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Summary

This paper presents new developments in the hydrostatics of floating bodies, such as a ship. In it,
we show that a proof that the center of buoyancy is equal to the center of hydrostatic pressure, a new
derivation of the metacenter radius, and theoretical treatments of the hydrostatic stability of floating

bodies based on these two new theories.

In Chapter 1, we prove that “the center of buoyancy of a ship is equal to the center of hydrostatic
pressure”. This subject is an unsolved problem in physics and naval architecture, even though the
buoyancy taught by Archimedes' principle can be obtained clearly by the surface integral of hydrostatic
pressure. As a breakthrough, we dared to assume the left-right asymmetric pressure field by inclining
the ship with heel angle 6. In that state, the force and moment due to hydrostatic pressure were
calculated correctly with respect to the tilted coordinate system fixed to the floating body. By doing so,
we succeeded in determining the center of pressure. Then, by setting the heel angle 6 to zero, it was
proved that the center of hydrostatic pressure is equal to the well-known center of buoyancy, i.e., the

centroid of the cross-sectional area under the water surface in the upright state.

In Chapter 2, we develop a new theory on the derivation of the transverse metacentric radius which
governs the stability of ships. As a new development in its derivation process, it was shown that the
direction of movement of the center of buoyancy due to lateral inclination of ship is the direction of the
half angle of the heel angle §. By finding it, we were able to derive a metacentric radius worthy of its
name by showing that the metacentric radius correctly represents the radius centered on the metacenter,

which is the center of inclination.

In Chapters 3 and 4, theoretical treatments on the hydrostatic stability of ships are presented. As
the simplest hull form, a columnar ship with rectangular cross-section, which is made of homogeneous
squared timber with arbitrary breadth and arbitrary material, is chosen. In Chapter 3, the conditions
under which the ship is stable in the upright state with horizontal deck are analyzed by means of ship's
hydrostatics. Andin Chapter 4, the stable attitude in an inclined state of the ship, which is not stable in
the upright state with horizontal deck, is analyzed. By doing so, the dependence of the stable conditions
and of the inclined attitude on the breadth and material of the ship will be clarified.

We would like to report all of you smart readers about the four theories.
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Chapter 1

Proof that the Center of Buoyancy is Equal to the Center of Pressure
by means of the Surface Integral of Hydrostatic Pressure

In this Chapter 1, we prove that “the center of buoyancy of a ship is equal to the center of hydrostatic
pressure”. This subject is an unsolved problem in physics and naval architecture, even though the
buoyancy taught by Archimedes' principle® can be obtained clearly by the surface integral of hydrostatic
pressure. Then we thought that the reason why the vertical position of the center of pressure could not

be determined was that the horizontal force would be zero due to equilibrium in the upright state.

As a breakthrough, we dared to assume the left-right asymmetric pressure field by inclining the ship
with heel angle 6. In that state, the force and moment due to hydrostatic pressure were calculated
correctly with respect to the tilted coordinate system fixed to the floating body. By doing so, we succeeded

in determining the center of pressure.

Then, by setting the heel angle 6 to zero in order to make it upright state, it was proved that the center
of hydrostatic pressure is equal to the well-known center of buoyancy, i.e., the centroid of the cross-

sectional area under the water surface.

Specifically, the above proof is first shown for a rectangular cross-section, and then for an arbitrary
shape of floating body by applying Gauss's integral theorem. And we show an extension to the center of

buoyancy for a 3-D floating body.

1.1 Introduction

It is a well-known fact in physics and naval architecture that the position of “ Center of Buoyancy”

acting on a ship is equal to the center of the volume of the geometric shape under the water surface.

The buoyancy taught by Archimedes' principle ® is clearly obtained by the surface integral of the
hydrostatic pressure, but the position of the center of buoyancy is described in every textbook
(on physics @, fluid dynamics @@, hydraulics ®, naval architecture 6)(7-2).(7-b),(8-2),(9-2),(10)11-a) and nautical
mechanics(12-2), ete.) as the center of gravity where the volume under the water surface is replaced by water.

There is no explanation that it is the center of pressure due to hydrostatic pressure 1314,

Recently, Komatsu@® raised the issue of “the center of buoyancy # the center of pressure?” at 2007
in Japan, and it was actively discussed by Seto 6.7 K. Suzuki 8, Yoshimura and Yasukawa (19,
Komatsu @9, Yabushita and Watanabe @D and others in research committees and academic meetings of
the Japan Society of Naval Architects and Ocean Engineers (hereinafter abbreviated as JASNAOE). At
the same time, in Europe, the problem was studied in detail by Mégel and Kliava ¢2:23 in terms of

potential energy. However, no one was able to solve this issue.

On the other hand, it is also an indisputable fact that the well-known center of buoyancy (i.e. the
volume center of the underwater portion) is correct from the viewpoint of ship’s stability (that is to say,

positioning of the metacenter by calculating the metacentric radius BM , as shown in Chapters 2 and 3).



p.6/67
Theoretical Hydrostatics of Floating Bodies
— New Developments on the Center of Buoyancy, the Metacentric Radius
and the Hydrostatic Stability of Ships — by Tsutomu Hori and Manami Hori

In response to this unsolved problem, we considered that the reason why the vertical center of pressure
could not be determined was because the horizontal forces equilibrated to zero in the upright state. To
solve this problem, Hori@4.2% attempted in 2018 to integrate the hydrostatic pressure acting on the ship
surface at the inclined state with heel angle 6. Then, the forces and moments acting on the ship were
calculated with respect to a tilted coordinate system fixed to the ship. In this case, both orthogonal
components of the force acting on the ship are not zero. Therefore, it was shown that the center of
pressure at the inclined state can be determined. By setting the heel angle 6 to zero, we proved that the
center of hydrostatic pressure coincides with the centroid of cross-sectional area under the water surface
in the upright state, i.e., the well-known center of buoyancy. First, a columnar ship with the rectangular
cross-section @9 was proved. And then an arbitrary cross-sectional shape @ was proved and published

in the Journal “ Navicarion” of Japan Institute of Navigation (hereinafter abbreviated as JIN).

For this problem, Yabushita @6 showed that the center of buoyancy is the center of pressure by tilting
the direction of gravity from the vertical direction in his text book. Later, Yabushita et al.@? showed
that the same conclusion can be obtained by tilting only the coordinate system, not by tilting the floating
body or direction of gravity 2nd halfof 28— Furthermore, K. Suzuki®9 gave a detailed examination of Hori's
theory @4, On the other hand, Komatsu@® performed an analysis in which only the vertical buoyant
component was extracted from the hydrostatic pressure acting on the surface of the laterally inclined
floating body, as shown by Hori@%. As a result, he claimed that the center of action of buoyancy is
different from the well-known center of buoyancy. Also, Yabushita®D et al. attempted an elaborate
analysis in terms of the potential energy of buoyancy, which is adopted by Mégel and Kliava @223 and
showed that the height of the center of buoyancy is equal to the conventional position of the center of
buoyancy. In this way, as many researchers are studying this issue with various approaches, the
discussions have deepened in JASNAOE.

To sublate these discussions, we have illustrated that “the center of buoyancy is equal to the center of
pressure” for a semi-submerged circular cylinder !st half of 28 and a submerged circular cylinder 62 which
does not change its shape under the water even if it is inclined, and for a triangular prisms ®3), using the

same method 39, If you are interested, please read them.

In order to put an end to the above discussions, we proved that “the center of buoyancy = the center
of pressure” for a submerged body with arbitrary shape Isthalfof 35 yging Gauss's integral theorem in 2021.
Furthermore, it was published in the same journal “Navication” of JIN that it is easier to prove for a
floating body with arbitrary shape 2ndhalfof 35 than author’s previous paper @ by using Gauss's theorem

in the same way©9),

We subsequently summarized the proofs in English for the case of the rectangular cross-section @9,
which is the easiest to understand, and for the floating body of arbitrary cross-sectional shape 2nd half of (35)
by applying Gauss's integral theorem. And we published them on this viXra.org ” and in the bulletin
of our university, Nagasaki Institute of Applied Science®®. Furthermore, we showed an extension to the
center of buoyancy for a 3-D floating body.

In this Chapter 1, we will describe them consistently.
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1.2 Positioning of the Center of Hydrostatic Pressure
Acting on the Inclined Rectangular Cross-Section

Fig.1.1 shows a two-dimensional rectangular cross-section of width 2b and depth f +h (draft f and
freeboard h) with a heel angle & to the starboard side. The origin 0 is set at the center of the bottom
surface, and the coordinate system fixed to the floating body is 0-7¢ and the coordinate system fixed to
the spaceis o-yz. Here, the z-axis of the latter is directed vertically upwards.

In the figure, atmospheric pressure is shown as a dashed vector, hydrostatic pressure as a solid vector,
each pressure as a thin vector, and each force as a thick vector. All these vectors act perpendicularly to

the surface of the floating body.

|

Fig.1.1 Hydrostatic pressure and the center of pressure acting on the inclined rectangular cross-section.

1.2.1 Forces due to hydrostatic pressure
acting on four surfaces around an inclined cross-section

When the floating body is inclined laterally by heel angle &, the left-right asymmetric pressure field
is created. Then, as shown in Fig. 1.1, the water depths Z, and Z; under the still water surface at the

bottom points of port L and starboard R are expressed respectively in the form :
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Z, (f —btan@d)cosé
Z, (f +btan@d) cosé

Let’s calculate the forces P, acting on the port side (indicated by the subscript “Left”) and Pgy, acting

(0)

on the starboard side (indicated by the subscript “Right”). P . is calculated by superimposing P,

which is obtained by the integrating the uniformly distributed atmospheric pressure acting on the port
side, and P, which is obtained by the integrating the triangularly distributed hydrostatic pressure
acting on the submerged area. Similarly, Pgy, is calculated by superimposing PR(i(;)ht and PR(iyg)ht on the
starboard side. Therefore, if the atmospheric pressure is P, and the specific gravity of water is y , the
above P and Py, can be written respectively by using the water depths Z, and Z; in Eq. (1.1) as

follows :

— (0) (7)
PLeft - PLeft + PLeﬂ

p,(f+h) + %yZL(f —btan®)

po(f+h) + %y(f —btand)*cosd

P =pO L p®»

Right Right Right

p,(f+h) + %yZR(f +btan @)

po(f +h) + %y(f +btan@d)*cosé

The force PUpper acting on the upper deck (indicated by the subscript “ Upper”) is obtained only by Pu(gger
due to the atmospheric pressure of uniform distribution. And the force P

(0)

Lower

Lower acting on the bottom

(indicated by the subscript “ Lower”) is obtained by superimposing P due to the atmospheric pressure

and P due to the hydrostatic pressure of trapezoidal distribution. — Therefore, each of Pypper and

P wer can be written by using Z, and Z, as follows :

Pugper = Pupger
= 2p,b

Piwer = PO+ P (1.3)
g+ Tt
= 2p,b + 2yfbcosd

1.2.2 Forces F , and F, combined in the —7 and ¢ direction

The combined forces F_, and F, acting in the —7 (in the direction of the negative axis of 7)and ¢
p

directions fixed on the floating body can be obtained by using P, Pggy in Eq.(1.2) and P in

Eq. (1.3) as follows :

Upper * * Lower
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F_” = PRight - PLeft = PR(iyg)ht - PL(eyfz
— 2yfbsing

F§ = PLower - PUpper = I:>I_(oyv)ver (14)
= 2yfbcoséd

Here, it can be seen that F_, is obliquely leftward, and F, is obliquely upward. And for the both

forces, the atmospheric pressure p, is canceled out.

1.2.3 Forces F and F, converted in the y and Z direction

The horizontal component F, and the vertical component F, acting on the floating body can be

calculated by transforming the coordinates of the both forces Ff,] and F ¢ 1n Eq. (1.4) as follows :.

F,= F sind — F_, cosé®
= 2yfb(cos@sing —sin@dcosd) = 0
S (15)
F,=F,cos6 + F_ sing

2yfb(cos?@ +sin?0) = 2yfb

Here, it can be seen that the horizontal component F does not act as a combined force due to pressure
integration, even when the floating body is laterally inclined and the pressure field is asymmetric. On
the other hand, the vertical component F, can be written as :

F,=y-(2b-f)
v - (Area of the trapezoid under water surface)
BUOYANCY e (1.6)

By the above equation, F, isthe buoyancy exactly as taught by Archimedes' principle ®.

1.2.4 Moments M,, and M4 due to hydrostatic pressure
in the 7 and ¢ directions
First, we calculate the moment M, due to the forces in the 7 direction. The counterclockwise
moment M~ around the origin 0 due to PR(iOg)m ,P© and PR(i’g)ht ,P% can be obtained by using Eq. (1.2).
As shown in Fig. 1.1, the former is multiplied by the lever up to the action point of the pressure distributed
uniformly, and the latter is multiplied by the lever of the pressure distributed triangularly, so that the

moment M , 1s can be calculated as follows :

f+h f +btan@

M n PR(i(z;)rt' 5 Rfl}g/;)ht T
f+h f -btan@

-P&— - PL(eyfl)'T



p.10/67
Theoretical Hydrostatics of Floating Bodies
— New Developments on the Center of Buoyancy, the Metacentric Radius
and the Hydrostatic Stability of Ships — by Tsutomu Hori and Manami Hori

Here, the terms for atmospheric pressure p, is canceled out, as in the case of the forces in Eq. (1.4).

Next, let us consider calculating the moment M . due to the forces in the ¢ direction. To do this, we
(r)

Lower *

need to find the distance &) from origin 0 to the action point of P Here, the hydrostatic pressure
of the trapezoidal distribution of acting on the bottom surface is decomposed into the uniform distribution
and the triangular distribution. Since only the pressure of the triangular distribution contributes to the

(v

moment around origin 0 shown in Fig. 1.1, the distance & ") can be determined by using Eq. (1.3) as

follows :

. 2b 2
2yb’sing- | b—-— £ b3si
yob-sin ( 3j 37b siné b?

& ) — — = ——tan@ e eceaaaaan (1.8)
P 2yfbcos®  3f
Therefore, the counterclockwise moment M . around the origin 0 due to the forces PO, PY and
PJg;er acting in the ¢ direction can also be calculated as :
M c= I:>I_(<§)v)ver x0 + Plfgv?/er K3 ” - Pu(y?;er x0
_PpW L0 2 e
— PLower .£ — g 7/b Sln9 ........................................ (19)

As aresult, M c is obtained as the numerator in Eq. (1.8) and, like M , In Eq. (1.7), does not depend

on Pg.

1.2.5 Positioning of the center of hydrostatic pressure C,
for a rectangular cross-section

Consider the determination of the position of the center of hydrostatic pressure C, acting on the

floating body with a rectangular cross-section.

The counterclockwise moments M, and M . about origin o calculated in the previous section can be

written by the combined forces F_, and F, acting on C; (75,<¢5) , based on the hydraulic method used

n
by Ohgushi®-® for an example problem of the rolling gate, as follows :

M, F,]-;P}
..................................................... (110)

Mgz F§~77P

Therefore, the distances 77, and ¢, in the 7 and ¢ directions from the origin O to the center of
pressure C, can be determined respectively by using F_, , F, of Eq.(1.4) in Section 1.2.2and M, M ,
of Egs. (1.7), (1.9) in Section 1.2.4, as follows :
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— MC
e =
F§
PL(V) e b?
_ o tower * 0 _ (N _ = _
B PL(;/V\)ler ST 3f tand (_UGJEq.(A.Ls))
M
é,P = F L/ S R R ] (1'11)

-n

2
7bsin9(f2+%tan29)

2}/be|”9
_f b? 2 -
_ 7 +E tan< @ (_ é,G] Eq.(A.L5) )

As shown in the Appendix A.1, this result (775, {s) coincides with the result (775, {5) of Eq. (A.1.5),
in which the centroid of the trapezoidal region under the water surface is geometrically determined by
calculating the area moment. Hence, it is correct and equal to the well-known position of the center of

buoyancy.

Then, the specific weight y of water have been cancelled out in the denominator and numerator of
Eq. (1.11) respectively. And 7, is obtained as the force point & ) calculated by Eq. (1.8), on which
PY acts.

Lower
Here, it should be noted that the position ¢, of the center of pressure in the ¢ - direction could be
determined because the zero factor sin@ at the heel angle & — 0 was offset in the denominator and
numerator, as shown in the 2vd part of Eq.(1.11). If we start and calculate as an upright state =0,
both the denominator F, and the numerator M, are zero in equilibrium, so the fraction will be

indeterminate forms and ¢, cannot be determined.

To clarify this result, let's determine the pressure center in the upright state by setting the heel angle
to & > 0. Then, since the 77£ - coordinates tilted and fixed on the floating body coincide with the y z -

coordinates fixed in space, the Eq.(1.11) becomes as :

(UP’é,P)Jo%o: (Yo 2p) = (O’%j ............................... (1.12)
. C,= B

Here, it can be obtained that the center of pressure is equal to rectangular centroid. This proves that
the center of pressure C, due to hydrostatic pressure coincides with the well-known “ Center of

Buoyancy, B”.
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1.3 Positioning of the Center of Hydrostatic Pressure
Acting on the Inclined Floating Body with an Arbitrary Form

In this section, we apply the same method as used in the previous Section 1.2, in which a rectangular
It is shown that the position of

shape is inclined laterally, to the floating body with the arbitrary shape.
the center of pressure can be more easily determined by integrating the hydrostatic pressure using

Gauss's integral theorem than author’s previous paper @9,
Fig. 1.2 shows a transverse section of an arbitrarily shaped floating body with a heel angle € to the

The origin 0 is placed in the center of the still water surface, and the coordinate system
Here,

starboard side.
fixed to the floating body and tilted is 0-7¢, and the coordinate system fixed to spaceis 0-yz.

<
<

C(r)
in Water

C(r)
in Water

Fig.1.2 Hydrostatic pressure and the center of pressure
acting on the inclined floating body with arbitrary form.
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the z - axis of the latter is vertically downwards, and the opposite direction to that of Fig. 1. Also, the
outward unit normal vector standing on the surface of the floating body is n=n, j+n c k,and n , and n,

are the directional cosines of the floating body fixed in the 77 and ¢ directions, respectively.

In the figure, the atmospheric pressure is shown as a dashed vector, the hydrostatic pressure as a
solid vector, same as in Fig.1.1. And all of the vectors act in the —N direction perpendicular to the

floating body surface.

As shown in Fig. 1.2, the water depth z on the surface (77,¢) of the floating body is written as :

z(n,¢)

(¢ +ntan@)cosd
;COS@-FT]Sin@ ............................................... (113)

Here, as in Sction 1.2, if the atmospheric pressure is written as P, and the specific weight of water is

written as y , the hydrostatic pressure p(7,<) can be obtained for positive and negative z as follows :

P, (for z<0;in Air)

p(n,é’) = { p0+7z(;7,é’) (for Zzo;inWater) ......................... (1.14)

1.3.1 -z directional component F | and —¢ directional component F_,
of the total force due to hydrostatic pressure acting on the floating body

The -7 directional component F , and the —¢ directional component F . of the total force acting on
the floating body surface can be obtained by integrating the 7 and { components of the hydrostatic
pressure p in Eq.(1.14). Here, the integral path is written as ¢ for the aerial part of the floating
body and ¢ for the underwater part, as shown in Fig.2. Then, F , and F . are calculated by the sum

of the integrals respectively as follows :

F,= Cﬁcm)ﬂm p(n,¢)n, dl
- Ic<°) Po, dr+ J‘Cm( Po +yz) n, ds
- (ﬁc(ouc(” pon” e+ 7jc(y) Zn'i de
F, = CJSC(O)N(V) pP(n.¢) ne ds
- J.c“’) p0n§ di+ J.C(y)( Po +7/Z) ng d¢

= stcwucm pOnC df+ yJ.Cm an d’

Both results are obtained by summing the line integral over the entire circumference of the floating

body ¢@+c¢ for P, and the line integral over the underwater surface of the floating body ¢ " for z.
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Here, because of z =0 on the still water surface (y-axis), the equality relation is not broken even if

c™Y on the still water surface is added to the second term, as shown in

the integral term for the path
Fig.1.2. As a result, it can be expressed as a contour integral of ¢’ +c¢™" under the water surface.

Therefore, an and F ¢, can be written as the sum of the contour integral of the two paths, respectively,

as follows :
F,= cﬁcw)”m pon,dl + ;/Lm zn, dl + ;/IC(WL) zn, d¢
= ¢C(0)+Cm pOnr; dé + 4 qgcmﬂtwu an de
..................... (1.16)
F,.= gsc(mm pon dl + 7J‘szn§dﬁ + VJ-C(WL)andf
= q.)cw)mm pOnCdf tr @cm”(wu andf

Therefore, the following two-dimensional (77 -¢ plane) Gauss' integral theorem, in which n, and n ¢
are the directional cosines of the outward unit normal vector in 7 and ¢ directions, can be applied to

the contour integrals of the above Eq. (1.16), respectively.
95 u(n,¢)n,de= j —dA

qiv(n £)yn.de —j —dA

Then, both F , and F . can be converted to the area integral, in which the area of the aerial part of
the floating body is denoted as A® and the area of the underwater part as A” . As a result of the

calculation, both forces can be expressed only in terms of the area integral of underwater A” | as follows :

-n .UA”H AU .[[AU A dA
r .UA‘” Z_; dA

s B[], 22
-l 2

T
|

|
wy

This is the result of finding that the area integral with respect to p, in the 1st term of the above

equation vanishes because the integrand becomes zero.

Furthermore, using Eq. (1.13) for water depth z, the both forces F, and F . in Eq. (1.18) can be
calculated as below. Then, each of the 1st. term of integrand for A" in the following equation will

become zero and vanish.
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3 0(< cosf +nsind)
F,=7] o dA

ysing|[  dA = yADsine

= :7”- 5(77$|n9+§COS9)dA

y coseﬂw dA = yA‘” cosé

It can be seen that both are determined by the area A" of the floating body under the still water

surface and the heel angle 8, and do not depend on the atmospheric pressure p,.

In addition, according to the results of Eq.(1.20) in the next section, F, and F . are obtained as —7

and —¢ directional components of the buoyancy F_, acting vertically upward, respectively.

1.3.2 Forces F, and F_, converted in y and - directions

The horizontal component (y direction) Fy and the vertical component (-z direction) F_, acting on
the floating body can be obtained by transforming the coordinates of the both forces F , and F_g in

Eq.(1.19) of the previous section, as follows :

n
|

= F ,sing —F_ cosd

y A" (cos@-sin@ —sin @ -cosH)
0

F_,cos@ +F_ sing

yA" (cos? @ +sin’®6)

= yA" = Buoyancy

T
Il

Here, it can be seen that the horizontal component Fy does not act as a combined force due to pressure
integration, even when the floating body is laterally inclined and asymmetric. On the other hand, the
vertical component is the product of the specific weight y of water and the cross-sectional area AV of
the floating body under the water surface, and it is the buoyancy itself that generates vertically upward,
as taught by Archimedes' principle ™. This situation is similar to Eq. (1.5) for the rectangular cross-

section in Section 1.2.

1.3.3 Moments M, and M, due to hydrostatic pressure
in the 77 and { directions

In this section, we shall calculate the total counterclockwise moment M ; around the origin 0 due to
hydrostatic pressure acting on the surface of the floating body. It can be calculated by superimposing
the clockwise moment M, due to the pressure component in the direction -7 and the counterclockwise

moment M . due to the pressure component in the direction —¢ , based on the hydraulic method used by
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Ohgushi®-® for the rolling gate, as follows :

Here, M, and M, can be obtained by multiplying the integrand in Eq.(1.15) by ¢ or 7 as the

moment lever, respectively, in the form :
M, = 9sc<o>+cm p(n,¢)¢n,dl
~ o pocn, dl+ _L(n(po +yz)¢gn, dl
M, = 95&»%(” p(n,g)nn, dl

:Ic(o, pO”n;df+Jc(,>(po+7z)Un;df

Now, as in the case of forces F , and F . in Eq.(1.16), let’s connect the path ¢ © and ¢ with respect
to p, and add a term for the path c™b on the still water surface with respect to z where the integral
value become zero as shown in Fig.1.2. Then, M, and M , can be expressed as the sum of the contour

integrals of the two paths, respectively, as follows :

Mrz = CJSC(O)H(;/) pogn”df + 7/J’C(”Z§n”d€ +7/J.C(WL)Z§n,]df

po(js +c<r>§n77d€ +7/CJ.>CM+C(WL)Z§I’1,]d€

Méz qsc(oucm ponngdf +7J‘C(,)Z77n¢d€ +7.|.C(WUznn4df

Po Cﬁcm)ﬂ(y) n nﬁdﬂ + }/(j‘)c(y)N(WUZT]n;df

Therefore, we can apply Gauss's integral theorem in Eq. (1.17) to the above contour integrals, as in
the case of forces F_ , and F_ ‘ in Section 3.1, and convert them into area integrals. Furthermore, using
Eq.(1.13) for the water depth z, the moments M, and M, in Eq.(1.23) can be written, respectively, as

follows :

M, = 0of] 0 0 g—i dA +7 ] a;zng Lan

B 0(£?cos@+nc sing)
- yHA“ o dA

7sin(9'UAm JdA

M= poff o 520 7 [T, S e

}/J.J.A(y o(n? smea?“n cosé) dA
y cosed .”Am ndA
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Here, both moments are proportional to the area moments of the submerged area A” of the floating
body about the 7 - axis or ¢ - axis, respectively. This is the result that integrands in the terms for p,

and the 15, term for A" in the above equations become zero and vanished.

1.3.4 Positioning of the center of hydrostatic pressure C,
for the floating body with an arbitrary form

Since the forces F, and F . due to the hydrostatic pressure obtained in Section 1.3.1 act on the
center of pressure C, (7,,¢p) , the clockwise moment M, and the counterclockwise moment M .

obtained in Section 1.3.3 can be expressed respectively, as follows :

M,=F, ¢s
Mg:F{’?p

Here, the total counterclockwise moment M ; around the origin 0 in Eq.(1.21) can be calculated as :

M, =- |:_17 <o+ F_; Tp e teteteeeseeeceiiiiiiiiiiiiiiii (1.26)

Then, the moment M c around the point C, at which F_q and F{ act 1s computed as below, and
becomes zero.

MC _ F7”X0+F7§><0:0 .......................................... (12’7)

P

This correctly indicates that C, is the center of pressure due to hydrostatic pressure.

Therefore, the unknown coordinate (775, ¢'») of this center of pressure C, can be determined by Eq.
(1.25). Here, the 77 - coordinate, 775, can be determined by using the 27 part of Eq. (1.19) for F_, and
the 2nd part of Eq. (1.24) for M, , as follows :

M, y €0sé J.J.Am ndA

e F.  7A”cosd

- %HAW ndA (: 77@) .............................................. (1.28)

Further, the ¢ -coordinate, ¢, can be determined by using the 1st part of Eq. (1.19) for F_, and the
1st part of Eq.(1.24) for M, as follows :

LM, ysind [[ ¢ dA
FOF yAY sing

-

- AT];)J-J.A(” CdA (= é‘G) .............................................. (1.29)

As a result, both the specific weight y of water and the heel angle & have been cancelled out in the
denominator and numerator respectively, so that 77, and {, are obtained in the following simple
geometrical format. Itisa form in which the area-moment about the ¢ -axis and the area-moment about

the 7; -axis are each divided by the area AY) of the submerged portion. This shows that the center of
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pressure (775, ¢;) of the floating body in the inclined state clearly coincides with the centroid (775, {)

of the submerged area A" | that is, the well-known center of buoyancy.

Considering the above, ¢, of vertical component can be obtained by offsetting the zero factor sin@ at
the heel angle & — 0 with the denominator and numerator, as shown in Eq. (1.29). Here, if we start
and calculate as the upright state =0, both the denominator Ffﬂ and the numerator M , are in
equilibrium and become zero, so the fraction becomes indeterminate forms and ¢, cannot be determined.
This is the reason why we were able to determine the position of the center of pressure in the ¢ direction

as {p =¢ ¢ by inclining the floating body laterally.

On the other hand, in the calculation of 7, in Eq. (1.28), even if the heel angle is =0 from the
beginning, the denominator F_, takes a finite value as the cosine component of the buoyancy. Therefore,

the horizontal component 7, can be determined as 77, =7, if we start and calculate as the upright state.

These situations described above are exactly the same as in Eq.(1.11) of Section 1.2.5 for a rectangular

cross- section.

As a final step, let's find the center of pressure in the upright state by setting the heel angle to 8 -0,
in order to make this result clearer. Then, since the 77¢ - coordinates tilted and fixed on the floating

body coincide with the y z -coordinates fixed in space, the Egs. (1.28) and (1.29) become as :

1 1
(Yo, 2,) = (WHAW ydA , A(T.”Am ZdAj = Yo Ze) | .o (1.30)

. C, = B

Therefore, this proves that the center of pressure C, due to hydrostatic pressure coincides with the

”

well-known “Center of Buoyancy, B ”.

In addition, the reason why the consequence of Z, shown in Eq. (1.30) could be derived more easily
than the author's previous paper @ is that Gauss's integral theorem was applied to an inclined 0-7¢

coordinate system fixed to a floating body.

1.3.5 Extension to the center of buoyancy for a 3-D floating body

In the previous section, we were able to show that the center of hydrostatic pressure C; (Y,, z,) in the
cross-section, i.e., yZ-plane, of a floating body for the upright state is equal to its centroid G (y;, z;) of

the underwater area, i.e., the well-known center of buoyancy B .

As shown in Fig. 1.3, the cross-sectional area under the water surface in the longitudinal direction X is
AP (x), the y-coordinate of the center of buoyancy in the horizontal direction are y,(X), and the z-
coordinate in the vertical direction are Z,(X). The position of the center of buoyancy B(X, Yz, Z;) for
a 3-dimensional floating body, such as a ship, is determined by dividing the volume integral A" (x) dx of
the moment with X as the lever for X, with Yy, (X) for Y, and with z, (X) for Z; from the stern (After
Perpendicular : A.P.) to the bow (Fore Perpendicular : F.P.) in the X direction, respectively, by the

underwater volume V 7 | as follows :
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F.P.
x- AP (x)dx N

X B = J.AlPF..PA = ]g/) '[F i X- A(}/) (X)dX
J‘AP AD (x)dx Vv AP.

F.P.
" L-P-I; v ) Vl(” jAFPP Yo (X)-AD (x)dx b s (1.31)
A"’ (x) dx 3
AP
.[:: Zp (%) AY (x)dx 1 Y .
ZB = J~F-P- A(y) (X)dx = v ) IA.P, ZP (X) A (X) dx
AP.

The three equations above are nothing more than correctly determining the Xy z- coordinates of the

volume centroid of the geometric shape of the underwater portion of the 3-D floating body.

\ |

X
LN

=}
~
X
~—1

X F.P.

‘ \V (r)

—~F-----—-f------

Fig.1.3 Center of buoyancy of the 3-D floating body B(X;, Yy, Z3)
and of the cross-section C, (Y, (X), (X)) for the upright state.

1.4 Conclusions

In this chapter, we elucidated an unsolved problem in physics and naval architecture by proving that

“the center of hydrostatic pressure is equal to the well-known center of buoyancy of a ship”.

To solve this problem, we dared to assume the left-right asymmetric pressure field by inclining the
ship with heel angle. In that state, the force and moment due to hydrostatic pressure were calculated

correctly with respect to the tilted coordinate system fixed to the floating body. By doing so, we
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succeeded in determining the center of hydrostatic pressure. Finally, by setting the heel angle to zero,

the result of the upright state was obtained and the proof was clarified.

As for the shape of the floating body, the simplest rectangular cross-section was proved first, and then
the arbitrary cross-sectional shape was proved by applying Gauss's integral theorem. And we showed

an extension to the center of buoyancy for a 3-D floating body.
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Chapter 2

New Theory on the Derivation of Metacentric Radius
Governing the Hydrostatic Stability of Ships

In this Chapter 2, we develop a new theory on the derivation of the transverse metacentric radius
which governs the stability of ships.

As a new development in its derivation process, it was shown that the direction of movement of the

0
center of buoyancy due to lateral inclination of ship is the direction of the half angle E of the heel angle

6. By finding it, we were able to derive a metacentric radius worthy of its name by showing that the
metacentric radius correctly represents the radius centered on the metacenter, which is the center of

inclination.

2.1 Introduction

The transverse metacentric radius BM , which governs the stability performance of ships, can be
calculated as follows, where V is the volume of underwater portion and | . is the quadratic moment about

the centerline of the water plane.

— |
] 21
v 2.1)

Here, the above equation is a well-known basic formula in naval architecture.

Eq. (2.1) for this BM was derived by Bouguer®, and Nowacki(¥ & Ferreiro(@1-p) have introduced the
historical background. It is also described by Goldberg (-9 in the US “Principles of Naval Architecture ”,
the bible of naval architecture. More recently, it has been considered by Mégel & Kliava©@?. In Japan
and other countries, it has been described by Nishikawa &b, Ohgushi ©-P, Akedo 12D Takagi 39,
Sugihara % and Ohta & Kuwahara et al.4D in the past, and recently by Nohara & Shoji“?, Barrass &
Derrett®d, ITkeda & Furukawa et al. Y and Shin® in many textbooks of naval architecture and nautical

mechanics.

Although the result itself does not change with respect to such a basic formula for BM in Eq.(2.1), as

a new development in its derivation process, it was shown that the direction of movement of the center of

0
buoyancy due to the lateral inclination of ship is the direction of the half angle > of the heel angle 6.

By finding it, we were able to derive a metacentric radius BM suitable for its name by showing that the
metacentric radius correctly represents the radius centered on the metacenter M, which is the center of
inclination. The process of new derivation “9 was published in the Journal “ Navigarion ” of Japan

Institute of Navigation in 2017, with the preparedness of receiving criticism from distinguished scholars.

We subsequently summarized the new derivation process 647 for metacentric radius BM in English,
and published it on this viXra.org®® and in the bulletin of our university, Nagasaki Institute of Applied

Science 49,

In this Chapter 2, we will describe the new theory consistently.
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2.2 New Derivation of Metacentric Radius BM

Fig.2.1 shows a three-dimensional view of the ship when it is inclined laterally by heel angle 6 to the
starboard side from upright position. The water line is WL and the center of buoyancy is B in the upright
state, and the water line is W'L' and the center of buoyancy is B' after inclination, as shown in Chapter 1.
The intersection point of the center line perpendicular to WL extending from B in the upright state and
the action line of the buoyancy vertically upward from B' in the inclined state is the so-called “transverse

metacenter”, M.

Since both hull sides of the ship can generally be assumed to be perpendicular to the water surface
near the water line, the exposed part AWoW '’ and the submerged part ALoL' are right triangles similar
in all cross-sections from the stern AP to the bow FP, although the waterline breadth 2y differs in the
longitudinal direction x. Therefore, AP-WoW’-FP and AP-LoL’-FP are three-dimensionally wedge-
shaped.

Since the volume V of ship’s underwater portion remains the same after inclination, the volumes of
the wedge-shaped AP -WoW’-FP in the exposed portion and the wedge-shaped AP -LoL’-FP in the
immersed portion are equal. If the wedge-shaped volume is v, and the centroid of the exposed volume is
g and the centroid of the immersed volume is g', we can consider that a part of the underwater volume v

has moved from g to ¢'".

Fig.2.1 Three-dimensional view of the wedge-shaped

exposed and immersed portions of a laterally inclined ship.
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Therefore, the direction and distance BB’ when the center of buoyancy, which is the centroid of the

whole underwater volume V, moves from B to B' are determined as follows :

BB'// g9’
o I (2.2)
BB = —.gg’

\Y

The result of Eq.(2.2) above is the dynamical law described in many textbooks (10-¢).(7-b).(8-b).(12-),(39),(40-a),(41)~(45)
of naval architecture and nautical mechanics, as a preliminary step in deriving the formula of Eq. (2.1).
In this paper, this law will be carefully explained in Appendix A.2. There, in Eq.(A.2.9) of its Appendix,

A and a for area are replaced by v and V for volume.

2.2.1 Consideration on the direction of movement BB’ of the center of buoyancy

Fig. 2.2 depicts the cross-section of the laterally inclined ship shown in Fig.2.1 at a certain ship’s
longitudinal ordinate X. Since the areas of the right triangles AWoW' and ALoL’in the exposed and
immersed parts of the cross-section are equal, they are written as a, and their centroids of area are written
as C and C' respectively. Since a and ¢, C' are functions of X, the volumes V of the wedge-shaped AP-WoW -
FP and AP -LoL’-FP, their moving moments V- @ , and the direction of w can be obtained by

integrating from AP to FP in the longitudinal direction X, respectively, as follows :

gg’ // cc’

Here, the line segment gg’ connecting g and g’ coincides with the line segment cc’ connecting the
areal centroid of the right triangles AWoW'and ALoL'in the cross-section, though the lengths are
different, as shown in Fig.2.1 and Fig. 2.2.

Hereafter, paying attention to the right triangle ALoL’of the immersive part shown in Fig. 2.2, let's
determine the direction of cc’ according to oc’ on starboard side. This is the core of the argument in
this paper. Here, the heel angle due to lateral inclination is ZLoL'=6, the angle formed by oc’ and
the base oL is ZLoc = ¢, and the length of the triangular base oL corresponding to the half breadth of
the water line WL is y. Here, the centroid ¢' of triangle AoLL’ is located at two-thirds of oL = y in the
base direction and one-third of LL' = ytan & in the height direction, so the tangent of ¢ is obtained as :

—LL —LL iytané’
tangp = 3 = _ 2 = —tand
= = - = =
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This result of the former in the above equation means that if we extend oc’ through the centroid c' of
the triangle AOLL’, it will pass through the midpoint of the opposite side LL' = ytan& , which confirms
what geometry teaches.

Now, if we assume that |g0| <1 and |H| <1 in the 2»d line of Eq. (2.4), the angle ¢ can be Taylor-

expanded with respect to 8 as follows :

@ = tan™ (%tan HJ

0
=— +
2

Strictly speaking, ¢ is slightly larger than % according to the above equation, but the following
relational expression is obtained when the heel angle 8 is small to some extent, actually up to about 20°,
in the range where W and L' in Fig. 2.2 are on both hull sides. Therefore, we find that ¢ is a half angle
of 8 as follows :

, 0
Q= ZLoc = ? ......................................................... (2.6)

By doing so, the direction of movement of oc’ ,L.e. cc’ , could be correctly determined within the range

of linear theory regarding the heel angle 6 in the cross-section at longitudinal ordinate x .

Therefore, it is found from the former part of Eq.(2.2), the latter part of Eq. (2.3) and Eq. (2.6) that
BB’ in underwater volume moves in the same direction as win wedge shape and cc’ in cross-section,

as follows :

LL”BB’(:LLog’:ALOC’):(p:i ................................... (2.7)

2

The conclusion of this section is that the direction £ L"BB’ of movement BB’ from the upright center

of buoyancy B to the inclined center of buoyancy B' is the direction of the half angle of the heel angle 6.

2.2.2 Metacentric radius BM in the true physical sense

Let’s apply Eq.(2.7), which is a consequence of the previous section, to AMBB' in the cross-section
of the inclined ship shown in Fig. 2.2. Since < L"BM is a right angle, the angle ~MBB’ can be

obtained as :

AMBB':LL”BM—LL"BB’Zl—qD:——— ......................... (2.8)
2 2 2

On the other hand, since the sum of the interior angles of a triangle is x, it can be written as follows :

JMBB' + 0+ Z/MB'B = /T tettectectaetassensasstnstnsensttscascncensens (2.9)

Now, by using Eq. (2.8) in Eq. (2.9), the angle £ MB'B can be calculated as :
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UMBB=r-6-/MBB=n-6_|% _9|_7%_
2 2 2

Therefore, since the right-hand sides of Egs. (2.8) and (2.10) are equal, the following equality relation

is obtained.

UMBB = SMBB | = 0] 2.11)
2 2
From this relationship, we can find that AMBB' is an isosceles triangle with transverse metacenter

M as its vertex. As a result, we were able to show the following relation.

BM = B/M vvcrvveerneneaaeeaannaaaeeeanusasaseeassnnnsseeessnsasesaanns (2.12)

From this equality relation, it can be seen that both BM and B'M are geometrically the radii of the
circle centered on M. In this way, we have been able to derive a metacentric radius BM worthy of the

name. We wouldn't like to think that it is self-righteousness of the authors to claim so.

2.2.3 Relationship between BM and BB’

Let’s find the moving distance BB’ of the center of buoyancy according to the explanation in the

Fig.2.2 Metacenter and movement of the center of buoyancy

in the cross-section of a laterally inclined ship.
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previous section. Applying the cosine theorem to the triangle AMBB’ shown in Fig. 2.2, the square of
BB’ can be obtained by using Eq.(2.12), as follows :

BB = BM +BM —2BM -BM cosé
— —2 . 2]
=2BM (1-cos@) = 4BM smzz

. 4
_ BMz[ez_f_z_i____J .............................................. (213)

Then, by taking the square root of the above equation, BB' can be calculated as twice the sine

7] -
component of the half vertex angle ) for the side length BM of isosceles triangle AMBB’, as follows :

BB' = BM /2(1-cosf) = 2BM sing
03
=BM (g__+"'J ------------------------------------------------ (2'14)
24

Here, the bottom line of both Egs. (2.13) and (2.14) above are the results by means of the Taylor

.0
expansion of cosé or SlnE with respect to €, assuming |l9| «1.

Therefore, when the heel angle € is somewhat small, the moving distance BB’ of the center of
buoyancy can be obtained in a simple form by using only the 1st term in the 2nd line of Eq. (2.14), as

follows :

BB = BM 6 (=EE?) .................................................... (2.15)

Hence, the result of the above Eq. (2.15) shows that the line segment BB’ is equal to the arc length

N —_—
BB’ with BM as its radius, when @ is small to some extent.

Therefore, the metacentric radius BM can be calculated by solving Eq. (2.15) as follows :

- B’
BIM & o teeetttetataa ettt ettt i e, 2.16)
7 (
The above Eq.(2.16) shows that BM can be determined by dividing the moving distance BB’ of the

center of buoyancy by heel angle & .

2.2.4 Moving distance BB’ of the center of buoyancy

In this section, let us consider the determination of BB’ by using the dynamical law of Eq.(2.2). The
area a of each of the right triangles AWoW'and ALoL’ in the cross-section shown in Fig. 2.2 and the

line segment cc’ connecting their centroid can be written as follows, using the important Eq. (2.6), where

_0
0=
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Here, in the above equation, the Taylor-expanded form for & is also given. The moving moment

a-cc' is then the product of the two in Eq.(2.17), and is calculated as follows :

’

a-cc =Ey3tan05ec£
3 2
3 2
:Eys 0+6 NI 1+6 Foeee :Eys 9+£93+_._ ........... (218)
3 3 8 3 24

Hence, when the heel angle 6 is somewhat small, the moving moment a- cc’ can be obtained by using

the 1st order term with respect to @ in the above Eq.(2.18), as follows :

Now, by integrating the above Eq.(2.19) from the stern AP to the bow FP in the longitudinal direction
X, as shown in the middle part of Eq. (2.3), the moving moment V'w of the wedge-shaped volume V can
be calculated as follows :

V-E:J. a-adx:%ﬁj‘ y*dx

A

FP 3
_ 0_[ (2y) UX = D@ wrvrvnnreeeeenieeans (2.20)
AP 12

Here, since the integral in the above Eq. (2.20) corresponds to the quadratic moment of the rectangle
of height 2y and width dx, it represents the quadratic moment |, with respect to the center line of the
water plane, as shown by the single-dotted line in Fig. 2.1. Therefore, the moving distance BB’ of the

center of buoyancy can be determined by the latter part of the dynamical law in Eq. (2.2), as follows :

— -gg’ I -0
BB’ = L (2.21)
\ \%

The above Eq.(2.21) shows that the moving distance BB’ can be calculated by dividing the product

of the quadratic moment | and the heel angle § shown in Eq. (2.20) by the underwater volume V of a

L

ship.

2.2.5 Calculation formula for the metacentric radius BM

According to the results of Sections 2.2.3 and 2.2.4, the transverse metacentric radius BM can be
determined by substituting the moving distance BB’ obtained in Eq.(2.21) for the numerator of the right-
hand side in Eq.(2.16), as follows :

- 7 I
BM = BB = v = it i i e e (2.22)
0 0 \

The metacentric radius BM of the above Eq. (2.22) can be calculated only by the geometric shape of
the ship under the water plane, regardless of the heel angle 8 which cancels out the numerator and
denominator. Therefore, BM hasa meaning as a parameter which governs the stability performance
of a ship. The result is a well-known formula that can be found in any textbook (10-¢).(7-b),(8-b),(12-),(39),(40-a),(41)~(45)

of naval architecture and nautical mechanics.
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2.3 Some Considerations
In this chapter, we will consider the explanations given in the textbooks so far.

In most textbooks (7-0):&-b).9-b)(12-b),(39).4) " the moving direction of the center of buoyancy due to lateral

inclination is approximated as follows, by assuming that heel angle 6 in Fig. 2.2 is tends to zero.

BB /WL
......................................................... (223)
/MBB'=Z
2
As a result, the moving distance BB’ of the center of buoyancy is often described as :
BB’ = BM AN  ++v+rvvveernneeanaeeaneeeataeeasseeaiaeeeanseennnseannens (2.24)

Here, Goldberg (™9, Nishikawa ®®, Ohgushi®® and Akedo @2 gpecify the Eq. (2.23).
In addition, Sugihara“0-a, Nohara & Shoji“?, Barrass & Derrett“, and Shin®» do not specify the
direction of movement @, but they write its moving distance as well as Eq. (2.15) in Section 2.2.3, as

follows :

On the other hand, recent work by Ikeda & Furukawa et al.“9 accurately calculated the moving
component parallel to WL , not the moving distance BB’ . If we use the results of Egs.(2.11) and (2.12)

and write it in the notation of this chapter, then it coincides with Eq. (2.14) in Section 2.2.3, as follows :
a7 e O v
BB cosE = B'M sin@
. BB' = 2B'M sin% = stin%

After all, the correct direction of movement of BB’ is still not mentioned, and the above researchers,

other than the authors, derive the result by avoiding it.

2.4 Summary of the Results Obtained

It is claimed in this paper that the direction ZL"BB’ of movement BB’ from the upright center of
buoyancy B to the inclined center of buoyancy B' is the direction of the half angle of the heel angle 6 due

to lateral inclination as follows :

n ! ! ! H
ZL"BB (= ZLog' = ZLoc ) == o previously written (2.7)

Here, the above equation is obtained by the moving direction ZLoc' of a partial area from the exposed

to the immersed portion, as given in Eq. (2.6).

As a result, we obtained the following relationship using by Eq. (2.7) of Section 2.2.2.
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ZMBB' = Z/MB'B (: % - %} """""""""""" previously written (2.11)
By doing so, since we were able to show that AMBB' shown in Fig. 2.2 is an isosceles triangle with

metacenter M as its vertex, the following Eq. (2.12) was found as the radii centered on the metacenter

M.

BM — B’M .......................................... previously Written (212)

In this way, it is considered that the metacentric radius BM suitable for the name could be derived

geometrically.

As mentioned above, the conclusions of this chapter can be summarized in the above Eqgs. (2.7), (2.11)
and (2.12). Subsequently, in Section 2.3 onwards, the well-known formula in Eq. (2.22) for the

metacentric radius BM is described within the framework of the linear theory for the heel angle @,

according to the usual method.

2.5 Concluding Remarks

One of the authors®% has been teaching “ Hydrostatics of Floating Bodies” as a compulsory subject in
the Department of Naval Architecture (currently the Naval Architecture Course ¢6.67) at the Nagasaki
Institute of Applied Science for more than ten years. Every year, especially in the last few years, I have
been guilty of somewhat misrepresenting the moving direction of the center of buoyancy BB’ due to
lateral inclination when explaining the theory of metacenter, which is the title of this chapter. I have
been lecturing on it, telling myself that it is an approximation by a minimal angle of inclination. I was
always going to the lecture with reluctant heart because I was afraid of being questioned by the excellent

students.

By summarizing this chapter, we felt relieved from this worry. But we thought that it should not be
self-righteous, so we submitted it. We are prepared to receive criticism from the great scholars who
already know the theory developed in this chapter and are lecturing as such. In addition, if the contents
of this chapter have already been published in textbooks or papers, please forgive it as a lack of searching

related literature by illiterate authors.
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Chapter 3

Stable Conditions in the Upright State
for the Hydrostatic Stability of Ships

In this Chapter 3, a theoretical treatment on the hydrostatic stability of ships is presented. As the
simplest hull form, a columnar ship with rectangular cross-section, which is made of homogeneous

squared timber with arbitrary breadth and arbitrary material, is chosen.

In this chapter, the conditions under which the ship is stable in the upright state with horizontal deck
are analyzed by means of ship's hydrostatics. By doing so, the dependence of the stable conditions on
the breadth and material of the ship will be clarified.

3.1 Introduction

One of the authors®9 lectures on the hydrostatic stability of ships to 2nd year students of the naval
architectural engineering course 1.2 in the faculty of engineering at the university where the 1st
author ® works. In the 1st semester, the basics of the hydrostatic of floating bodies, such as buoyant
force and center of buoyancy, as shown in Chapter 1, are taught in the course “ Hydrostatics of Floating
Bodies” as a compulsory subject. In the 2nd semester, the theory of derivation of metacentric radius
which is the main theme of the lecture on “Theory of Ship Stability”, is explained as shown in Chapter 2,
and then some simple examples are given to deepen the understanding of the theory. Probably,
universities and colleges of technology in naval architecture, marine engineering and nautical mechanics

all over the country also teach the above-mentioned flow of lectures, although the subject titles may differ.

As a typical example, many textbooks on naval architecture ©-© and nautical mechanics (12-0).(40-b)
describe that a columnar ship with a square cross-section, which is made of timber with half the specific
weight of water, cannot float stably when one side of the square is horizontal, but the ship is stable when
it is inclined laterally and the diagonal of the square is parallel to the water line. This consequence 1s

explained by the positional relationship between the metacenter and the center of gravity.

Taking the above typical example one step further, how wide of breadth will can a columnar ship of
rectangular cross-section, made of timber with half the specific weight of water, float stably with its long
side horizontal ? Or, what specific weight of material (i.e., lighter or heavier than timber) will can a
square cross-sectional columnar ship float stably with one side horizontal ? By setting such examples,
one of the authors ¢ has been lecturing on this problem for several years in the subject of “ Theory of

Ship Stability” at the 1st author’s university 61).(52),

As a result, the degree of understanding of the hydrostatic stability of ships has improved significantly
compared to before the lecture, so we think that this information should be provided to teachers and
students who will teach and learn this field in the future, and we will give some examples. One of the
authors 9 gave an explanation of effective examples and published it in the journal®3 “ NAVIGATION” of

Japan Institute of Navigation at 2021.
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We subsequently summarized the theoretical treatment of these examples in English, and published

it on this viXra.org®9 and in the bulletin of our university, Nagasaki Institute of Applied Science 6.

In this Chapter 3, we will describe them consistently.

3.2 Stable Conditions for a Columnar Ship of Rectangular Cross-Section
with Arbitrary Material @ and Arbitrary Breadth g

Fig. 3.1 shows a columnar ship of length L with a rectangular cross-section of depth h and breadth
ph, which is a squared timber of specific weight y; made of homogeneous material. Let’s consider
determining the conditions under which the columnar ship can float stably with its long side Sh parallel
to the water line (i.e. upright state) in water of specific weight y,. The left side of Fig. 1 shows the
upright state, and the right side shows the forces and moment acting on the cross-section inclined by heel

angle 6.

As a setting variable, the ratio of the specific weight of the columnar ship, y; (where t is the initial
letter of timber), to the specific weight of water, y,, (where W is the initial letter of water), is defined as
@ (hereafter referred to as material), and the ratio of the breadth, £h, to the depth, h, of the cross-

section (i.e. aspect ratio) is defined as f (hereafter referred to as breadth), as follows :

azﬁ (where, 0<a<l)
7w D[ (3.1)
depth h

Here, when y, is fresh water, @ represents the specific gravity of the columnar ship.

First, let us consider the determination of the draft. The Weight W and the Buoyant Force F; (to be
described separately from the center of buoyancy B) of this columnar ship can be obtained as follows,

respectively :

W=y V,=yph-h-L
FB= 7wVw: 7w':8h'd'|-

Here, the weight W of the former is obtained as the product of the specific weight y; and the total
volume V, of the columnar ship. And the buoyant force Fy of the latter, which is hereafter denoted as
the buoyancy, is obtained as the product of the specific weight y, of water and the displacement volume

V,, of underwater portion, according to Archimedes' principle.

The floating body is stable under the following conditions where the weight W and buoyancy F, are

in equilibrium.

Substituting W and F; in Eq. (3.2) into both sides of the above, we obtain as :
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ytﬁth=7/WﬂhdL ................................................ (34)

By solving the above equation, the undetermined draft d can be determined as @ times the depth h,

as follows :

d = ﬁ e (R R R R T (3.5)
Tw

Next, let's consider determining the location of the Metacenter M, meaning the center of Inclination.

The metacentric radius BM (distance between the center of buoyancy B and the metacenter M ) can

be calculated by using the basic formula of naval architecture, Eq. (2.22) derived in Chapter 2 :

BM = — o ottt it i i it i it it ittt ettt sttt (3.6)

w
Here, the numerator, | , is the quadratic moment about the center line of water plane (the single-
dotted chain line in the left side of Fig. 1, where the subscript CL is the abbreviation of Center Line), and

the denominator, V,,, is the underwater volume of a ship.

[
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Fig.3.1 Upright (left) and laterally Inclined (right) states of a columnar ship with rectangular cross-section.
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In this case, the numerator and denominator of Eq. (3.6) can be calculated as follows :

1
I, = —(Bh)3L
o = 25 ()
V, = gh-d-L= gh-ah-L=aph’L
In the above equation, the former, | , refers to the fact that the water plane is a rectangle of length

L and breadth Sh, as shown in Fig. 3.1 (left), and the denominator, V,,, refers to the fact that the draft
is d =ah , as determined by Eq. (3.5).

By using the result of Eq. (3.7) into Eq.(3.6), BM can be calculated independently of the ship’s length

L as follows :
1
=L 2
BM = 12 __p
apBh’L 12

Furthermore, let's find BG (distance between the center of buoyancy B and the center of gravity G).

As shown in Fig. 3.1 (left), the center of Gravity, G is located at the centroid of the rectangular cross-
section and the center of Buoyancy, B 1s located at the centroid of the rectangle below the water
surface, as shown in Section 1.2 of Chapter 1. And the point on the centerline of the bottom of the ship
is designated as K (abbreviation of Keel). Then, the distances from K to G and B are determined

respectively as follows :

K=
g [T (3.9)
KB =— =20
2 2
Therefore, the distance BG between B and G can be obtained as follows :
BG = KG -KB
h h  1-
=__(Z_:_0{h ................................................ (3_10)
2 2 2

From the above preparatory calculations, the metacentric height GM (the distance between the
center of gravity G and the metacenter M ) can be determined by subtracting Eq. (3.10) from Eq. (3.8), as
follows :

GM = BM -BG
2 _ 2 2
Y] h_ l-«o h P —-6a+6a

_ _ R R R T (3.11)
12 2 12a

In order to float stably in the upright state as shown in Fig. 3.1 (left), where the long side of the
columnar ship is parallel to the water line, it is required that the stability force (mechanically, the

righting moment) acts to return the ship from the inclined state to the upright state, as shown in Fig. 3.1
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(right). For this purpose, the metacenter M must be located above the center of gravity G. In other
words, the metacentric height should be a positive value, and the stable condition can be described as

follows :

If we use the result obtained in Eq.(3.11) for the left-hand side of the above inequality n, it can be

written as follows :

Both h in the above equation and « in the denominator are a positive value. Mathematically, it is
only necessary that the numerator be positive. As a result, the stable condition of this example shown

in Fig. 3.1 is obtained as follows :

,32—6a+60(2 S I T T (3.14)

3.2.1 Stable conditions of a columnar ship for breadth f with fixed material

First, in Section 3.2.1, we will fix the material @ of the columnar ship and consider what breadth £

will make it float stably with its long side horizontal, as shown in Fig. 3.1 (left).

By solving the stable condition in Eq. (3.14) for §, we obtain as:
B> >6a-6a’=6a(l-a)

2
23—6(05—i] N R R (3.15)
2 2

If the right-hand side of the above equation is written as 2, it can be seen that it is stable when the

following Eq. (3.16) is satisfied :

B > [ = [ 6 (1—@) crrrrrrreeraeee et (3.16)

As a result, it shows that q/ 2 1is the limiting value of breadth for stable floating.

For example, in the case of a timber with @ = ? , the stable g is calculated as follows. Thus, it

indicates that the timber is stable if the breadth is at least about 1.3 times wider than the depth.

As a result, a square with =1 cannot float stably with one side horizontal. And it encompasses

what is written in many textbooks as typical examples (12-0.40-b) and problems (),
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Let us examine the dependence of the stable

breadth limit /€2 on the material @ . \/‘Q
A
The relationship between & and q/ £ 1sshown \/E
in Fig. 2 from the result of completing the square of N

the right-hand side £ in Eq. (3.15). From this

figure, we can see that the shape is convex upward

J6 1 J6a(l-a) |-

and has a maximum value of —26 at a = ? . Here,

Fommmmmm— -

the value 2 1is positive between O0<a <1 in the |
setting range of material @ and becomes zero at

a=0,1 of both ends. Ol «

N B AL
-
|
N
'_\

1
Therefore, Eq.(3.17) for OCZE above is the

most stringent condition of breadth. When the Fig.3.2 Relationship between limiting value [O

material @ islighter or heavier than the above, the of stable breadth and material ¢ .
limiting value \/? of # will be smaller, and it is
stable even if the breadth is narrower than 1.3
times the depth.

As shown in the following example of calculation, the limiting value \/H of f becomes smaller than
1.225 as it moves away from the center of & :E to both sides (the light and heavy sides). In
particular, when o is i or %, the limit value of £ is 0.98, and it can be seen that the timber is stable

even if the breadth is narrower than the square (f=1).
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It is also physically interesting to note, as we can see from the factors in Eq. (3.16) and the results in
Eq.(3.18), that the limiting value / 2 of stable S is the same for materials @ and 1-« , as shown by
the symbols of @ in Fig.3.2.

3.2.2 Stable conditions of a columnar ship for material o with fixed breadth S

Next, in section 3.2.2, we will fix the breadth f of the columnar ship and consider what kind of
material @ will make it float stably with its long side parallel to the water line, as shown in Fig. 3.1

(left). Let's consider about this.

In order to solve the stable condition in Eq.(3.14) for @ , we put I~ on the left-hand side and complete
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the square as follows :

I =6a’~6a+p?

I
(ep]
7N\
N
|
|~
N——
N
+
N
i~
N
I
w
/;
w
=
©
~

Then, the stable condition in Eq. (3.14) can be

written as :

Since the situation of the above quadratic equation

I with respect to & differs depending on whether the
Stable

constant term 28°— 3 is positive or negative value, ﬂz
the following cases (1) and (i1) are examined separately.
6
3.2.2 (i) Case of 28°> 3 (i.e. 'B>£2J
for wide breadth

In this case, /" in Eq. (3.19) is a downwardly 2,32—3

convex shape and it is always positive in the range

painted in gray, as shown in Fig.3.3. Therefore, since

the stable condition of Eq. (3.20) is satisfied regardless 0 1 1
of &, the floating body is always stable in the upright 2
state. Fig.3.3 Case of 287 > 3 for wide breadth.

This case (1) coincides with the stable condition of

1
p for o = E in Eq.(3.17) of Section 3.2. 1.

6
3.2.2(ii) Case of 28°< 3 (i.e. ,B<£2] for narrow breadth

In this case, there are two solutions for /7~ = 0 in Eq.(3.19), as follows :

—\/3(3—252)5%“

6

{where, Kz—w]

1
a=—=
2

6

These are the points of intersection with the ¢ -axis, asindicated by the mark of O in Fig.3.4. Since
the quadratic equation /~ is a downwardly convex shape, the range painted in gray, which satisfies the

stable condition /77 > 0 in Eq.(3.20), can be written as follows :
1 . .
O<ac< 5" x (Light Material )

%+ Kk <a <1l (Heavy Material)
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From the above, it can be seen that the

light and heavy materials on both sides

around @ = E are stable.

Furthermore, the unstable region 2x , where

1

/"< 0,1s obtained centering on & :? as

follows :

As aresult, 2x=0 at ﬂz@ and

2xk=1at f=0.

the unstable region 2x expands as the

Thus, it can be seen that

breadth £ becomes narrower.

Below, for three specific examples of £,
the value of & which satisfies 7'=0 is

calculated by using x in Eq.(3.21) as follows :

51 e 3G2D

6

g-—.o.zsg

SLa=05+x=0.211,0.789

3(3—2-1

r
A

Stable

Stable
2 e >le K - -
B Unstable

Fig.3.4 Caseof 2% < 3 for narrow breadth.

Zj :\/65'—.0.408

1
= > K=
=Tz 6
%0707 =054+ x=0.092,0.908
1
3(3—2-)
J30
Bt ke 4) N9 - 456
2 6 12

Sa=05+x=0.044, 0.956

From the above results, it can be seen that as the breadth £ becomes narrower, the stable regions
outside the two @ in Eq. (3.21) which satisfy /=0 decrease.

3.2.3 «a,p, GM in the rectangular cross-section of Fig.3.1

The material @ and breadth £ of the rectangular cross-section in Fig. 3.1 are as follows :

a =058
B=1.62

.................
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Then GM is calculated by using Eq. (3.13) as follows :

GM — 0167 h > 0 ...................................................... (326)

In fact, B, G, and M in Fig. 3.1 (left) show the positional relationship drawn correctly. Then as shown
in Fig. 3.1 (right), the floating body is stable due to the righting moment which brings it back to the

upright state from the laterally inclined state.

Further, in Fig. 3.1 (right), the center of buoyancy B in the upright state moves to the direction of half
angle o when it is inclined laterally by 6, as shown in Eq. (2.7) of previous chapter. Then, the position
of the center of buoyancy B' after the inclination can be determined as the intersection of the above-
mentioned half-angle directional line and the vertical line lowered from the metacenter M. Therefore,
the position of B' shown in Fig. 3.1 (right) is also the correct position under the setting variables of Eq.
(3.25).

3.3 Stable Conditions for a Columnar Ship of Rectangular Cross-Section
with specified Material ¢ and Breadth S

In Section 3.2, we have set up a problem in which both the material & and the breadth g take

arbitrary values, and have shown how to solve it and determine the stable conditions.

When lecturing to students, it would be easier for them to understand if we specify a representative

value for either @ or . Section 3.3 is described from such a perspective.

3.3.1 Stable condition for breadth S of a columnar ship
1
with material a= > (timber)
1
First, let's try to solve the example problem in Section 3.2.1 by using timber with & 23 as the
material from the beginning.

In this case, the stable condition of Eq.(3.15) becomes a very simple inequality, since the right-

hand side is 2 :% , as follows :

The positive value of f satisfying the above equation can be obtained by mental calculation as follows.
Then it coincides with the result of Eq.(3.17) in Section 3.2.1.

ﬂ > ? % :@':,1.225 ................................................ (3.28)

This makes it easy to conclude that a rectangular columnar ship made of timber will float stably in
the upright state, if its breadth is at least 1.3 times wider than its depth.
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\J 6 1
3.3.1(i) Case of breadth £ = 5 \ 3 with material a= >

Here, for the stable condition related to the breadth £ shown in Eq. (3.28) in Section 3.3.1, we will
take two specific examples, S = @ , which is its limit value implying the neutral state, and £ = \/E ,
which satisfies its condition. And we will show the two states as follows :

By setting @ =% in Eq. (3.13) of Section 3.2, GM in this case can be obtained as :

22— 3

GM — | R R R R R (3'29)
]a:g 12

Then, GM for the above two cases can be calculated, respectively, as follows :

6
ﬁ:g('—.l.225)
25 -3
> GM =—=—h =0 (Neutral)
12 ............................... (330)
a =3 (%1.732)
- GM :ﬂh _h (Stable)
12 4

The shapes of the rectangular cross-sections and the positional relationship between B, G, and M for
the above two states are shown in Fig.3.5. The left figure shows the neutral state where M and G
coincide. And if the breadth is even a little wider than the left, the timber can float stably with upright

state as shown in the right figure. Here, in the right state of £ :ﬁ , G 1is located exactly midway
between B and M.

ﬂ=@ =3

Me@—+n
Y GAM G 4 T
= | o h =
B d=— B 4
2
|
Neutral Stable

1 6
Fig.3.5 Case of material & :E , breadth g = g, ﬁ .
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3.3.2 Stable condition for material & of a columnar ship
with breadth g=1 (square)

Next, let's solve the example in Section 3.2.2 by setting a square cross-section with breadth f=1.

In this case, the stable conditions in Eqgs. (3.19) and (3.20) become quadratic inequality about « , as

follows :
I =6a’-6a+1

a satisfying /7 = 0 can be easily solved by the above equation for the latter completing the square,

as follows :

3
a = %i £6 25 0.211,0.789  crereerereeteee et (3.32)

This coincides with the result of the 1st case of Eq. (3.24) for the narrower breadth of Section 3.2.2 (i1).

Since [ is a quadratic equation with downward convexity, as shown in Fig. 3.4, the range of @ which

satisfies the stable condition /7~ > 0 in Eq.(3.31) is can be obtained as follows (12-9 :

0<a <0.211 (Light Material : cork and Styrofoam etc.)
0.789 < @ <1 (Heavy Materials : rubber and leather etc. )

Here, in the above states, the draft of floating body for each @ is d =ah, as shown in Eq. (8.5).

On the other hand, the range of unstable & 1s as follows :
0.211< a <0.789 (Woods: Japanese cypress and larch etc.) ««--essseeereveeess (3.34)

The results show that a columnar ship of square cross-section floats stably with one side parallel to
the water line for light materials such as cork and Styrofoam, and for heavy materials such as rubber
and leather, as shown in Eq.(3.33). On the contrary, for woods such as Japanese cypress and larch, as

shown in Eq. (3.34), the timber cannot float when one side is horizontal.

3.3.2 (i) Case of material « = % , % with breadth =1

Here, let us specifically take up light % and heavy % as the stable material @ shown in Eq. (3.33)

in Section 3.3.2, and show their stats.

The GM in this case can be calculated by setting =1 in Eq.(3.13) as follows :

— J— 2 — —
GM ] _ 1-6a+6a h — 1-6a(1-a) R cetecusterestesantsccntscoans (3.35)
B=1 12« 12

Therefore, using the above equation, GM for each light and heavy case can be obtained as follows:
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The floating states of these light and heavy materials are shown in Fig. 3.6, including the positional
relationships of B, G, and M.

-1I||<l

3.4 Afterword

______ Me | 5
______ G&------- a—6
________________ h
6
By h
6 - T
I L G
o= e

Fig.3.6 Case of breadth f=1, material & = % , % .

..,|||<|

In this paper, we have presented some examples which are effective in understanding the hydrostatic

stability of ships from the 1st author's empirical point of view.

It would be the authors’ great pleasure if

this paper could be of assistance to teachers and students who will teach and learn this field in the future.
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Chapter 4

Stable Attitude in an Inclined State
for the Hydrostatic Stability of Ships

In this Chapter 4, a theoretical treatment on the hydrostatic stability of ships is presented, following
the previous Chapter 3. As the simplest hull form, a columnar ship with rectangular cross-section, which

1s made of homogeneous squared timber with arbitrary breadth and material, is chosen.

In this chapter, the stable attitude in an inclined state of the ship, which is not stable in the upright
state with horizontal deck, is analyzed by means of ship's hydrostatics. By doing so, the dependence of
the inclined attitude on the breadth and material of the ship will be clarified.

4.1 Introduction

In the previous Chapter 3, as a typical example problem (¢3.549.(65 related to the hydrostatic stability
of ships, we solved the condition under which the ship floats stably in the upright state with horizontal
deck, in terms of the positional relationship among the center of buoyancy, center of gravity and
metacenter. Atthat time, the target hull form is a columnar ship with a rectangular cross-section, which

1s made of homogeneous squared timber with arbitrary breadth and material.

On the other hand, if the above conditions are not satisfied, under what inclined attitude does the ship
float ? is also of interest from a mechanical point of view. Igarashi et al. of the National Defense Academy
of Japan have elucidated this problem in detail based on geometrical considerations concerning the center
of buoyancy and the center of gravity for the squared timber with square®® and rectangular®? cross-

sections.

In this Chapter 4, as an extension of Chapter 3, we describe a theoretical treatment for solving the
stable attitude of a columnar ship with a rectangular cross-section in an inclined state. The one of the
authors gave an solution for the inclined attitude and published it in the journal ®® “ NAVIGATION” of

Japan Institute of Navigation at 2021.

We subsequently summarized the theoretical treatment of these examples in English, and published

it on this viXra.org®® and in the bulletin of our university, Nagasaki Institute of Applied Science ©9),

In this Chapter 4, we will describe them consistently.

4.2 Material @ and Breadth f as Setting Variables

In this chapter, @ and f are defined as the setting variable, as in the previous chapter. «
(hereinafter called the material) is the ratio of the specific weight y, of the columnar ship (t in the
subscript is the initial letter of timber) to that y,, of water (win the subscript is the initial letter of water),
and B (hereinafter called the breadth) is the aspect ratio of the breadth fh to the depth h of the cross-

section as follows :
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azﬁ (where, 0<a<1)

}/W llllllllllllllllllllllllllllllll
ﬂEM='B_h (where, B>0)

depth h

Here, when y, is fresh water, o represents the specific gravity of the columnar ship.

4.3 Stable Conditions in the Upright State

for a Columnar Ship with Rectangular Cross-Section

p.43 /67

In Eq. (3.14) of the previous chapter, the condition for stable floating in the upright state with deck

horizontal can be written as the relation between « and g in Eq.(4.1) as follows :

ﬂZ_ 6 (1_a) S T S S S

Hence, summarizing the results of Figs. 3.2, 3.3 and 3.4 in Chapter 3, it was explained that the above

condition can be divided into the following cases :

@ Stable conditions for breadth B with fixed material «

£ > «/ 6a(1-a)

6
e.g. a=%—> Y] >=£2‘=.1.225

@ Stable conditions for material « with fixed breadth g

6
1) Inthe case of g> £2 for wide breadth,

the floating body is always stable regardless of material o .

i1) Inthecaseof f< @ for narrow breadth,

...............................

it is then stable in both lighter and heavier materials than wood with a =— as shown below :

O<acx< %— x (Light Material )

%+K <a <1 (Heavy Material)

K

where, 6

3
eg. f=1- K=%':-0.289

@ ...........................
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4.4 Stable Attitude for an Inclined Columnar Ship
with Rectangular Cross-Section

In this section, we will try to find out what kind of inclined state is stable when the stable condition
in the upright state described in the previous chapter is not satisfied. For this purpose, let’s analyze the

inclined attitude, i.e. the heel angle, of the columnar ship.

As shown in Fig. 4.1, we shall assume that a columnar ship of length L with a rectangular cross-section
of depth h and breadth Bh, which is made of homogeneous material and of squared timber of specific
weight y,, floats stably in a lateral inclined state of heel angle 6 to the starboard side from an upright
state. The coordinate system 0—77¢ is fixed to an inclined ship with the origin 0 at the center of its

bottom surface.

First, in order to determine the draft, we need to find the cross-sectional area A, under the water

surface at lateral inclination.

Since its underwater shape is a trapezoid with height Sh, the lengths of its upper and lower bases

ph

can be calculated by taking into account the increase or decrease Ttan 6 of the port and starboard

submerged lengths with respect to the draft d in the upright state. So, the underwater area A, is

obtained as follows :

A, = i{(d—ﬂThtanHH(d +ﬂ7htan¢9)}~ﬂh

Y2

.||||<
.||||<

—htan0
2 )
Zfz(acose+?sin0)h

Fig.4.1 Columnar ship, with rectangular cross-section of length L,

floating stably in a lateral inclined state.
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Here, the above result is equal to the area of the rectangle, which is the underwater shape in the

upright state.

The weight W and the buoyant force F; of this columnar ship can be obtained as follows, respectively :

W=y Ve=7.-ph-h-L }
Fe = 7wV =ruAyL= 7, phd-L
Here, the weight W of the former is obtained as the product of the specific weight y; and the total
volume V, of the columnar ship. And the buoyant force F; of the latter is obtained as the product of the
specific weight y,, of water and the displacement volume V, of underwater portion, according to
Archimedes' principle. Then V, is obtained by the product of the cross-sectional area A, in Eq. (4.5)
and the ship’s length L.

The floating body is stable under the following conditions where the weight W and buoyancy F; are in
equilibrium.
W = By vereeeeee ettt ettt e (4.7)

Substituting W and F; in Eq. (4.6) into both sides of the above, we obtain as :

7t'ﬂh‘h‘|—:7/w‘ﬂh'd'|_ ................................................ (4.8)

By solving the above equation, the undetermined draft d in the upright state can be determined as &

times the depth h of the ship, as follows :

In this paper, to simplify the problem, it is assumed that the deck, i.e. upper side of a rectangular
cross-section, i1s in the air and the bottom, i.e. lower side of a rectangle, is in the water over the entire
breadth even when the ship is laterally inclined, as shown in Fig.4.1. That is, we will discuss the case

in which the cross-sectional shape under the water surface is trapezoidal, as calculated in Eq. (4.5).

The above assumptions would impose the following conditions, where the increase or decrease

’BThtan 6 of submerged length due to the lateral inclination does not exceed the freeboard h—d or the

. . o e . 1
draft d in the upright state, while divided into two cases around o = 5

h—d=(1-a)h ( for Heavy Material of azé)

1
d=ah ( for Light Material of o < ?)

Therefore, the heel angle 6 is limited to small inclination within the following range.
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tan™ (%j ( for Heavy Material of o > %)

= (4.11)
4 2 . . 1
fan 7 ( for Light Material of « <?)

For example, it means the following setting range.

p=1l, a=—

The position of the center of buoyancy B (775, {z) in the inclined state by heel angle 6 is determined
by the authors in Section 1.2 of Chapter 1, and its position is equal to the center of hydrostatic pressure
C-(75,¢5). Asshown in Fig.4.1, in the inclined coordinate system, which is fixed to the ship and has
its origin at the center of the ship's bottom, the position (775, ¢ ;) isobtained as shown in Eq. (1.11), when
the draft and half-breadth of the ship in upright state are f and b respectively, as follows :.

b2
= tan @
" 3t (4.13)
¢ L b’ tan? @ |
B2 6f

Here, in order to conform to the notation of this chapter, f and b in Eq. (4.13) are replaced as follows

respectively.
f=d=eah
b _ %ﬂh ........................................................... (414)

Thereby, 77, and ¢z can be written as follows :

B tand
=L — " h
e 12a
ah ﬂztanze ................................................. (415)
(o="0 4 L0 Th
2 24

Next, the center of gravity of the ship is located at the centroid of the rectangular cross-section (i.e.,

at the center of the figure), even after inclining, since homogeneous materials are assumed. Therefore,

using the fact that the sum of {; and ¢ is equal to % , ¢ in Fig. 4.1 can be obtained as follows :
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Co = —¢s

_l-a B?tan? 6

2 24
_12a(l-a)-p*tan’ o
24

h
2
- h

h ............................................ (416)

In order for the ship to float while maintaining the inclined state shown in Fig. 4.1, the center of
buoyancy B and the center of gravity G must first be located on the same vertical line. Therefore, the

following relationship is required between 77, and {; .

n
8 _tan@
é’G ........................................................ (4.17)

SoMg=¢gtand

Here, by using the former part of Eq.(4.15) and Eq.(4.16) for 77, and ¢, the following relationship is

obtained.

ﬂztan2¢9=2{6a(1—a)—/32} ............................................. (4.18)

The tangent of the inclined attitude 8 for a given material « and breadth A is then obtained by the

following equation.

\/2{60:(1—0:)—,82}
tan@ = ﬂ ............................................ (4.19)

When the interior of the radical symbol of the right-hand side of the above equation is positive, there

exists a solution for the heel angle 6. This result coincides with Eqgs. (1-h) and (4-f) of Igarashi and
Nakamura®?, This requires that the interior of the braces in the numerator of the above equation take

positive values, as follows :

6 (1_a)_ﬂ2 S (I T (4.20)

The inequality above is the inverse condition in which the inequality sign is opposite to the stable
condition in the upright state in Eq. (4.2) of Section 4.3, and the validity of the analysis in this chapter

can be confirmed.

Finally, it is necessary to examine whether the above-mentioned inclined attitude is stable or not.
For this purpose, let's consider determining the location of the metacenter M, meaning the center of

inclination.

The metacentric radius BM can be calculated by using the basic formula of naval architecture,
Eq.(2.22) derived in Chapter 2, as follows :

] L (4.21)

Here, | 1is the quadratic moment about the center line of water plane, and V,, is the underwater
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volume of a ship.

I, in the numerator of the above formula can be calculated as follows, since the water plane at

inclination is a rectangle of length L and breadth s hﬁ .
cos
1( ph Y
| == R 4.99
12 [ cos@} (4.22)

And the denominator V,, can be obtained by using d in Eq. (4.9) for A, in Eq.(4.5) and as follows :
VW=AWL=,Bhd-L=aﬁh2L ............................................ (4.23)

By using the obtained results |, and V,, into Eq.(4.21), BM can be determined independently of
the length L of the columnar ship as follows :

1 ( Bh TL
—— 12| cosé@ 2
BM = > = 'B 3 I T N (4'24)
apfh°L 12 cos® 0

BG in the inclined state is then obtained below by using the trigonometric ratio with 7, in Eq.(4.15),

as shown in Fig.4.1.

— 2 —
BG = 73 = B H= BM COS2() +vveceeennnnneeeenannnnneennnnnaneens (4.25)
sinfd  12acosd

Thereby, the metacentric height GM can be determined by subtracting Eq. (4.25) from Eq.(4.24), as
follows :
GM = BM -BG
_ B?*(1-cos’9) h B2sin? 6
12 cos® 6 12 cos® @
= BM SIN26 S 0 +ovvvrvreeeeannnneaeeeennneaeeeeeannseeeenannnnenns (4.26)

From this result, the metacenter M is always located above the center of gravity G, since GM takes
a positive value regardless of the heel angle 6, material @ and breadth . Therefore, it can be seen that
the inclined attitude 6 determined by Eq. (4.19) is constantly a stable state. However, it is necessary to

check that the calculated 6 is within the assumed small heel angle in Eq. (4.11).

Here, let us take few considerations on GM . Eq. (4.19) shows that when f°=6a (1—¢a), which
corresponds to Eq. (4.30) in next section, the inside of the radical symbol is zero and tand =0, so the
floating body is an upright state with heel angle #=0. At this time, since GM =0 from Eq. (4.26), M
and G coincide and the floating hydrostatic state is neutral. On the other hand, when « and S satisfy
the above condition, GM for the upright state shown in Eq. (3.13) of the previous chapter is also zero.
Hence, it can be seen that its equation for the upright state and the Eq. (4.26) for the inclined state derived

in this chapter are connected consistently at =0 in the neutral state between both formulas for the

metacentric height GM .
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For example, in the states f and a below, the heel angle 6, BG and GM are calculated as follows

by Egs. (4.19), (4.25), and (4.26).

1 T
=1, a== 5 0=
P 2 4
............................................... 427
M =BG = 2h ( )
6

This state corresponds to the case where the diagonal line of the square cross-section is aligned with
the water line, and the heel angle 6 is also within the setting range of Eq. (4.12). And BG and GM

also coincide with the results described in examples of many textbooks ©-¢):(12-0),(40-b),

4.4.1 a,p,0,Z, in an inclined rectangular cross-section of Fig.4.1

Fig. 4.1 shows the following states, and the inclined attitude 8 and the positions of B, G and M are also

drawn accurately.

a=0.4, f=11 > 0 =3L7°
2 GM =0.113N0, BG = 0.2960 b vevuneniiiiiii i (4.28)
Z,=0.629h

Here, Z, in the above Eq. (4.28) is the water depth at the starboard side of the ship's bottom, and is

calculated by the following equation.

Z, =(d +’b;—htan0)cos¢9

— (acosg+§5in0)h ............................................... (429)

4.5 Calculation Results for the Stable Inclined Attitude €

In this section, the dependence of the stable attitude 6§ at lateral inclined state on the breadth £ and

material « of the columnar ship is grasped.

Fig. 4.2 shows the dependence of the above on breadth f when « is a fixed, and Fig. 4. 3 shows that
on material @ when £ is a fixed. The results in both figures are obtained by calculating the heel angle

0 1in Eq. (4.19) using an Excel spreadsheet.

Since 6 =0 means that the ship floats with its deck horizontal and is the limit point at which the
inequality sign in Eq. (4.2) becomes an equality sign, « and S satisfy the following relationship at that

point.

ﬂz_ B (L—@) = 0 sceeeeeeeee ettt (4.30)

Thereby the intersection with £ -axis in Fig. 4.2 is obtained by Eq. (4.3), and that with « - axis in Fig.
4.3 1s obtained by Eq. (4.4), replacing the inequality sign in both equations by an equality sign.
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In both Figs. 4.2 and 4.3 above, the heel angles 6 of materials a and 1— « are obtained equally, as
can be seen from the factors in the radical symbol of Eq.(4.19). The angle 6 becomes smaller as breadth
S becomes wider. And 0 islargest for materials with « =0.5 such as wood, and is smaller as « becomes

heavier or lighter than that.

The reason why the point is not plotted in the case of S <1 for « =0.5, £ <1.06 for & =0.4, 0.6 and
£ <1.04 for ¢ =0.3, 0.7 in Fig. 4.2 is because the heel angle § exceeds the range of the small inclination
in Eq.(4.11).

Similarly, in Fig. 4.3, the part of the curve at § =1.05, the narrowest of the 4 states with breadth £,
is broken off and no point can be placed because it exceeds the range of small inclination angles in Eq.
(4.11) and the inclined attitude 6 cannot be calculated using Eq. (4.19) in Section 4.4. In detail, in the
lighter case of 0.32 <« <0.43, the bottom of the ship partially rises into the air and the underwater
shape becomes triangular, while in the heavier case of 0.57 <« <0.68, the deck partially sinks into the
water and the underwater shape becomes pentagonal, as both cases are different from the trapezoidal

shape assumed in the present theory.

6 (deg) 0 (deg) - 2 fi’ji
50 p 50 ——— B=1I5
[ Y
———- = g --= =120
" a=04,06 10
[ .~ a=0.3,07 [
30 | R 30 | P RN

I \ \ \
A \
10 \ 10

1.00 1.05 1.10 1.15 1.20 1.25 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fig.4.2 Dependence of the stable Fig.4.3 Dependence of the stable
inclined attitude 6 on breadth £ . inclined attitude 6 on material @ .

Igarashi et al. 56,67 provide a detailed analysis of all inclined state, including cases of large heel angles
(where part of the deck sinks into the water or part of the ship's bottom rises into the air), which cannot
be calculated in this chapter. And they have perfectly elucidated the dependence on ¢ and S by
organizing all cases in maps and tables and verifying them experimentally, so we encourage to read their

paper for anyone interested.

Fig.4.4 illustrates the attitudes of the four states when the material is fixed at « =0.5 and the breadth
£ =10, 11, 1.2 and 1.3, including the positions of B, G and M. It can be seen how the heel angle 8

decreases as the breadth £ increases.

Fig. 4.5 shows the five attitudes for material « =0.25, 0.3, 0.5, 0.7 and 0.75, with the breadth fixed at
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B = 1.06.

It can be found that the heel angle @ decreases symmetrically around « = 0.5 even if the
draft increases or decreases as the material « becomes heavier or lighter than that.

£=1.0

B=13

o @K
4404@444444
‘||||4

6=45.0° 0=34.7° 6=16.1° 6=0.0°

Fig.4.4 Four attitudes for breadth f=1.0, 1.1, 1.2, 1.3 with the material fixed at ¢ = 0.5.

‘-||||<l

%

0=2.9°

0=26.2° 0=39.3° 6=26.2°

Fig.4.5 Five attitudes for material & = 0.25, 0.3, 0.5, 0.7, 0.75 with the breadth fixed at £ = 1.06.

4. 6 Verificational Experiment

Fig. 4.6 compares the model experiment (left) and the calculation results (right) for the case of
material & =0.458 and breadth f=1.15.

The model of the columnar ship is length L=30cm, depth h=10.0cm, breadth #h =11.5¢cm, and weight

W=18.09N. Two pieces of chemical wood were pasted together in the center at the top and bottom, and
the model was manufactured by Space Model Co., Litd. in Nagasaki, Japan.

The verificational
experiment was conducted by floating its model in a small water tank.

The inclined attitude was @ =27.5° in the experiment and the calculated results are as follows by
Eqgs. (4.19), (4.25), (4.26) and (4.29).
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0 = 26.7° (2 =0.458, f =1.15)
GM =0.068h, BG = 0.260h b «enernerueeuaeunerieiiaeiieiiinaeniennnnn. (4.31)
Z,=0.668h

We consider that the reason why there is a difference of about 1° between the two is that the heel
angle 0 in the experiment was obtained by measuring tané from photographs and that the center of
gravity position G may be slightly off-center due to the manufacturing process of the model. Therefore

we are able to verify that the theory in this paper can correctly calculate the actual inclined state.

.|||| q
.|||| q

Fig.4.6 Comparison of experimental (left) and calculated (right) results
for material a = 0.458, breadth £ =1.15.

4.7 Afterword

In this Chapter 4, as an applied example which is an extension of the previous Chapter 3, a theoretical
treatment for solving the stable attitude of a columnar ship with a rectangular cross-section in a lateral
inclined state is explained in an easy-to-understand manner. Therefore, the inclined states are limited
to a small heel angle, in which the deck is not submerged and the ship’s bottom is not floated, in order to

understand essentially the stability theory of ships.

The authors would be very happy if this paper could be of assistance to teachers and students who will
teach and learn this field in the future, going one step forward from the basic examples in the previous

chapter.

In closing this chapter, we would like to pay tribute to two valuable papers¢6.67 written by Tamotsu
IGARASHI, Professor Emeritus of the National Defense Academy of Japan. The reason is that the authors
were deeply impressed by both of their papers.
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Appendices

A.1 Centroid of the Trapezoidal Area, which is the Underwater Sectional Shape
In this Appendix A.1, the centroid of trapezoidal area, which is the cross-sectional shape under the
water surface when a rectangle is inclined laterally, is geometrically obtained from the area moment.

As shown in Fig.A.1.1, let's analyze in an inclined 0-7¢ coordinate system with the origin 0 at the
center of the bottom of the floating body and fixed to the body. This is the same coordinate system as
Fig.1.1in Chapter 1. Here, the draft of upright stateis f , the half-width is b, and the heel angle is 6 .

Then, we consider that the trapezoidal region under the water is divided into a rectangle (centroid g, )

and a triangle (centroid g ,) by a single dotted line.
If the area of the rectangular part is A, and the area of the triangular part is A, , each of them and
their sum can be obtained as follows :
A =2b(f-btanf)
AZ:%-Zb-thanH:sztane ......................................... (A.1.1)
Al+A,=2bf

First, we calculate the area moment M ;] about the 77 -axis. Here, dashes are added to distinguish
them from the moments caused by forces shown in Sections 1.2 and 1.3 in Chapter 1. Then, M ;7 can

be calculated as :

M! = A, x—Rtnd Azx{(f —btan9)+—2bta”0}
2
= bf2+%b3tan2¢9 ................................................ (A.1.2)

Next, the area moment M 'g about the ¢ -axis can be calculated as :

M'gz Al><O-I-A2><(b—2—3b) = A2><R

!

If the coordinate of the centroid position G of the trapezoid is (775, {s), the above area moments M

and M ’4 can be written as the product of the total area and the lever, respectively, as follows :

M:,Z(A1+A2)§G
M';Z (A1+A2)77@

Therefore, the coordinates 775 and ¢ g of the centroid G of the area can be calculated and determined

as follows :
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M’ 2
Ng= ——= b° tano
A+A, 3f
....................................... (A15)

M’ 2
§G=—”=i+ b tan?6
A+A, 2 6f

Here, 0,, g, and G in Fig.A.1.1 are drawn on the correct positions in this state, and the three points

are on the same straight line.

.||||<]

2btan@

f —btané@

n

Fig.A.1.1 Centroid G of area of the underwater trapezoid.
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A.2 Movement of the Centroid of Whole Area when a Partial Area Moves

Fig. A.2.1 shows the case that a square OOABDC (area A, centroid G) transforms into an isosceles
triangle ACBE (area A, centroid G'), when a right triangle AABC (gray-filled area a, centroid g) is
rotated 90° counterclockwise around point C and moved to a right triangle ACDE (gray-filled area a,

centroid g’).

In this Appendix A.2, let's consider the distance and direction of movement of the centroid of the whole
area, i.e., from G of the square JABDC to G' of the isosceles triangle ACBE. The right triangle ACBD
(white-filled area A-a, centroid 0) in Fig. A-1 is a fixed and common area before and after the movement.
Here, the centroid G of the whole area is located geometrically on the line segment E connecting the

respective centroids 0 and g, and G' is located on the line segment 0g’ connecting 0 and ¢'.

A.2.1 General theory
Firstly, we will develop the general theory without setting a specific area etc. .
For the square JABDC before the move, the following equation holds from the equilibrium of the area
moments of @ and A around point 0, which is the centroid of a fixed triangle ACBD .
a-og =A-0G
—>a-l,=A( }

Here, for simplicity's sake, we have written 09 =/ g 0G =/ c- By the above equation, the following

relation is obtained as :

Next, for the isosceles triangle ACBE after the move, the following equation holds from the

equilibrium of the area moments of a and A around the point 0 as well.

a-og’ =A-0G
> a-ll = AL}

Here, we have abbreviated 09’ =/ ; , oG’ = (; inthe same way. By the above equation, the following

relation is obtained as well.

ly 2 (A.2.4)

oA

Let us now consider the trapezoid [\ ABEC , which combines three right triangles, two before and after

the move and one fixed. By Egs. (A.2.2) and (A.2.4), the following relationship can be easily derived as :
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( (! a
G G
T L 1 T T A25

9

This indicates that the scale ratio on the left side of the two small AG0OG' and large A gog’ triangles
is equal to that on the right side. By transforming the above equation, we can obtain the relational
equation as follows :

L b
o o
1A 14 o

It shows that the ratio of the left side to the right side is the same in the two small AGoG' and large
Agog’ triangles. Furthermore, the apex angles of both small and large triangles are clearly common

as follows :
AGOG, — Lgog’ ....................................................... (A.2‘7)

Therefore, according to Eqgs. (A.2.6) and (A.2.7) above, we can see that both small and large triangles

are similar as follows :

AGoG’ () Agog’ ....................................................... (A.2‘8)

As a result of the above discussion, it can be seen that the ratio of GG’ to gg’, which corresponds to
the base of both triangles, is also the same as that in Eq. (A.2.5), and the two are parallel. It can be

written as follows :

e -2 (<1) » 286 = 297
g9
................................ (A.2.9)
GG’ // 99’
A
h/:

>

3h

Fig.A.2.1 Movement of the centroid of whole area when a partial area moves.
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The above equation is the law of dynamics as described in textbooks (10-0).(7-b),(8-b),(12-b),(39),(40-2),(41)~(45) on
naval architecture and nautical mechanics. There is no restriction on the size of the area ratio a/A in
the 1st equation above, except that it is less than one. In this appendix, we have discussed the case
where the area moves, which is the easiest to understand, but it can be applied by replacing a and A in
the above Eq.(A-9) with v and V for volume and w and W for weight.

A.2.2 Numerical calculations for the verification of A.2.1

In this section, let's set numerical values for the area etc. and do some calculations. In that sense,
the state of Fig. A.2.1 can be verified by the theory of Section A.2.1, because the position of the centroid

G and G' before and after the move is geometrically known.

As shown in Fig.A.2.1, the square CJABDC has a side of 3h before the move and the isosceles triangle
ACBE has a base of 6h and a height of 3h after the move, the two moving right triangles AABC and
ACDE have a base and a height of 3h. Therefore, the whole area A, the moving area a and their ratio

are written as follows :

A= 9h®
9 _)izi ................................................ (A.2.10)
aZEhZ A 2 o

Now, since the distance and direction of the movement of centroid of the whole area A due to the
movement of a partial area a are shown in Eq. (A.2.9), we will consider the moving distance by breaking

it down into its horizontal and vertical components.

As shown in Fig. A.2.1, each component in the moving distance of centroid of a partial area a is

geometrically measured via point t, as follows :

Horizontal : a: 3h
............................................... (A.2.11)

Vertical W: h

Here, by the 2nd line of Eq. (A.2.9), line segments GG’ and W are parallel, so if we place point T
corresponding to point t, both right triangles AGTG' and Agtg’ are similar as follows :

AGTG’ (o) Agtg’ ..................................................... (A'Z.]_z)

Therefore, the moving distance of centroid of the whole area A can be determined for horizontal and
vertical direction via point T respectively, by adopting the value of Eqs. (A.2.10) and (A.2.11) into the 1st
line of Eq. (A.2.9), as follows :

3

Horizontal : GT = %a = Eh
e G (A.2.13)
Vertical : TG' = —tg’' = —=h
2 2

Then, the result of the above equation places the point G' at one-third of the height DC of the
isosceles triangle ACBE, just above the midpoint D of the base BE . This point G' is correctly the
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centroid of the isosceles triangle ACBE. Since this fact is consistent with what geometry teaches, we

were able to verify that Eq. (A.2.9), which is derived in the general theory of Section A.2.1, is correct.
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A.3 Lecture Videos Uploaded to YouTube on the Hydrostatics of Ships

The content of Chapter 1, which proves that “Center of Buoyancy = Center of Pressure” by inclining
a floating body with rectangular cross-section laterally, is lectured to 2nd year students of the naval
architectural engineering course ®1:62 in the “ Hydrostatics of Floating Bodies” of the university where

the 1st author®® works.

And the content of Chapter 2, in which a new derivation process for metacentric radius BM is
developed, is lectured to 2nd year students of the same course as a subject of “ Hydrostatics of Floating

Bodies” at the same university.

With the recent trend of remote lectures, the situation of the two themes above is filmed in two parts,
the 1st half 64.66) and the 2nd half©5.67 respectively, and on-demand teaching materials are created and

uploaded as four YouTube videos.

Furthermore, one of the authors %9 teaches the theory of ship’s hydrostatic stability, which is
developed in Chapter 3, to 2nd year students of the above course in a lecture entitled “ Theory of Ship
Stability” at the author’s university. We have also uploaded the three recorded videos of the lecture to

YouTube as on-demand materials, following the same trend as above.

The 1st video®® is a theory for determining the breadth condition for a columnar ship with a
rectangular cross-section, whose specific weight is half that of water & = ? , to float stably in an upright

position, which is explained in Section 3.1.

The 2rd video (™ shows that the above theory was confirmed experimentally in a small water tank for

the inquiry learning online of high school students.

The 3rd video®9 explains that a theory for determining the conditions of specific weight (i.e. lightness
or heaviness of the material ) for a columnar ship with square cross-section =1 to float stably in an

upright position, which is described in Section 3.2.

The above seven lecture videos are explained in Japanese, but if you are interested, please have a look.




