alternative choices for �̂ are the following functions with minimums for non-zero
(q�x � q�x0 )

2.
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1) �x(q
�
y ) =

X
�;Adjacent x0

A
exp(B � jq�x � q�x0 j

2)

jq�x � q�x0 j
2

;

2) �x(q
�
y ) =

X
�;Adjacent x0

A

jq�x � q�x0 j
2
+Bjq�x � q�x0 j

2;

where A; B are real constants and positive. In this �̂ goes towards in�nity for both jq�x � q�
x0
j� > 0and

jq�x � q�
x0
j� > 1: So this restricts the evolution of quantum state such that jq�x � q�

x0
j are �nite. For large

expectation values of jq�x j >> 0 (in quantum units), which corresponds to macroscopic case,
<jq�x�q

�

x
0 j>

<q�x>
are

in�nitesimal. This will help reproduce the continuum limit.
Another advantage of the �̂ operator is that it limits randomness in the �elds. The quantum reduction

in the last two proposals introduces randomness, and it can build to large values. The �̂ operator can reduce
this randomness, and help �elds to be smooth in the continuum limit. An extra term can be added to keep
� terms from disturbing the norm of the wavefunction.
Let me discuss the scale invariance of dynamical equations e¤ectively. Let me study the large number

limit of the stochastic evolution equation for a many body system in a �nite neighborhood 
 made of �nite
number of systems. Let me assume the 
 is considered to made many cubes of volume �v, with n lattice
points in each orthonormal directions in three dimensions. Therefore 
 is made of n3 cubes. Let the total
volume �V = n3�v:
The evolution equation for a combined state is as follows:

jd � > = (
X
x

�x�V nx(�)dt+ �
x
mz

m
x

p
�V nx(�)dt)j � >;

�x = iHx � 
x � �x � �x+m �xm:

where x indicate di¤erent points, c is ignored, � is the operator in proposal four, and nx are set to be equal
to 1. Let me de�ne the following averages:

�� =

P
x �x
n3

; ��m =

P
x �

x
m

n3
; �zm =

P
x z

m
x

n3
;

�H =

P
xHx

n3
; �
 =

P
x 
x
n3

; �� =

P
x �x
n3

:

For �zm, we have M(�zm�z�n) = 2�mn

n3 : So we de�ne ~zm = �zm
p
n3. Then we have M(~zm~z�n) = 2�mn.

Presence of �x makes quantum amplitude < fq�x ;8xg j � > non-zero for the values of q�x close to each
other. Then we can approximate the quantum di¤usion equation by an macroscopic averaged equation,

jd � > =
X
x

���V nx(�)dt+ ��m~z
m
p
�V nx(�)dt)j � >;

�� = i �H � �
 � �� � ��+m��m:

We �nd that the dynamical equations are scale invariant. But since the multiplying factor
p
�V of ~zm

is larger, the system undergoes semiclassicalization rapidly in terms of the averaged values, than the each
subsystem.
Let me now focus on the commutators. Consider the scalar �eld �.

�(x) =

Z
(a(k) exp(ik:x) + ay(k) exp(�ik:x)) d3k

(2�)3=2
p
!
;
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Consider the expectation value of �(x)2 in the ground state j0 >:

< �(x)2 >=

Z
< 0ja(k)ay(k0)j0 > exp(�ix:(k � k0))d

3kd3k0

(2�)3!
:

This needs to be calculated using the commutator of the �eld:

[a(k); ay(k0)] = �(k � k0);

which is a consequence of the fundamental commutator [�(x); �(x0)] = �(x� x0): The result is divergent:

< �(x)2 >=

Z
d3k

!
=1:

It is essential that < �(x)2 > to be �nite, so that there is clear semiclassical nature for the ground state.
To achieve this commutator need to be smoothened:

[a(k); ay(k0)] = F (k)�(k � k0);

resulting in

< �(x)2 >=

Z
F (k)

d3k

!
:

If F (k) su¢ ciently falls of as k� >1, < �(x)2 > becomes �nite. Now the new fundamental commutator
of the �eld is

[�(x); �(x0)] = f(x� x0):

where f(x) is the Fourier transform of F (k):This commutator can be achieved by considering � and �
weighted averaging of fundamental �elds ~�(x); ~�(x) satisfying [~�(x); ~�(x0)] = �(x� x0):

�(x) =

Z
~�(~x)�(x� ~x)d~x3; (27a)

�(x) =

Z
~�(~x)�(x� ~x)d~x3; (27b)

where �(x) is suitable weighting function. Now we have,

[�(x); �(x0)] =

Z
�(x� ~x)�(~x� x0)d~x3:

If we choose �(x) to be the Gaussian function 1
(d
p
2�)3

exp(�x2

d2 ), we have

[�(x); �(x0)] = exp[� (x� x
0)

d2

2

];

[a(k); ay(k0)] =
1

(d
p
2�)3

exp[�d2k2]�(k � k0);

< �(x)2 > =
4�

d2
:

Now the expectation value is made �nite and the commutator [�(x); �(x0)] has been smoothened. The
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equations (27a) can be written as discrete sum over large number of subsystems, to make this analysis
combatible with the second part of the fourth proposal.

3 Applications

In this section I discuss simple applications of the four principles proposed. I will �rst discuss the simple
minisuperspace homogenous and isotropic expanding cosmological model in which the scalar �eld is coupled
to the gravitational �eld. Then I will discuss the extension of this model with perturbations added to these
�eld. Next I will discuss the model of celestial gravitational objects (small curvature) moving and perturbing
the �at space.

3.1 Cosmological Reduced Model

Consider the expanding perfectly homogenous and isotropic cosmological model with a scalar �eld. Let the
metric be given by,

ds2 = N2dt2 � 1
3
A(dx2 + dy2 + dz2);

and the scalar �eld is �: The Langrangian and Hamiltonian is

L = �V

(
6cg _a

2

p
AN2

� a 3
2

_�
2

2
� a 3

2U(�)� a 3
2N�

)
;

H =

( p
a

24cg�V
�2a �

�2�

2�V a
3
2

+�V a
3
2U(�) + ��V a

3
2

)
;

where � is the cosmological constant and cg is the gravitational coupling constant, U(�) is scalar pontential,
�V is the volume the region universe we are studying.
Let me apply the �rst principle. The path corresponding the minimum of <  � jp̂Is p̂sI + q̂Is q̂sI j � > is

described be the classical equations of motion. Let the capitalized variables describe the evolution of classical
con�gurational and conjugate variables of this path.

_�� = �V a
3
2U 0(�);

_�A = � �2A
48cg�V

p
A
+

3�2�

4V A
5
2

� 3
2
�V A

1
2U(�)� 3

2
��V A

1
2 ;

_� = � ��

V A
3
2

;

_A =
�A

3cgV
p
A
:

Now let me discuss the quantum evolution of this model. To calculate the e¤ective Hamiltonian in
proposal one,

Hs(pI ; q
0I
s0 ; Q

�(�)) = pIq
0J
s0 h

I
J � pV j(jV j�vv + q0Is0

dE�I
d�

�V�)j:

we need to calculate the following quantities.
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hIJd� = �E�J dEI�;

pV =
q
��vv���ps�ps� � 2�vvU(Q�(� + d�) + q0Is0E0�I );

��� = m�� � �vv �V� �V� ;

where m�� is the full metric on the internal space and m�� is the projected metric on the surfaces
S(V �(�); Q�(�)). Let me assume e�0V�! is �nite. We have

Q� = (A;�):

V � = ( _A; _�):

m�� =

" p
A

12�V cg
0

0 �1
�V A3=2

#
; m�� =

"
12�V cgp

A
0

0 ��V A3=2

#
:

Let me assume _A >> _�: Results of calculations of various relevant quantities are

h1 = �E�a
dEa�
d�

= �
3A

�
_A
�
c
�
_�
� �

3A
�
_A
� �

��
�
� 3A

�
�A
� �

_�
�
+ 4

�
_A
�2 �

_�
��

�
A2
�
_�
�2
� 12

�
_A
�2
c

� �
A2
�
_�
�2
� 3

�
_A
�2
c

� ;

h2 =
dE�I
d�

�V� =

12
p
A
�
_A
�
c

�
A
�
_A
� �

��
�
�A

�
�A
� �

_�
�
+ 2

�
_A
�2 �

_�
��

v�
A2
�
_�
�2
� 12

�
_A
�2
c

� r
�
�
A2 ( _�)

2�12 ( _A)
2
c
�
v

p
A

;

M�1 = �
A2
�
_�
�2
� 12

�
_A
�2
c

4A
3
2

�
A2
�
_�
�2
� 3

�
_A
�2
c

�
v

;

jV j =

vuut�V (12cg _A2p
AN2

�A 3
2 _�2

)
:

Let p and q be the free conjugate momentum and con�gurational variables. Now the reduced Hamiltonian
is

Hs(p; q;Q
�(�)) = pqh1 � pV j(jV j+ qh2)j

where pV =
p
M�1p2 + 2�vvU(Q�(� + d�) + qE0�I ):
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3.2 Cosmology with Fluctuations

Let me add small perturbations �ab to the spatial metric of the last model,

hab = (
1

3
A�ab + �ab);

where
R
�abdV � 0; with integral done over volume of �nite size much greater than Planck scale

Let the conjugate momentum be

�ab = �ab + Pgab;

where �ab is the perturbation, and
R
�abdV = 0 with integral done over the same size as the corresponding

integral for the metric. Now the Hamiltonian constraint is

1

6
A2P 2 � 1

3
AP�ab�ab � P 2�ab�ab �

1

9
A2�ab�ab = V;

where V = h(R + hm); hm is the contribution from matter terms. Let me assume that the matter �eld is
just the scalar �eld.

Z
(�ab + P�ab)d(

A

3
�ab + �ab) + �d�

=

Z
PdA+ �abd�ab + �d�:

In the similar way we write the potential as,

V = V0 + v;

where v is the perturbation, with
R
vdx3 = 0 as before.

We can rewrite the metric as follows:

�
1

6
A2 � �ab�ab

�
P 2 � 1

3
AP�ab�ab �

1

9
A2�ab�ab � V0 � v = 0:

We can solve this equation for P; which is the dominant momentum component along which the internal
time �ows.

P = �
 p

6V

A
+

v
p
6

2
p
V A

+
(6)

3
2 �ab�ab

p
V

2A3
+
A�ab�ab

p
6

18
p
V

!
+
�ab�ab
A

:

The sign is decided by initial conditions. Now the e¤ective Hamiltonian is

H = �
 p

6V

A
+

v
p
6

2
p
V A

+
(6)

3
2 �ab�ab

p
V

2A3
+
A�ab�ab

p
6

18
p
V

!
+
�ab�ab
A

:

We can split the � and � into orthogonal components as described in appendix E.
The TTf and Tr components of �ab don�t change with di¤eomorphism. So they are dynamical quantum

variables. But LL and the TL components change by small di¤eomorphism. They can be set to zero by
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appropriate di¤eomorphism. Let me assume below conditions as gauge choice.

�LL = 0; �
ab
TL = 0:

Now we have the action as

Z
HdA+ �abd�ab + �d�

=

Z
�abTTfd�

TTf
ab + �abTrd�

Tr
ab + �d�+HdA:

Using the di¤eomorphism constraint in equation (41) (appendix F), we can solve for �LL and �abTL using
the matter distribution, ignoring the second order transverse terms.

�LL = �LL(�; �
T
ab); (28a)

�abTL = �abTL(�; �
T
ab): (28b)

We can also include EM �eld. Like before for the EM �eld, using the gauge freedom, we can set the
Longitudinal component AL to be zero. The conjugate momentum EL can be solved from initial conditions
using div(EL) = �; where � is the charge density. For this paper let me assume that there is no charge in
the theory. Then we can assume that,

AL = 0: (29)

EL = 0: (30)

The state of the wavefunction is

j >=
X
fxmg

Z
 (�TTfab ; �Trab ; A

T ; �)j�TTfab ; �Trab ; A
T ; �m;�LL; �

ab
TL; A

L = 0 > :

The variables after the semi-colon are non-dynamical solved using equations (29) and (28). Now the action
is

Z
HdA+ �abd�ab + ET dA

T + �md�m

=

Z
�abTTfd�

TTf
ab + �abTrd�

Tr
ab + ET dA

T + �md�m +HdA:

Now H is the schrodinger part and we need add appropiate Lm�s in terms of �
TTf
ab , �Trab ; A

T and �m
(and possibly their conjugate momentas) to get the quantum di¤usion equation (23). In the spirt of the
third principle, constant value of A gives appropriate physical hypersurfaces along which the quantum state
evolves. We need to further discretize the theory and apply fourth principle.

3.3 Newtonian Space

Consider that A and P are small or same order as the perturbations, everything else same as before. This
represents the current universe, whose expansion rate has slowed down. Let me assume the matter is lumped
in spherical shells. We can use the same simpli�cation for longitudinals as was in the last subsection. Now
consider the phase space integral for the system,
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Z
(�ab)d(hab) + ET dA

T + �md�m

=

Z
(�abTT d�

TT
aB + ET dA

T + �md�m + 2�T d�
T )

=

Z
(�abTT d�

TT
aB + ET dA

T + �md�m � 2r2�Tabd
�
r�2�abT

�
)

=

Z
(�abTT d�

TT
aB + ET dA

T + �md�m � 2r2�Tabd�)

where � = r�2�abT : Now from the Hamiltonian constraint (upto a factor),

r2�Tab = �ab�ab �
�2

2
+ hm + hg (32)

where hm is the matter and EM �eld Hamiltonian, hg is the second order terms of �ab from hR, and
�ab = �Lab + �

TT
ab + �

Tt
ab . �

L
ab is a non-dynamical �eld to be solved using di¤eomorphism constraint as in the

last section.
Using momentum as time variable is described in appendix (G) in the context of a single point system in

WKB approximation. The same can generalized to multipoint system described by the above action, if we
consider the gravitational degrees of freedom is semiclassical in �T , with existence of WKB approximation.
Now the wavefunction is (using appendix (G)),

 (�TTaB ; A
T ; �m; �

Tt)) = exp
�
i(�abTT (�

TT
aB )�

TT
aB + ET (A

T )AT + �m(�m)�m)
�
~ (�TTaB ; A

T ; �m; �Tt(�
Tt));

where we can consider the ~ as function of �Tt. The momentum functions the exponent are slow functions
of the variables. Now from equations (31), the time variable is the �eld � = r�2�abTt. The wavefunctions
can be rewritten as

 (�TTaB ; A
T ; �m; �)) = exp

�
i(�abTT (�

TT
aB )�

TT
aB + ET (A

T )AT + �m(�m)�m)
�
~ (�TTaB ; A

T ; �m; �);

where � is a �eld and it has a di¤erent value at di¤erent point. The ~ has the same physical information as
 : Its evolution is described by the Hamiltonian density (upto a factor of -2),

Hs = r2�Tab

= �ab�ab �
�2

2
+ hm + hg

The discrete version of this in combination with principles second, third and fourth principle can give our
evolving model. The quantum di¤usion equation (23) has Hs from the above equation. Each point has an
unique nx and Lm�s derived from �TTaB ; A

T and �m (and possibly their conjugate momentas). Appropriate
� need to be determined experimentally, to evolve the system.

4 Experimental Test

For the proposals to be experimentally tested we need to apply them to speci�c experimental situation. For
this to happen the applications of the proposals needs to be further developed. Nevertheless, let me discuss
some simple ideas how to test the ideas.
Consider the application of the �rst proposal to the expanding universe during big bang expansion as

discussed in section 3.1: the time parameter is a combination of the scale parameter and the scalar �eld.
This must have an impact on perturbation in the cosmic matter and radiation �elds. We need to �nd the

25



signature of this in the CMB and galactic matter perturbations. Also using CMB perturbations one may
try to test the third principle as following: One need to look for correlations between CMB perturbations
at di¤erent wavelength. Each wavelength was freed from matter at di¤erent cosmological scale parameter
value. If there are more correlations within the same wavelength than any other wavelengths, the third
principle may be con�rmed. The wavelengths need be to as small as possible so that the perturbations has
small components directly related to quantum reduction process, and not due to classical collision processes
between particles. This may be di¢ cult analysis to perform.
The reduction process of the �elds need to be observed to study the second proposal. But it depends on the

time scale of the process. For example, if the reduction time is in the order of Planck time (5:39056�10�44 s);
it is di¢ cult to be observed in the lab. But if it is not, if there is hope of observing the reduction process. One
possibility is the study of the magnetic �eld of the spin of atoms. Consider the magnetic �eld due to trapped
ions that are popularly utilized in quantum computers. If we have su¢ cient number of ions su¢ ciently close
two each other, their magnetic �elds due to their spin may add up to measurable level. Let me assume
this is experimentally realizable. Assume the system is put in the macroscopic superposition of their spins
(example: all up + all down). Assume they slowly decohere as the magnetic �eld is measured spontaneously
as proposed in the second principle. Then if the time scale is within our experimental capabilities we can
observe the process. This will give various we ways to study and test one or more of the more principles.
Let me discuss a test of the third proposal. Consider the following apparatus which has 1) two group

of atoms distant from each other, 2) instruments for measuring the magnetic �elds of these two groups.
According the third proposal time �ows along the temporal killing �eld of Earth, i.e. the frame in which
earth is at rest is the unique reference frame along which continuos quantum reduction occurs. Assume we
make the apparatus move along the direction in which the earth moves. Let me assume that earth move
along the x axis and t is the time in its rest frame. The apparatus move with velocity � along the direction
the earth (c = 1). Let the primed coordinates denote the apparatus coordinates.

x = 
(x0 + �t0);

t = 
(t0 + �x0):

According to proposal three the measuring process occurs along t = constant hypersurfaces. Thus in the
rest frame of the apparatus, two measuring instruments will see asymmetrical measurement output, with one
group decohering before the other one. Assume we switch on the instruments for measuring the magnetic
�eld simultaneously in the rest frame of the apparatus. One group of atoms will decohere spontaneously
before other one, ultimately collapsing the other one. As a consequence, measuring the magnetic �eld of
�rst group of atom will show slow continuos evolution starting from the time at the measurement apparatus
is switched on. The measurement in the second measuring apparatus will show a magnetic �eld which has
already decohered due to entanglement of the second group with the �rst group. If this discrepancy between
the measurement of the two magnetic �eld can be seen, this will demonstrate proposal 3. By modifying this
experiment many aspects of the four proposals can be studied.
The fourth principle is essential for restoring continuum and deterministic limit. Applications of the ideas

to experimental context need to be developed, to test the various parts of the principle.

26



5 Discussion

The set of four basic proposals discussed in section 2 only lays down a conceptual framework instead of a full
concrete proposal. The �rst proposal of dynamics of picks a self evolution direction in the con�guration space
of the quantum system at each point;, the second proposal of dynamics introduces spontaneous local quantum
reduction for the quantum system at each point, the third proposal of dynamics deals with global evolution
by determining the relative rate of time evolution for di¤erent points on space by global quantum reduction,
and the fourth proposal enforces continuum limit. These proposals embody conceptual foundations but leaves
open the concrete implementation to be determined by further theoretical and experimental investigation.
Let me list the various possibilities:

1. This framework is highly abstract and it can be applied to the usual quantum �eld theory with general
relativity using Dirac�s method of quantization, or any uni�ed �eld theory such as the string theory,
Kaluza-Klein theory, etc. One needs to �nd out the best theory that works with the framework that
could reproduce physics.

2. One needs to �nd ways to impose the di¤eomorphism and gauge constraints on the kinematical Hilbert
space.

3. The framework is based on discrete model. There are many possible ways to discretize quantum general
relativistic physics. The right way to discretize, so that we could extract low energy continuum physics
needs to be found.

4. The �rst proposal depends on the con�guration space. Now there are various possibilities for choosing
the con�guration variables, for example using the Kaluza-Klein theory [20], string theory or loop
quantum gravity, or some other theory where these �elds are uni�ed as discussed in section 3.3. The
proper choice needs to found out.

5. In the second proposal of dynamics we have the L̂m;x�s to be determined. The natural choices are gauge
invariant and di¤eomorphism invariant quantities, such as scalar curvature, square of the extrinsic
curvature, that are related to the gravitational �eld, etc.

6. In third proposal of dynamics various possible candidate for the � function has been suggested. If
possible right one need to be found.

7. The � function in the fourth proposal that speci�es continuum functional needs to be determined.

8. Now �;� functionals and L̂m require three new physical constants to determine their scale. The search
of �;�, L̂m and the scales may point out to a new fundamental theory.
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So the proposals presented in this article have a huge choice. The various possible theories relating to
the di¤erent implementations of the proposals have to be studied theoretically and experimentally to come
up with the precise details to achieve successful model for Planck scale description of nature, or some or all
of them be falsi�ed in the veri�cation process2 .

6 Conclusion

In this article, I have outlined a conceptual framework and have brie�y discussed how to apply this to study
physics. Because of highly stochastic nature of the theory we need to use computer simulation, and statistical
analysis to get any useful physics out of the theory, and verify whether it reproduces quantum mechanics
and general relativity consistent with experiments in the low energy limit. Application of the framework
to simple models is straight forward. But the complication is, even for simulating simple models, extensive
computing power is required. Currently the application of the conceptual framework to some simple models
is being studied by the author. The results and algorithm will be published in the follow-up reports. The
computer code for simulation will be made available publicly. The framework discussed is quite general and
there are wide variety of variations and sceneries. To come up with a speci�c model that best explains the
physics of the entire universe requires exploring as many interesting models as possible.
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Appendices

A Derivation Self-Evolution Hamiltonian

Here let me calculate the Hamiltonian for the self-evolution described in proposal 1, from surface S = S(�)
to S0 = S(� + d�). In terms of the propagator, the evolution of the wavefunction is:

 0(q
0I
s0 ; �) =

Z
p��v�<0

G(q0�s0 ; q
�
s ) (q

I
s ; �)dq

I
s :

Let me split the global coordinates q� and q0� corresponding to the surface coordinates q�s and q
0�
s0 into

two parts along the normal and tangential directions.

q� = Q�(�) + qIs �E
�
I ;

q0� = Q�(� + d�) + q0Is0 �E
0�
I ;

= Q�(�) + �v��ts + q
0I
s0
�E�I :

The components are calculated as follows:

dQ�(�) = Q�(� + d�)�Q�(�);
(dQ�(�) + q0Is �E

0�
I )�v� = �ts;

(dQ�(�) + q0Is0 �E
0�
I ) �E

I
� = q0Is :

Now let me calculate �q�:

2Revion Info: As I have discussed before, version 2.0 has been published. It has some improvements, slightly di¤erent
concepts (particularly proposal 1), and more applications. Further revisions are in progress.
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�q� = �v��ts +�q
I
sE

�
I ;

�qIs = q0Is � qIs :

�qIs can be further analyzed as

�qIs = (dQ
�(�) �EI� + q

0J
s0
�E0�J �EI�)� qIs :

Let me de�ne: �E0�J �EI� = HI
J = �IJ + h

I
Jd� . Then we have

�qIs = (dQ�(�) �EI� + q
0J
s0H

I
J)� qIs

= (dQ�(�) �EI� + q
0J
s0 h

I
J) + q

0J
s0 � qIs :

De�ning �qJs = q0Js0 � qIs and using dQ�(�) �EI� = 0,

�qIs = (q
0J
s0 h

I
J)d� + �q

I
s ;

�ts = (dQ�(�) + q0Is
�E0�I )�v�

= (
dQ�(�)

d�
�v� + q

0I
s

d �E�I
d�

�v�)d�

= (jvj+ q0Is
d �E�I
d�

�v�)�� :

The propagator from S = S(�) to S0 = S(� + d�) in terms of the surface coordinates is

G(q0�s0 ; q
�
s )

= G(q0�; q�)

=

Z
p��v�<0

exp(i[pI�q
I
s + p��v

��t])�(H)dpD:

Now H can be split using into parallel and normal components to the Surface S, assuming the
signature is + along normal direction.

H =
1

2
p�p� + V (q

0�)

=
1

2
(pv)

2 +
1

2
pIpI + V (q

0�);

where pv = p��v
�: Therefore

H = 0 =>

pv = �
q
�pIpI � 2V (q0�)

= �
q
�pIpI � 2V (Q�(� + d�) + q0Is �E0�I ):

Now the propagator is
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G(q0�; q�) =

Z
exp(i[pI�q

I
s � pv�ts])dpD�1;

pI�q
I
s � pv�ts

= pI�q
I
s + pIq

0J
s0 h

I
J�� � pv(jvj+ q0Is

d �E�I
d�

�v�)�� :

The e¤ective HamiltonianHs(pI ; q
0I
s0 ; Q

�(�)) in terms of the surface coordinates and�� as time parameter
is

pI�q
I
s � pv�ts

= pI�q
I
s +Hs(pI ; q

0I
s0 ; Q

�(�))�� :

From the previous calculation,

Hs(pI ; q
I
s ; Q

�(�)) = pIq
J
s h

I
J � pv(jvj+ qIs

d �E�I
d�

�v�);

where

jvj = jdQ
�

d�
j;

and

hIJd� = HI
J � �IJ

= �E0�J
�EI� � �IJ

= �EI�d
�E�J ;

implying

hIJ = �EI�
d �E�J
d�

:

Using

pv =
q
�pIpI � 2U(Q�(�) + qIs �E�I );

we can calculate the e¤ective classical equation of motion for the Hamiltonian Hs

_qIs = qJs h
I
J �

@pv
@pI

(jvj+ qKs
d �E�K
d�

�v�); (33)

_pJ = �pIhIJ +
@pv
@qJs

(jvj+ qKs
d �E�K
d�

�v�) + pv(
d �E�J
d�

�v�): (34)
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B An Application of Self-Evolution Equations

Let U = q�q�
2 �m2 and m�� = ���

Let me set QI(�) = r(cos � ; sin �). Then ��(�) = (� sin � ; cos �) and E(�) = (cos � ; sin �).
Also have h11 = �EI�

d �E�
J

d� = 0, and d �E�
1

d� �v� = 1.
The the evolution equations are

_q = �@pv
@pI

(r + q);

_p = +
@pv
@qJs

(r + q) + pv:

pv =
p
�p2 + 2m2 � (r + q)2;

@pv
@pI

= � p

pv
;

@pv
@qJs

=
�(r + q)

pv
:

Let initially q = 0 and p = 0; then,

_q =
p

pv
(r + q) = 0;

_p =
�(r + q)

pv
(r + q) + pv

=
2m2 � 2r2

pv
:

For _p = 0 we need to have m2 = r2. This is just circular motion around the origin.

C A Derivation of Quantum Di¤usion Equations

Let me derive a general stochastic evolution equation motivated by equation (14). Our analysis is based
on [8], but di¤erent in details. A general stochastic evolution equation is

jd >= �j > dt+ �mj > zm
p
dt;

where � and � are operators on j > :A summation over repeated indices is assumed. Let M denote the
averaging over all zm, and let me assume the following de�nitions:

M(zm�zn) = 2�mn;

M(zm) = 0;

Hr(�) = (�+ �+)=2;

Ar(�) = (�� �+)=2;
E(�) = <  j�j > :

Then we have,
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d( <  j >) =<  jd > + < d j > + < d jd >
= 2Hr < � > dt+ < �+m�n > zm�zndt+ 2Hr < �m > zm

p
dt+ 2Hr < �+�m > zmdt

p
dt:

Let me solve d(<  j >) = 0; assuming that dt and zm are free variables, and, � and � are independent
of dt and zm. Then we have the following conditions.

Hr < � >= 0;

< �+m�n >= 0;

< �m >= 0;

< �+�m >= 0:

These constraints are too strong that, these will eliminate the quantum di¤usion equation (14) itself zzz
check.
Let me take a di¤erent route. First let me solve Md(<  j >) = 0; assuming � and � are independent

of dt and zm:

Md(<  j >) = 2Hr < � > dt+ 2 < �+m�m > dt:

Then Md(<  j >) = 0 implies

Hr < � > + < �+m�m >= 0:

The general solution for this equation is

� = iH + 
� < 
 > ��+m�m: (35)

assuming � and � are independent of dt and zm. Here H is a Hermitian operator, and 
 is an arbitrary
operator.
Now let me solve d(<  j >) = 0; assuming, dt as the independent free parameters, �; � are independent

of dt, and � (or �) may depend on second order terms of zm. The we have following conditions:

Hr < � > +
1

2
< �+m�n > zm�z n = 0;

< �m >= 0;

< �+�m >= 0:

A solution for the �rst equation can be obtained by adding a real number to equation (35)

� = iH + 
� < 
 > ��+m�m �
1

2
< �+m�n > (z

m�zn � 2�mn); (36)

The general solution for the second equation is

�m = Lm� < Lm > :

The third equation can ignored in d(<  j >) = 0, as dt
p
dt is too small. But if we don�t want to neglect

the 2Hr < �+�m > zmdt
p
dt term in d(<  j >) = 0 then we can modify � to
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� = iH + 
� < 
 > ��+m�m �
1

2
< �+m�n > (z

m�z n � 2�mn)� < 2�+�m > zm
p
dt; (37)

which makes � dependent on
p
dt also. I will assume that zm

p
dt can be neglected hereafter, unless speci�ed

otherwise.
To summarize we have the �nal form the dynamics equations

jd � >= �j > dt+ �mj > zm
p
dt; (38)

where

� = iH � 
 � �+m�m + c;
�m = Lm� < Lm >;

c = �1
2
< �+m�n > (z

m�z n � 2�mn)+ < 
 > :

The c is suggested is c�number and is a random function of z. We can derive the evolution equation for
� =M(j ̂ ><  ̂j)

d(�) =M jd ><  j+M j >< d j+M jd >< d j;

M jd ><  j = �M(�)dt;

M jd >< d j = �m��
+
mdt+ 2Hef�m�M(�+zm)gdt

p
dt:

From equation (37) (without neglecting
p
dt term),

M(�) = iH + 
� < 
 > ��+m�m;
M(�+zm) = 0:

So the evolution equation of � is

d�

dt
= �(~�+) + (~�)�+ �m��

+
m;

~� = iH + 
� < 
 > ��+m�m:

It is easy to see that
p
dt term does not show up.

To get the quantum di¤usion equation and the Lindblad equation we need to set,

�m = Lm� < Lm >;


 = < Lm > L+m � Lm < L+m > :
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D Bidirectional Time Evolution

The time evolution de�ned in proposals 1 and 2 are actually unidirectional in time. We can generalize this
to both the opposite directions along v�. Consider the momentum operator Ê = p̂��v

� (assuming �v� is a
unit vector in the metric discussed). Let j > = j + > +j � >; where j + > and j + > are made of
the positive and negative eigenvalued eigenvectors of Ê correspondingly. Then we have a more generalized
dynamic equation as follows:

jd � > = �iĤs;vj +;� > jvjnx(�)�� + iĤs;vj _;� > j _q�x;sjnx(�)��

�
X
x

(�̂x� < �̂x >)j � > j _q�x;sjnx(�)d� (39)

+
X
k

(2 < L̂k > L̂k � L̂+k L̂k� < L̂+k >< L̂k >)j � > j _q�x;sjnx(�)�� ;

+
X
k

�k(L̂k� < L̂k >)j � > dzk
p
jvjnx(�)�� �

�̂x
2
j � > j _q�x;sjnx(�)d�: (40)

The two terms involving Hv evolves the state in the positive and negative direction along v�. But because
of the third summation term in the �rst equation one of j + > and j + > will be fully attenuated eventually.
So we only have a unidirectional motion eventually.

E Transverse-Longitudinal split of metric

Consider that a tensor �eld Qab. Let me fourier transform it to the momentum space ka. Assume Qab does
not have k = 0 fourier term. Let the Rab be the transverse projector and P

a
b is the longitudinal.

Rab = �ab �
kakb

k2

P ab =
kakb

k2

Raa = 2

P aa = 1

Let tilde on indices indicates transverse projected component, bar on index indicates longitudinal projected,
for example

va = R�abv
b + P ~ab v

b = v~a + v�a

We can split Q into various components:

Qab = Q~a~b +Q~a�b +Q�a~b +Q�a�b;

Qaa = Q~a~a +Q�a�a:

The transverse component is given by
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QTab = Q~a~b = Qcd(�
c
a �

kcka
k2

)(�db �
kdkb
k2

)

= Qab �
Qk(akb)

k2
+Qkk

kakb
k4

Also

QTaa = QabR
ab = Qaa �Qkk

1

k2
;

Let me calculate calculate the transverse trace-free part indicated by TT . For we need to calculate X in

QTTab = QTab +XRab, such that Q
TT
aa = 0: Then we have X = �QT

aa

2 .
The transverse trace part is

QTtab = Rab
QTaa
2

=
1

2

�
�ab �

kakb

k2

��
Qcc �Qkk

1

k2

�
The transverse trace free part is

QTTab = QTab �Rab
QTaa
2

= Qab �
Qk(akb)

k2
� 1
2

�
�ab �

kakb

k2

�
Qcc +

1

2
�ab

Qkk
k2

+
1

2
Qkk

kakb
k4

The various combinations of longitudinal components are

QLab =
�
Q~a�b +Q�a~b +Q�a�b

�
QTLab = Q~a�b +Q�a~b

QLLab = Q�a�b

The longitudinal component is

QLab = Qab �QTab

= Qab �
�
Qab �

Qk(akb)

k2
+Qkk

kakb
k4

�
=

Qk(akb)

k2
�Qkk

kakb
k4

To summarize, we have

Qab = QLab +Q
TT
ab +Q

Tt
ab ;

and in the momentum space,
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QLab =
Qk(akb)

k2
�Qkk

kakb
k4

;

QTTab = Qab �
Qk(akb)

k2
� 1
2

�
�ab �

kakb

k2

�
Qcc +

1

2
�ab

Qkk
k2

+
1

2
Qkk

kakb
k4

;

QTtab =
1

2

�
�ab �

kakb

k2

��
Qcc �Qkk

1

k2

�
:

and in the position space,

QLab =
1

r@
c@(aQb)c �

@a@b

r2
@c@dQcd;

QTTab = Qab �
1

r@
c@(aQb)c �

1

2

�
�ab �

@a@b

r

�
Qcc +

1

2
�ab

@c@d

r Qcd +
1

2

@a@b

r2
@c@dQcd;

QTtab =
1

2

�
�ab �

@a@b

r

��
Qcc �

@c@d

r Qcd

�
:

F Linearised Constraints

In this section, let me summarize the linearized version of kinetic and ponential parts of gravitational
Hamiltonian constraint. Let me rewrite the gravitational canonical conjugate momentum �ab and the metric
hab as

�ab� > ��ab + P�ab;

hab� > ��ab + �ab zzz

where � is a small value.

K:E � �1
2
�2�a a�

b
b � �P�a a �

3

2
P 2 + �2�ab�ab � 3 �2P�ab�ab

��2P�b b�a a � �P 2�a a + 4 �2P�b a�a b �
1

2
�2P 2�a

a�b
b + �2P 2�ab�

ab:

If P = 0;

K:E � �1
2
�2�a a�

b
b + �

2�ab�ab:

Also have

R
p
h � ��@a a�b b + �@ab�a b �

1

2
���a a@

b
b�
c
c +

1

2
���a a@

bc�b c + ���
ab@ab�

c
c

�2 ���ab@a c�b c + ���ab@c c�a b + ��@a�a b @b�c c � ��@a�a b @c�b c �
1

4
��@a�b b @a�

c
c

+
3

4
��@a�b c @a�b c �

1

2
��@a�b c @b�a c :
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Rh � ��@a a�d d + �@ad�a d � 2 �2�ad@a c�d c + �2�ad@ad�c c + �2�ad@c c�a d
��2�b b@a a�d d + �2�b b@ad�a d � �2@a�a d @c�d c + �2@a�a d @d�c c

�1
4
�2@a�

c
c @

a�d d +
3

4
�2@a�d c @a�d c �

1

2
�2@a�d c @d�a c ;

The linearized di¤eomorphism constraint Db is

@a�
ab
L � 1

2
�@a�+

1

2
P�@b�c

c � P�@c�b c � �2�ac@a�b c +
1

2
�2�ac@b�a c �

1

2
P�2�a a@

b�d d (41)

+
1

2
P�2�ac@b�a c �

1

2
P�2�ba@a�d

d + P�2�ba@d�a
d :

G WKB Approximation and momentum time

Consider a single point system with variables x; � and their conjugate momenta p; �. Assume the wavefunc-
tion 	(�; x) of the system has a WKB approximation in terms of � :

	(�; x) = ei�(�)�~ (�; x)

where �(�) is a large classical momentum as a function of �.
Let me make the following necessary assumption:

j@
~ 

@�
j << j�(�)j

Also let me assume that ~ depends on � through �(�) :

 (�; x) = ei�(�)�~ (�(�); x)

Let the Hamiltonan constraint be

�+ h(x; p) = 0:

Then using � as time variable, the path integral evolution of the wavefunction as follows:

� (�(��); �x) =

Z
�(�+ h(x; p)) exp(i(���+ p�x)) (�(�); x)dpdx;

This can be rewritten as

ei�
0(�0)�0 ~ 

0
(�(��); x0) =

Z
�(�+ h(x; p)) exp(i(���+ p�x))ei�(�)�~ (�(�); x)dpdx;

~ 
0
(�(��); x0) =

Z
�(�+ h(x; p)) exp(i(���� + p�x))~ (�(�); x)dpdx;

~ 
0
(�0; x0) =

Z
exp(i(p�x+ h(x; p)��))~ (�; x)dpdx:

In the last line I have considered � as independent variables. Since  and ~ both have same probability
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information they describe physically equivalent quantum evolutions. So now the projected Hamiltonian is
h(x; p), with � as time. We can add to this decoherence terms described in the second principle.
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