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Abstract

Quasi-perfect numbers satisfy the equation o(N) = 2- N + 1, where o
is the divisor summatory function. By computation, it is shown that no
quasi-perfect number has less than 8 prime divisors. For testing purposes,
quasi-multiperfect numbers are examined also.

The author is not affiliated to any academic institution and does not claim
that their work is original. E
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1 Introduction

As of today, it is unknown, whether quasi-perfect numbers exist. In 1982, Hagis
and Cohen [9] described an algorithm which was used to prove that no quasi-
perfect number has less than 7 prime divisors.

By implementing their algorithm on a modern desktop PC, we are able to extend
this result: We show that no number N divisible by 3 and w(N) = 7 is quasi-
perfect. By Theorem 2 of [9] and earlier work of Kishore [IT], we conclude:

Theorem 1.1. Let N € N with w(N) < 7. Then N is not quasi-perfect.

In order to test the software, a more general equation was investigated:
o(N)=k-N+1 (1)

where k is an integer usually greater than 2. The numbers N that satisfy this
equation are called quasi-multiperfect, but we also use the term quasi-k-perfect.
Only for 3 < k < 5, the computations are accessible by modest means, since for
k > 5, a simple consideration shows that w(/N) > 9 and the algorithm would
take too much time in any case.

In this way, no solutions to [1| were found, but bounds for w(N) can be given.
There is a special problem with k& = 3, as will be described later.

On the whole, we have following result E| :

Theorem 1.2. For 2 < k <5, then w(N) is greater or equal to numbers given
in the following table[]]

k | even | odd
2| n/a 8
3 2 10
4 10 21*
5 9 54%*
6 10 | 141*
7 14* | 372*

Table 1: Table of lower bounds for w(N) depending on k. The values marked
with * come from a simple estimation.

1.1 Notation and Preliminaries

In the following, N always means a natural number, having the factorization

N = Hp?j (2)
j=1

2For additional results for quasi-multiperfect numbers refer to [16] and [12]



where 7 € N and p; < ... < p, are primes. Additionally p is always a prime
We may also use the following notation : Let S := {-, 8} be a symbol set.
Closely linked to the prime factors p; and exponents a; of IV, a vector A =
{A1,...,A\r} € S7 is defined.

Some common number-theoretic functions are used throughout the text with
their usual notation:

e o(N):=01(N):= >, yd is the sum of divisors.
e w(N) is the number of primes dividing N.
o (%) with x € Z is the Legendre symbol.

In particular, we have,

) a ) pa+1 -1
J) — £ - 3
o) =N = 3)
J=0
In addition, we define:
o(N)
h(N) :=
() = 25
and some variations of this function:
For a prime p, we set
p
Rt [ —
oe (p) p_1

If a symbol vector A is assigned to IV, we define:

S L o

h (p?j ) otherwise

Sometimes, we also use hpyi, instead of h.

1.2 Technical Details of the Program

The program was written in C++ (C++42017 standard) and makes extensive
use of the multi-precision libraries GMP [§] for integer arithmetic and MPFR
[13] for multi-precision floating point arithmetic.

To a minor degree NTL [I5] by Victor Shoup and a deterministic primality test-
ing algorithm [5] is employed.

As a wrapper for MPFR and GMP as well as for various other purposes, the
Boost library [2] is linked.

In the next section, some useful properties of quasi-multiperfect numbers
are presented, subsequently, the algorithm and results are described insofar as
necessary.

The source code of the associated computer program can be found on GitHub

-



2 Quasi-k-perfect numbers

In this section, we want to examine some properties of quasi-k-perfect numbers
and how the algorithm in [9] can be applied in this case.

In this section, we assume that IV is quasi-k-perfect, i.e. satisfies

As an aside, note that quasi-1-perfect numbers are exactly the primes.

2.1 Feasible Exponents
We begin with a generalization to some properties from [9], [I0] and [4]:
Lemma 2.1. If one of the following conditions is satisfied

1. k s even.

2. k is odd and N is even.

, then
N =2°M?

, where M is odd and a can be zero for the first condition. In particular, for
k = 2, we have the familiar result that N is an odd square.

Proof. 1. Let p® || N with p and b odd. Then
b .
o(*) =D P =(b+1)=0 mod 2
3=0

But o(N) is odd.
2. similar

We now seek to generalize the notion of feasible exponents:

Lemma 2.2. Let N := 2N’ be a quasi-k-perfect number, N’ odd and p® || N'.
Write k := 2° - k', where b = 0 is any integer and k' is odd. Let q be a prime
divisor of k'. Then:

1. We have,
(k,o(p®)) =1

2. If a1 +b> 0, and r is a prime dividing o(N) coprime to k' then

E)-(=-




8. If p=1 mod g, then a % —1 mod q.
4. If p=—1 mod q. then a is even.
Proof. 1. Obvious.

2. By 2}

k-N=2""KM?=~-1 modr
for some integer M. Multiplying by 2%* %k’ proves the hypothesis.

3. Ifa= -1 mod g,
o(p*)=a+1=0 modgqg

, which is impossible.

4. Assume a is odd:

o) = 3 (~1) =0 mod g
j=0

As before this gives a contradiction.

2.2 Constraints
For the algorithm, a lower bound Ny for quasi-k-perfect numbers is needed. For

k =2, we use Ny = 10%°.

By a simple SAGE program, we confirmed that for £ > 2 there are no

numbers
N < 10%

st
o(N)==1

, hence no quasi-k-perfect numbers and in this case Ny = 108.
Furthermore, by taking into account that

W) = [0 < [Th(@) =[] g2 =4, o)

, where @); is the sequence of primes 2,3,, ..., we see that we can ignore the N
with

w(N)=r
if A, <k.

The following table shows the smallest of value of w , a hypothetical quasi-
k-perfect can have according to



even | odd
3

8
21
54
141
372

| O O | W N
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Table 2: Table of lower bounds for w(N) depending on & implied by

2.3 The prime bounds

Remember that we only search for quasi-k-perfect numbers N with w(N) = r
for some fixed r. The basic idea for our algorithm is that you have some number
M with w(M) < r and want to find a bound for a prime p s.t. Mp® can be a
divisor of N.

In order to achieve this, we can just reuse - mutatis mutandis - the lemmas
below from [9] and earlier work ([I0] , [I4]):

Lemma 2.3. (Jerrard and Temperley, [10]) Let q := p,—1 and p := p, ,hence
g <p. and N = Mp®—=1q* . Moreover, write F(N):=k-N —o(N). Then

EN 1 kN
SN lop<
F(N) q F(N)

From this Lemma 2 in [9] is derived, of which we use a modified version to
compute bounds for the biggest prime factor p,:

Lemma 2.4. (Hagis and Cohen , [9]) Let F, E and U are defined as in [J],

k
R=7"F
kFU (k— F + FU)
L:=R-—
r k—F
, then
L—(L-(q+k) ) '"<p<R (6)

The bounds for smaller prime factors p; with 2 < j < r come from Lemma
1in [9]:

Lemma 2.5. (Hagis and Cohen , [9], somewhat modified) Let s be an index with
1<s<r—2, M= H;=1p?j and X € S° a symbol vector. Let B :=

and D = M Then

k
hpin(M)

\VidB -3 +1

2(B—1) @

Ps+1 >



and

, where t :=r — s.

2.4 Special k

For k = 4, we have
Theorem 2.6. If N is quasi-4-perfect, then
N =2°M?
, where a € {0,1} and M is odd
Proof. By it suffices to disprove a > 1. We show that in this case,

—2%k —29
()-(F) -
T T
for some divisor r of o(N).
If a is odd, since 0(2%) = —1 mod 8, there must be some r | o(N) with r =5,7

mod 8, hence
—2¢ -1
r r

If a is even, since there must be r with »r =3 mod 4, we have

) ()




3 Description of the Algorithm

Based on the assertions of the previous section, a computer program was im-
plemented and executed. As mentioned earlier, the algorithm is described in [9]:

3.1 Table of Feasible Exponents

By the explanation in [9] for k£ = 2 and for k > 2, only certain exponents
(which are called feasible ) of some prime can be quasi-k-perfect.

In order to create a table of feasible exponents for the parameter k in ques-
tion, the prime factorization of o(p®) is needed. Taking [3| into account, the
following factorization tables for p* — 1 were used:

e The Cunningham project [6], if p < 11, see also [3]

e An updated version of the factor table of Richard P. Brent, maintained
by a different author [7] , for 11 < p < 10000. E|

Since [7] contains only prime factors up-to 10°, smaller factors had to be found
by trial division. Afterwards for every prime p < 10000 a list of feasible expo-
nents a was created with the condition p® < 10%°.

3.2 Iteration

Now, we give a description of the main part of the program: for this purpose,
it suffices to confine ourselves to the situation of Thm. (k=2andr="7):

e Fix p; = 3.

e Iteration according to the following scheme:

— If j <7 —1 and the iteration is at the prime factors pq,...,p; with
exponents ai,...,a; and some vector A, then p;i; is the smallest
prime satisfying |Z| and a;41 is the smallest feasible exponent.

—Setj—j+1

e The prime p; is generated by iterating over an interval with bounds de-
pendent on the prime components p;* with 1 < k < j by using |7 and
for j <r and@ for j = r. The exponent a; is iterated over all feasible ex-
ponents and then 3;. Concerning the aforementioned vector A, we define
)‘j =6iﬁaj Zﬂj.

3The original website was unavailable at the time, when this text was written.




e If we find p, in the previous step, we have a set of candidates for a quasi-

perfect number:
T
N = lec’
1=1

where ¢; = a; if \; = - and ¢; ranges over all integers > §; if A\; = 5. In
addition, ¢, ranges over all integers.
These candidates are then checked, if any of them is quasi-perfect.

e In two cases for k = 2, the previous step was inconclusive and it was
confirmed with SAGE that none of the concerning candidates were quasi-

perfect (see[A).
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4 Results
A quick search with SAGE showed that there is no solution of
o(N)=k-N+1

for N < 10% and any k > 2.

41 k=2

For k = 2, quasi-perfect numbers N with w(IN) = 7 were searched for, and it
was established that none exist.

Moreover, we have the following running times (for 4 < w(N) < 6 measured on
2022-02-20):

length/w(NV) time
4 0.00950 secs
5 0.168 secs
6 20.5 secs
7 1.15 - 10% secs

The time for w(N) = 6 translates to around 13 days. A (very rough) extrapo-
lation for w(N) = 8 gives a running time of at least 2000 years.

4.2 k>2f[

It turned that - taking into account the limited computing power available to the
author - we are restricted to w(N) < 7. Hence by the following calculations
were done.

421 k=3
This case has a peculiarity, since
hy(2) - hy(3) =3

and our bounding method doesn’t work properly if 6 | N, because we cannot
exclude any prime p3 - however big - dividing N, even if we choose -say -

w(N) = 3.
For odd N, we could check that w(N) > 10 and improve the bound from table
4.2.2 k=4

Search for even quasi-4-perfect numbers N: None were found with

w(N) <9

4Some of these results were already described by the authors Meng Li and Min Tang in
[16] and [12].
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A Special cases

This section contains the SAGE notebook that is used to deal with the cases
that could not be handled by the software.

12



quasiperfect special
December 9, 2022

1 Exponents for special vectors

Here we disprove the existence of quasi-perfect numbers in the two remaining cases: the prime
factorizations are given as lists.

File: 132 [08:51:24] - QuasiPerfect::calculate(): bounds are satisfied: 4300 at iteration 29477
#[08:51:24] - prvec: [(3,44b),(5,22),(17,18b),(257,10b),(66161,4b),(10356029,2b),(21015221,2b)]
File: 146 [09:00:39] - QuasiPerfect::calculate(): bounds are satisfied: 4575 at iteration 31131
[09:00:39] - prvec: [(3,44b),(5,30b),(17,18b),(263,10b),(9601,6b),(7505611,4b),(13084021,4b)]

[ ]: We need the following functions:

[1]: def h(n):
return sigma(n)/n
def hinf(p):
return p/(p-1)
def h_1st(flst):
result = 1
for p,exp in flst:
if exp == 'inf':
result *= hinf (p)
else:
result *= h(p~exp)
return result
def getlstValue(flst):
result = 1
for p,exp in flst:
result *= p_exp
return result

1st case: prime vector: [(3,44b),(5,22),(17,18b),(257,10b),(66161,4b),(10356029,2b),(21015221,2b)]
We check that for pl = 3 the exponent al = 44 cannot occur, since h(N) is always smaller than 2.

[21: [f1st1 = [(3,44),(5,22),(17,18),(257,10), (66161,4), (10356029,2) , (21015221,2)]
flst2 =
~[(3,44),(5,22), (17, "inf "), (257, 'inf ') (66161, 'inf'), (10356029, 'inf'), (21015221, 'int )]
print (f1st1)



print (f1st2)
print ("h(flstl) < 2 ?", h_1st(flstl) < 2)

print ("h(flst2) < 2 ?", h_lst(flst2) < 2)

[(3, 44), (5, 22), (17, 18), (257, 10), (66161, 4), (10356029, 2), (21015221,

2)]
[(3, 44), (5, 22), (17, 'inf'), (257, 'inf'), (66161,

(21015221, 'inf')]
h(flstl) < 2 ? True
h(flst2) < 2 ? True

hence we take al >= 52 (52 being the next feasible exponent for 3)
Similarly for a6 = 2:
flst3 = [(3,52),(5,22),(17,18),(257,10),(66161,4),(10356029,2),(21015221,2)]

flst4d =u
+[(3,'inf"'),(5,22), (17, 'inf '), (257, 'inf'), (66161, 'inf'), (10356029,2), (21015221, 'inf')]

'inf'), (10356029, 'inf'),

[3]:

print (f1st3)

print (f1st4)
print ("h(f1lst3) < 2 ?", h_lst(f1lst3) < 2)

print ("h(flst4) < 2 ?", h_lst(flstd) < 2)

(@3, 52), (5, 22), (17, 18), (257, 10), (66161, 4), (10356029, 2), (21015221,

2)]
[(3, 'inf'), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029, 2),

(21015221, 'inf')]
h(£f1lst3) < 2 ? True
h(flst4) < 2 ? True

hence we take a6 >= 4. Finally, we test a7 = 2:
[(3,52),(5,22),(17,18),(257,10), (66161,4),(10356029,4),(21015221,2)]

[61]: flstbh
flst6 =
- [(3,'inf"'), (5,22),(17,"'inf "), (257, 'inf '), (66161, 'inf'), (10356029, 'inf '), (21015221,2)]
print (f1st5)

print (£f1st6)
print ("h(flst5) < 2 ?", h_lst(flsth) < 2)

print ("h(flst6) < 2 7", h_1lst(flst6) < 2)
[(3, 52), (5, 22), (17, 18), (257, 10), (66161, 4), (10356029, 4), (21015221,
2)]

[(3, 'inf'), (5, 22), (17,
"inf'), (21015221, 2)]
h(flstb) < 2 ? True
h(flst6) < 2 ? True

'inf'), (257, 'inf'), (66161, 'inf'), (10356029,

hence we take a7 >= 4

[60]: flst7 = [(3,52),(5,22),(17,18),(257,10)1266161,4),(10356029,4),(21015221,4)]



[65]:

[6]:

flst8 =
- [(3,'inf'), (5,22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029, 'inf'), (21015221,4)]
print (£f1st7)
print (£f1st8)
print ("h(£flst7) > 2 7", h_1lst(£f1lst7) > 2)
print ("h(£f1lst8) > 2 7", h_1lst(f1st8) > 2)
N= getlstValue(flst7)
print (sigma(N) - 2xN)

(@3, 52), (5, 22), (17, 18), (257, 10), (66161, 4), (10356029, 4), (21015221,

4)]
[(3, 'inf'), (5, 22), (17, 'inf'), (257, 'inf'), (66161, 'inf'), (10356029,

'inf'), (21015221, 4)]
h(flst7) > 2 ? True

h(f1st8) > 2 ? True
86038325313669030149677388089554843672344002058989882359597212506993610995378417

8225818681010227945718001544174356098003431857262215271594725

In the last step, we have shown that h(N)>2 if a7 >= 4 and that the smallest of these values isn’t
qp. Therefore there are no qp numbers with the given prime factors!

2nd case: prime vector: [(3,44b),(5,30b),(17,18b),(263,10b),(9601,6b),(7505611,4b),(13084021,4b)]
As in the 1st case, al = 44 is not possible:

[(3,44),(5,30),(17,18), (263,10), (9601,6) , (7505611,4) , (13084021 ,4)]

flst1

flst2 =U
-[(3,44),(5,'inf"'), (17, 'inf"'), (263, 'inf"'), (9601, 'inf '), (7505611, 'inf'), (13084021, 'inf')]

print (f1st1)
print (f1st2)
print ("h(flstl) < 2 ?", h_lst(flstl) < 2)
print ("h(flst2) < 2 ?", h_1lst(flst2) < 2)

[(3, 44), (5, 30), (17, 18), (263, 10), (9601, 6), (7505611, 4), (13084021, 4)]
[(3, 44), (5, 'inf'), (17, 'inf'), (263, 'inf'), (9601, 'inf'), (7505611,
"inf'), (13084021, 'inf')]

h(flstl) < 2 ? True

h(flst2) < 2 ? True

hence al >= 52. But now we can show that the smallest possible value for h(N) is greater than 2.

flst3 = [(3,52),(5,30),(17,18),(263,10),(9601,6),(7505611,4),(13084021,4)]
print (£1st3)

print ("h(f1lst3) > 2 ?", h_lst(f1lst3) > 2)

[(3, 52), (5, 30), (17, 18), (263, 10), (9601, 6), (7505611, 4), (13084021, 4)]
h(£f1lst3) > 2 7 True

Also the corresponding number flst3 is not qp:
15



[68]: N= getlstValue(flst3)
print (sigma(N) - 2x*N)

35594511883585858678825834554203011975967913283688988938878828986083391125190951
5942894120569993932548085856712302837030851976962781892542221129038425

and so we have shown that there are no qp numbers in this case!
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