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Abstract

The binomial formula, set by Isaac Newton, is of utmost importance and has
been extensively used in many different fields. This study aims at coming up
with alternative expressions to the Newton’s formula, as well as some othe results
that we can obtain from them. A proof of the Fermat’s conjecture seems to be
possible.



Chapter 1

Another way to write
Newton’s binomial expansion.

1.1 Purpose of this chapter.

Newton’s binomial expansion can be expressed differently. This new formula-
tion allows in turn to perform other calculations which will highlight certain
properties that the original formula may not be able to provide.

1.2 Another formula.
Let n € N* and x € R* and y € R*. In all that follows, we assume n > 3. We

can write

n n—1 n

(z+y) —a" 3 ni—j_;_ (@+y) —a"

- = I+y "L’Jzi
(z+y) —a :0( ) y

and likewise

n—1

(z+y)" —y" ne1j ;i ([@+y)" —y"
A T+ ) = X Y/ 0 I
TR ;) (@+y)" "y p
Let us add these two quantities
n n n—1
(+y) —a" (+y) —y" _ n=1-j (2§ o i
Rk D I C R S
7=0
and we end up with the formula
n—1
e = @) = Y ) (@ )
j=0
which, for convenience’s sake, we write
n—2
n n n n—=2—j J 7
@+y)" =@ +y") =ayd (x+y)" 7 (27 +¢7) (1.1)
j=0



The Newton’s binomial expansion formula, that we recall here

(x+y)" ZCJ niy (1.2)

wherein
j n!
AR 1
allows to establish the equality
n—2 n—1
(z+y)" 27 (27 +¢7) ZC’J nimly
7=0
or lastly
n—2
(x+y)"23 (27 +47) ZC’JH”QJ
7=0

1.3 Study of the new formula.

Let us pose

n—2
A (zy) =Y (@+y)" 27 (a7 +4) (1.4)
=0
Let us remark first that
n—2 ) ) )
S @ty (5 4y =
=0
p—2 )
(x+y)" "7 (a7 +9)
7=0
n—2
+ Y @ty (@ + )
Jj=p—1

with p € N* and p < n, or likewise

2
(z + y)”_Q_j (xj + yj) =

n

<.
Il
o
|
N

p
(z + y)(n—z))+(p—2—a) (xj + yj)

<.
Il
o

n—2
+ Z a?—i—y —(—(p—1)+p—1) (mj—(p—l)ﬂ)—l +yj—(p—1)+p—1)
Jj=p—1



and

2
@+y)" 7 () +y) =

n

§=0
p—2 _
(@+y)" Y (@+y)P 2 (2l +y)
§=0
n—2—(p—1)
+ (z + y)n72*(j+17*1) (xj+p—1 + yj-‘,-p—l)
§=0
and
n—2
Doy (W ) =
§=0
p—2
@+)" Y (@+y)P 7 (a7 +y)
7=0
n—2—(p—1) o '
+ (z+y)" P (@7l g gyite Y
§=0
and finally

A (z,y) = (+1)"" 4y (2,y)
n—2—(p—1) o _
+ ) (@) T (@I g
=0

Let us now consider the case wherein n = p 4 1, then
O .
Apr () = (@ +y) Ap (z,y) + ) (z+y) 7 (2771 447071
j=0

or likewise
Apir (z,y) = (2 +y) Ay (2,y) + (2P +4771)

but
4 = ) ey (1)

and so

Apri(@y) = (@ +y) 4y (2,9) + (@ + )" —aydpi (wy) (L)



Let us concentrate now more specifically on A,, (z,y) and let us develop this
quantity from the formula 1.4 in page 2. Then

n—4
Ap(z,y) =3(@+y)" 7+ > (@+y)" 7 (27T +47?)
=0
4 n—>5 ] ) .
=3@+y)" 2+ @2+ Z (z+y)" 07 (273 4 73
=0
n—>5 )
=3(@+y)" P+ @ty P2y @+y)" T+ (@4y)" T (@)
=0
n—>5 ]
=4z +y)" P =2y (z+y)" "+ Z (z+y)" 07 (273 4 73
=0

As we continue our calculations in the same manner, we get
An (z,y) =5 (@ +y)"
n—=6

—bay (x+y)" "+ Z (z+y)" 077 (a7 7t
=0

Ap (z,y) =6 (x+y)" > = 9zy (x + )" "+ 2272 (x +y)"~

+Z +yn 7— J(xj+5+yj+5)

Ay (2,y) =T (@ +y)" 7 = May (@ +y)" "+ 7222 (@ +y)"

Jrz +y n 8— ](I]+6+y]+6)

Ay (z,y) =8 (z+y)" *—20zy (z + y)"74+16x2 2z +y)" 02038 (w4 y)"

_|_Z +y " 9— ](mJ+7+yJ+7)

Ay (z,y) =9 (x +y)" " —2Tay (x +y)" 1430272 (x + y)" =923y (v + y)"~
n—10
S v
=0

A (,y) = 10 (2 + )" =35zy (z + )"~ +502%y* (z + )" =252 (x + )"

+ 22ty (2 +y)"
n—11 )
+ 3 @ y) T (29 47 19)
=0



Ay (z,y) =11 (x4 y)" 2 —4day (z + y)" +772%2 (x + )" " =552%y% (z + v)

+ 11y (z + y)nilo
n—12 ]
+ Z (x + y)n—12—j ($]+10 + yj+10)
=0

It is of course possible to extend our calculations as far as we desire. As n is
taking on the values 3, 4, 5, 6,..., we can deduct the respective new developments
of AS (xay)v A4 (xvy)v AS (:an); AG (i[, y)v etc...

Let us assume now that the following formulas hold for all natural integers
less than or equal to 2k and 2k + 1, wherein k£ € N*

k—
A () Z zy) (z+y)* D) (1.6)
7=0
k .
Aspsr (2,y) = (z + ) Z S (F1 (@y) @+ )"
=0

The coefficients D;k and D%k 41 are to be made explicit if possible (and will be
indeed further down in this study).

Let us go back to the equation 1.5 page 3 and rewrite in the form
Aoz (2,y) = (z +y) Agir (2,9) + (x +9)°" — 2yAsy (2,)
Let us develop now this relation

k—

Asjeya (2,9) Z 2k+1 )j (z+ y)Q(k_l_j)
§=0

+(:c+y)

— w2 Dy (=1 (zy)’ (z+ )"0

=
k .
Aoz (2,y) = (z +y) Z Sen (C1 (ay) (2 4+ )* Y
7=0
+ (x4 y)
+ ZD J+1 )]+1 (l’ + y)Q(k*l*j)

n—=_8



Let us carry on with our calculations. We obtain in an equivalent manner

k—1

Asiz (2,9) = > Dy (1) (ay) (z + )" "7
7=0
+(z+y)™
+ ZD —1)7H () ($+y)2(k,17j)
=
= S J J J 2(k—j)
A2k+2 (:U,y) - Z D2k+1 (—]_) (l'y) (.’E + y)
7=0
+(z+y)*

k
+ 2D (1) () (@ + )"

—
k—1 _ _ . ‘
Ao (2,y) Z ( 2kl T D%;l) (—1) (2y)? (= + y)Q(kﬁ)
7j=1

k — k
+ D2/€+1 (z + y) + (x4 y)2 + ng ! (zy)

and we can write

k

) 4 . (ki
Aiya (2.9) = Y Dhyy (=) () (2 + )"
=0
with
DYy o =D%y +1
D§k+2 = Dé“;l
and

(% €N) (1§ k= 1) (D = Doy + DY)
Similarly, we have

Agrs (2,) = (2 +y) Asisa (2,9) + (2 + 1) — 2y Ao (2,7)
Let us make it more explicit

k
Askgs (2,y) = (@ + 1) > Dhyy (—1) (xy) (z+1)**7
7=0
+ (l‘ 4 y)Qk—‘rl
k—1

—ay(z+y) Y Dy (-1) (2y) (@ +y)* ¢
j=0



hence

k
Aspqs (z,y) = Z D%k+2 (=1) (zy)’ (x + y)2(k—3)+1
3=0
+ (l’ 4 y)2k+1
k—1
) , ‘ .
+ 3 Dy (1 () (2O
j=0
which is equivalent to
Aggys (2,9) = (z + )"
k
o
Z The (1) (zy) (x 4y
j 2(k—j)+1
Z Dyt (-1) (ay) (@ +y)*E*

and also

Asiss (@,y) = (D3 yp + 1) (+ y)zkﬂ

k
+ 3 (Dhusa + Dihy) (C1) () (w49

Jj=1
and we can finally write
k
2(k—j
A2k+3 ([E y 1‘ +y Z 2k+2 :Ey) ( + y) (=9
j=0
with
Do =D% 4 +1
2k+2 2k+1
and

(v € N) (1 <5 < &) (Dhys = Ddiyo + D)

This concludes our mathematical induction and we can write at last as a con-
clusion

(Vk € N*) [ Az = 3" Djy (=1) (ay)’ (2 +9)** 7 (1.8)

with
DY, =DY, | +1< DY, =2k (1.9)

and
Dil=DE2 =...=D}=2 (1.10)



and

(vj €N)(1<j <k —1)(Djy = Dy + D) (1.11)
and as well
k . .
(Vk € N*) [ Aopsr = (2 +y Z S (C1 (@) (49"t (112)
7=0
with
DYpi1 =Dy +1 < DY =2k+1 (1.13)
and
(vj €N) (1< j < k) (Dlyyy = Db+ DIty (1.14)

1.4 Values taken by the coefficients Di wherein
(h € N) and (h > 3).
We have, as we just established it
(Vh € N) (h > 3) (D)) = h)
Let us now take j = 1. We have
Dllz = Dllzfl + D272
We can then write

Dy =D, ,+D)_,

Dy_y=Dj_+Dj_y
h—5

:>Dh—ZDh 2+ Dj
7=0

Dj = D; + Dj

but
Dy s j=h-2-]

and, according to the relation 1.10 established in page 7

Dl =2
hence we get
h—5
D= (h—2—j)+2=((h—2)+(h=3)+ (h—4)+ - +3) +2
7=0

and therefore
2D} = h(h +3)

and finally

(Vh € N*) (h > 3) <D,1l = h<h2_3)) (1.15)



Clearly
(Vh € N*) (h > 3) (D}, € N)

Making similar calculations, we find for every natural integer h > 3

D2 — h(h74é (h—5) (L.16)
Dzzh(h—{i)(hM—G)(h—?) 117

There as well
(Vh € N*) (h > 3) (Dj, € N)

(Vh € N*) (h > 3) (D} € N)

We then remark that the relations 1.11 and 1.14 established in page 8, as well
as those ((see relations 1.15, 1.16 and 1.17) established in pages 8 and 9 allow
us to affirm

(Yh € N*) (h > 3) <we {0,1,-.. }‘2_4}> (DgeN)

Let us assume now, h being chosen as even, and for all j € {O, 1, %} the
formula B (h— (5 4 9

G+D(h=2G+1))!
true until rank h, for all even natural integer lower than or equal to h.
Let us assume as well that, for all j € {O, 1,--- ,%}, until rank h — 1, the
formula b1V ((h— 1 N

LGN -1) = 2(5 + 1)
is true. Then
pit o (h=D(h-1-G+1) _(A-1)(h—(+2)!)
h=1"" G (h —1—2j)! (=1 —25)!




The relation 1.11 established in page 8 allows us to write

i h(h—(+2) (h=1)(h—(j +2))
LT G D) (h—2(G + 1)) §U(h —1—2§)!
<
i (h=(+2)! h (h—1)
D = J! ((j+1)(h—2(j+1))! (h—1—2j)!>
s
i h=GH+2) (h(h=1-2))+(h—1)(j+1)
Dhyr =" < h—1-2)(+1) >
<
i (h—(5+2))

S G -1 - gy AT ) R (R D) (=)

<~

i (h=(G+2)!
LT G+ 1) (h—1 —2j)!

(R —1—(h+1)j)

and finally
o (h=(+2)
LT G+ ) (h—1—29)
We can therefore write
i (At (h—(G+D)!
LT G D) (1 —-2( + 1))

We could make similar calculations if we take h as odd

!(h—l—l)(h—l—j)

(1.20)

We verify that
(Vh € N*) (h > 3) (D} = h)

and, as we denote the ensemble of even natural integers as 2N
(Vh =2k € 2N*) (h > 4) (D5 ' = 2)
At the end of this mathematical induction, we have therefore established
(Vk e N*) (V5 € {0,1,2,--- ,k —1})

i 2k Dk (G4 D)
( 2k+1_(j+1)!(2k+1—2(j+1))!>

s 2R+ ) @E+)—1- [+ 1)
O&“U‘ u+mmw+n2u+m!) (121

Let us remark that for all natural integer h

h=2G+D)+@G+1)=h—-(G+1)

We can then write
h(h—(+1)!
(h=G+1))G+DI( =20+ D)

Di =

and also h
J o Jj+1

Dy, = h—(j+1) h=G+D

10



1.5 Study on the coefficients D%Etude sur les co-
efficients D;.

For the following odd natural integers h = 2k + 1, we verify the relations

k=1 h=2k+1=3
DY =309

k=2<—=h=2k+1=5
DY =5C)

D} =5Ct

k=3« h=2k+1=7

DY =109
D} =103
D2 =703

k=4<—=h=2k+1=9

DJ =907
Dy =903
D3 =903 + 3C)
D} =903

k=5<=h=2k+1=11
DY, =110Y
Di, = 11C;
D}, =11 (C; +CY)
D} =11(C% +C1)
D}, =11C]

k=6<=h=2k+1=13
DYy = 1307
Di, =130}
D3y =13 (CF +2C9)
D33 =13 (C3 +2C3)
Di; =13 (Cs +2C3)
D}y = 13C2

11



k=T+=h=2k+1=15
DYy = 15CY
Di. = 15C}
D} =15 (Cg +3C19)
D35 =15 (C§ + 3C3)
Di; =15 (C¢ +3C3 + 3C))
D35 =15 (Cg + 3C3)
D% = 15C¢

k=8«=h=2k+1=17
DY, = 17070
Di; = 17C%
D}, = 17(C2 + 5CY)
D}, =17 (C% + 5Cy)
Di, =17(C7 + 5C; + Cf)
D}, =17(C3 + 5C3 + Cf)
DY, =17 (C¢ + 5C%)
DI, =17C

k=9«=h=2k+1=19
DYy = 1907
Diy = 19Cs
D}y =19 (C3 +7C?)

D3y =19 (C3 +7C3)

Diy =19 (C§ + 7C2 + 3C3)
Dy =19 (CE + 7C3 + 3C3)
D}y =19 (C§ +7C5 +2C3)

Dy =19 (Cg +7C3)
D}y = 19C%

12



k=10 h=2k+1=21
DY, =21Cy
D), =21C;
D3, =21(C§ + 19Cg)
D3, =21(C§ +19C4)
D3, =21 (Cy + 19CF + 14CY)
D3, =21 (Cg +19C§ + 14C3)
DS, =21 (C§ + 19C¢ + 14C5 + 3CY)
D}, =21 (C§ + 19C§ + 14C3)
DS, =21 (C§ +19C%)
Dy, =21Cy

We are led to assume that for all odd natural integer 2k + 1, greater than or
equal to 3, each coefficient D, 41 can be expressed as follows

L5
, o
Dty = ZFékHCz—i:ﬂ (1.22)
1=0
with
0<k-1-3I<k—-1 (1.23)

and we will write by convention

(Vj) (j — 21 < 0) (Ciifﬁ?,l = 0) (1.24)

In order to demonstrate the validity of this formula for all natural integer k, we
are going to develop, to the extent possible, the coefficient lek 41 against k and [

For any natural integer k, we verify the relations
Dypyr = 2k +1)Cy_4
Dyjyy = (2k+1) Gy
We can always write, with k > 4
D3y = (2k + 1) Ci_y + (Dijpy — 2k +1) CR_y) Gy
But, in accordance with the relations 1.3 and 1.21 established in pages 2 and 10

(2k — 3)! (k—1)!
31(2k+1-06)  2!(k— 3)!)

D3 — (2k+1)Ch_; = (2k+1) (

and similarly

D§k+1(2k+1)0§_1(2k+1)( (2k—-3)! (k1) )

31(2k —5)! 20 (k—3)!

13



and

DZeyr — (2k+1)C2, = (2k+ 1) <(2’lC - 3)3!(% —4) (k- 1)2'(k - 2))

and

D3y — (2k+1)C2 | = (2k+1) ((% - 3:)))(’@ -2 (k- 1)2(k - 2))

and also

D%y — (2k+1)C2 | = (2k+1) <2(2k—3) (k—2)6—3(k—1) (k—2)>

and finally

2k +1) (k—2) (k — 3)
6

Dy —(2k+1)CF, =

Let us pose

2k +1) (k —2) (k — 3)
3l

Fayr = Dijyy — 2k +1)CF_y =
In a similar way, we could find
D1 = (2k +1) (Ci_y + F31Ci)

and
Dy = (2k+1) (Cioy + Fap 1 Ch_y + F 1 Cq)
which gives us
Foir = ((Dagsr — Rk +1) Ciy) — (D340 — 2k + 1) C_y) Ci_y)
Making similar calculations as the previous ones, and with coefficients ng 41
and C]lg_ ; being made explicit, we find

9 (2k+1)(k—3)(k—4)(k—5)(k—06)
F2k+1 = 51

We are therefore led to assume that, for all natural integer k& > 1, the equality

L (2k+ 1) (k—1-1)!
2L 04 1) (B —1 - 30)!

(1.25)

is true, with the natural integer [ such that

0<i<|t]

Let us calculate the difference Fék 11 and le,%l

Qk+1)(k—1-10)1 (2k—1)(k—2—1)

@+ D) (k—1-3) (2 +1)!(k—2—3I)

l [ —
F2k+1 - F2k:71 -

14



Then

B (k—2—1) 2k +1)(k—1—1)— (2k—1) (k—1—3I)
Foepr—Foer = (20 +1)! (k — 2 — 30)! ( (k—1—3I) )
and

L (k—=2-1)
Fopp1—Fop1 = 2L+ 1) (k—-1-3])

(k1) (k=1 1) = 2k — 1) (k—1—31))

and also

k—2-1)
Fl _ gl _ (
2L 2L o (k-1 - 31)

2@+ 1) (k—1)

and finally

2(k=1)(k—2-1)!
2O (k—=1-31)!

Our hypothesis 1.22 stated in pages 13 leads us to use a mathematical induction

to show the existence of the relation

Fjyy — oy = (1.26)

L5)
(VkeN) (k2 1)(GeN)(O0<j<k—1) Dy =D FhnCliity
=0

wherein each coefficient FY, 41 is expressed by the formula 1.25 established in
page 14.

Let us assume that, for all natural integer j < k — 2, the relation

k—1
5

. o
D%kfl = Z Fék710z7273l (1.27)
1=0

is true until the rank 2k — 1, with

L k=1 (k—2-1)
LT L+ 1) (k-2 - 31)!

Let us calculate now the difference
J Jj—1 _ nJ
D2k—1 - D2k—3 - D2k—2

and also
452 L552)
- P9l j—21—1
D%kﬁ = Z F2lk—lclz:7273l - Z le1¢—301]@73731 (1.28)
1=0 1=0
Then, we are faced with two cases.

1.5.1 Case 1: 51| =52 =m

We have o1
L%J:m@k—1:3m+p>3m

The only values that p can take a priori are 0, 1 and 2

15



1.5.1.1 p=0

p=0=k—-1=3m
<— k—2=3m—-1<3m

1.5.1.2 p=1

p=1=—=k—-1=3m+1
= k—-—2=3m
1.5.1.3 p=2
p=2=k—-1=3m+2
= k—-2=3m+1
Clearly, p cannot be equal to 0. We also notice that in this Case 1

%k+1£0 (3) (1.29)

Let us recall that

j—21 _ ~j—2l—1 j—21 j—20—1 _ ~j—2l j—21
(Ok—Q—Sl =Ch 55+ Ck—S—Sl) — (Ok—S—Sl =Chog — Ck—3—3l)

(1.30)
We then have (see the relation relation 1.28 established page 15)
j—21 j—21—1
Ddy s =Y (Fher CI3l s — FosClT35)) (1.31)
1=0

which is equivalent to

m

l j—21 l j—21 j—21
2k 2 — § (F2lc—1ck—2—3l - FZk—B Ck—2—3l - Ck—3—2l

1=0
and
m
! i j—21 l j—21
Dl _, = E ( Fopoy — Fai3) G5 g + F2k73ck—372l)
1=0

with m = Lk 2] = Lk L|. In particular, among the natural integers 2k + 1
wherein k& satlsﬁes this property, we find all the prime integers strictly greater
to 3.

1.5.2 Case 2: [®] = [E2|+1=m

We have b1
L%j:m@k—lzi’)m—i—p

As previously,

16



1.5.21 p=0

p=0=—=k—-1=3m
<~ k—-2=3m-1

1.5.2.2 p=1

p=1=—=k—-1=3m+1
<~— k—2=3m

1.5.2.3 p=2

p=2=—=k—-1=3m+2
<~ k—-2=3m+1

And in this case, p can only be equal to 0. We also notice

2k+1=0<=k=1 (3)
<~ k-1=0 (3)

We then have (see the relation 1.28 established page 15)

m—1
j j—21 l j—21—1
D2k—2 § :F2k 10 —2-31 § F2k73ck—3—31

m—1 m—1
_ m j—2(m+1) j—21 l j—21—1
_FQk 1Ok 2—3(m+1) + FQk 10/9 2-31 z F2k—3ck—3—3l
=0 =0

m—1
2(m+1) j—21
= Fjp 0}~ 2( 3(m+41) T Z ( (Faeo1 — Fanes) L5 g + Foy_5C,

with m = L%J and m—1= I_ICS;QJ

j—21
k—3-3l

Let us return to Case 1 and let us take our hypothesis 1.27 stated page 15

j—21
E F2k SCk33l 2k3

then, in accordance with the relation relation 1.31 set out page 16
, 4 -
Dyy_y = D;k73 = Dyj_y
and finally, we get the equality
1552

Jj—1 _ E l j—21
D2k74 - F2k—4ck7273l
=0

17

(1.32)



with, in accordance with the relation 1.26 established page 15
lek—4 = F2lk—1 - F2lk—3

We still have to establish that the equality 1.32 in page 17 is true when k > 4
describes N. We make sure first, by a simple calculation, that this equality
indeed holds when k takes successively the values 4, 5 and 6---, when j takes
its values in its domain.

We then assume that this equality holds for any given natural integer less or
equal to 2k, for all j < (k — 1), that is

L%]
i I gt1-21
Dy, = ZFQkaf?;l
1=0

We can now remark that the calculations made to get the formula of DZ:%
depending on the coefficients F2l,C and the binomial coefficients C’iféfﬂ are
generalizable to any value of A in N. We just have to verify by mathemat-
ical induction the correctness of the formulation of the odd index coefficients

D] _,,. 41 to obtain a result that is valid, irrespective of the parity of this index h.

Let us go back to the initial hypothesis on the odd index coefficients (see our
hypothesis 1.27 stated page 15)and let us utilize what we just established. We
verify

J — i Jj—1
D2k+1 = Dy + Dy

with
L%]
J 1 Jj+1-21
Dy, = ZFQkaf?;l
1=0
and
L5
i—1 l j—21
D%k—l = Z szflczi—z—:az
1=0

Further to the calculations we just made in pages 16 and 17, we have

[4)=m
J o l Jj—21 1 j—21
Dy = Z Fop o0y + Fop1C oy
1=0
L5]=m
i ! ! j—2l 1 j—2l
= Dy, = Z (Farr — Foro1) CLh gy + Fop 1 Ol 5y
1=0
& )=m L& )=m
i 1 j—2l ! j—21—1
— Dy, = Z Fop 1 Cpig — Z Fo 1 Ciizy
1=0 =0

Dl _pi j—1
D2k - D2k+1 - D2k71

This result is in agreement with the equality 1.14 established in page 8.
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As we know how to express the coefficients FY, , and F}, , against [ and
k, we can now calculate FQZkH. We thus find

L%]
j j—21
D%k+1 = ZFQlk-&-lCiflfm
=0
with
P  RE+1)(E-1-1)
LT 214 D) (k-1 - 30)!

Our mathematical induction is therefore complete for every coefficient D{l, with
odd or even indices h.

Let us now summarize all the results we have obtained over the previous pages
(see equations 1.8 and 1.12 in pages 7 and 8)

n—2
(VneN)(n>3) | (@" +y") =a"+y" + 2y Y _ Ay (z,y)
j=1
with, for n = 2k (see equation 1.8 in page 7)
k .
Aoy (2, ) Z zy) (x 4y
3=0
and
. 3
(VkeN) (k> 1) (VG eN)(j <k —1) | Djy =D By O3 ™
and

L 2k (k—1-1)
2k 20! (k — 31)!

and for n = 2k + 1 (see equation 1.12 in page 8)

k—
A2k+1 (:v y LU +y Z 2k+1 )J (;13 + y)2(k717])
7=0

and
(ke N*)(Vj €N)(j <k—1) | D}y, = ZF%HC;J?I a1

and
. 2k+1)(k—1-=1)

F =
LT 204 1) (k-1 - 30)!
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1.6 Study of Ay, ;1 (z,y) wherein k € N*.

We will show in this paragraph how we can further factorize the quantity
Asg41 (z,y). Using the previous results, we can write

ol

k—115]

Asiert (2,y) = (@ +9) DD Foen O (<1 () (2 +9)" "7
i=0 1=0

<
~

We then have for each k, and for all j and all [

j—21 7 j 2(k—1—7

Fh 1 CI72 0 (<1) (ay) (x4 y)* )
j—21 j—21+21 | —21+21 2(k—1-31+31—(5—-21)—-21
= Fly 1 O3 o (=17 722 () 72 (24 ) =m0

= (B O30 (17 )™ (@ 9?00 (1) (ay) (24 y)”
e can theretore write Asi1 (z.y) in the following manner
Wi herefi ite Agk+1 (2.y) in the following

Agpg1 (z,y)

j— j—21 j—21 k—1-31—(5—-21
CI3 o (1 7 () ™ (@ 4 y)? B OE)

If j varies from 0 to k — 1, then j — 2[ varies from 0 to k — 1 — 2[, and as we
necessarily have
j—2<k-—1-3l

we get
Agpyr (7,y)
L %] k—1-31
21 21 j j j 2(k—1-3l—j
=@+ Y Fhoa (D @+ Y Ol g (1) () (@ +y)*
=0 §=0
but
k—1-3l ) ] ‘ )
N Oy (1Y () (x+ )"
7=0
9 k—1-31
= ((w +y) - xy)
_ (IQ + Ty + yz)k—1—3l
and lastly
L%J k—1-3l
Aot (2,9) = (z +y) Z Faji (-1 (@ +y)” (2 + 2y +9°)
=0

20



If, in addition, we assume that 2k 4+ 1 is an odd natural integer strictly greater
than 3, and not a multiple of 3 then (see the equality 1.29 page 16)

k—12£0 (3)

and therefore k — 1 — 3/ does not vanish for any value taken by [. As a result,
Asg11 (z,y) is always divisible by (m2 +zy + y2) and we can write for every
natural integer n = 2k +1 > 3.

Aoy (z,y) =
%] l l
2 2
(@+y) (@ +ay+9°) > Fhp (-1 (z+ )™ (2% + 2y +¢?)
=0

k—2-3 (1.33)

1.7 Various ways to express the Binomial expan-
sion.

We are getting now close to the end of this study, the purpose of which was
to express the Newton binomial expansion in other manners. As enounced (see
relation 1.2 in page 2) and later established (see relation 1.1 in page 1), we have

n
(o) =3 Claniy
=0

n—1
=a"+y" + Z C%x"_jyj
j=1
n—2
=" 4+ yn + 2y Z Ogl—i-lxn—Z—Jy]
3=0
n—2 )
=" +y" ey Y (@) (2 4y
j=0

Moreover, depending on whether the natural integer n is even or odd, the bino-
mial expansion can be equally expressed as follows

n = 2k pair
k—1
2k ; j j j 2(k—1—j
(z + )2 = 22k g g2k +$yZDék (=1 (2y)’ (z +y) ( 7)
j=0
with

o 2%k(2k—1—(+1))

U+ -2(+1)
as established in page 7 (see equation 1.8).
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n = 2k 4+ 1 impair

k—
(x+y)2’““ = g2k 2L 4y (34 y) Z T ( zy)’ (x+y)2(k,1,j)
j=0
with )
i CE+1)(2k—(j+1))

D =
HE G DR+ 120+ 1)
as established in page 8 (see equation 1.12).

n=2k+1>3and n#0 (3)

(z+y)" =a"+y"+

L%
k—2-31
vy (@ +y) (@ +ay+1°) Y Py (D) (z+9)” (27 + 2y +17)
=0
(1.34)
with
2% +1) (k—1—1)!
Fl, = ( 1.
2L (204 1) (B —1 = 31)! (1.35)
=0 (n=2k+1)

as established in page 21 (see equation 1.33).

Let us notice that the set of the prime integer greater than 3 is a subset of
these natural integers n.

Outlining these results concludes this study. Let us now turn to the study
of the Fermat’s conjecture, which was proved by Andrew Wiles (1993/1995).
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Chapter 2

Study of Fermat’s Conjecture.

2.1 Subject of the chapter.

This conjecture was proved by Andrew Wiles between 1993 and 1995. However,
as it has been the case for other problems in the history of Mathematics, setting
up to explore other avenues that could lead to other demonstrations is not
without interest. This what we are going to try and show.

2.2 Reminder of the conjecture.

Let the equation
oyt =2z" (2.1)

with n prime integer, n > 2 € N*.

Pierre de Fermat (1607-1665) stated that no three non zero natural integers
x € N* y € N* and z € N* could satisfy the relation 2.1. We shall assume

O<z<y<z
This leads us to write

r+y=z (n)<=zx+y=kn+z(keN)
=z >kn (2.2)

Leaving aside the case wherein n = 3, we are going to be interested in all the
other cases wherein n > 3. It is possible, without loss of generality, to consider
only the cases wherein n is prime.

2.3 First point.

Let, if they exist, x € N*, y € N* and z € N* which satisfy the relation 2.1
(see on this page 23). Then, it is always possible to assume that x, y and z are
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pairwise coprime integers. We have

=a" = (=1)"y"
= (@~ (-Dy) Y 2" ()Y
j=0

In the case wherein z Z 0 (n), (z — (=1)y) and Z;L:_& 2177 (=1)7 7 are two
coprime quantities and we have

FheN)(x+y=hr")

and
Z"=0=2=0 (h)

Finally, the relation 1.34 and the formula 1.35 stated in page 22 allow us to
write

|
—

n

(x+y)—2)> (@+y)" 72 =nday(z+y) (2> +ay+y?)  (2.3)

<
Il
o

with A € N*.

It is obvious that the natural integers z, y, (x +y) and (1’2 +xy—|—y2) are
pairwise coprime.

2.4 Second point.

Let n and p be two odd prime integers, distinct or not from each other. Let
us place ourselves in Z/pZ, the set of integers modulo p, equipped with the
addition and the multiplication. This set, equipped with these two laws, is a
commutative field and each and every of its element u has an inverse u~!. Let
us also consider z, y and z, solutions, if they exist, of the equation 2.1 page 23
as stated above (see section 2.2 page 23).

We first remark that 22 4+ zy + 12 is always an odd natural integer. We can now
choose p such that
P +ay+y* =0 (p) (2.4)

We then have
2 tay+yt=(z+y)’—ay

and so in Z/pZ
(@+y)* =2y (p)
Moreover, it is clear that if p # n and if
(z+y)—2=0<= (z+y)=2z (p) (2.5)

then

i
L

(z+y)" T £0 (p) (2.6)

<.
Il
=)
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and reciprocally.

It is also clear that, given the assumptions made on z, y and z, we have

rZ0 (p)

y#0 (p)

r+y#0 (p) (2.7)
—=2z#0 (p)

The three first inequalities are easy to establish. In the case of z

z2=0=2"=
— " +y"
= (z+y)"
= z+y=0

—

)

0 (p)
0 (p)
()

But we just showed that
z+y#0 (p)

and so

z#0 (p) (2.8)

2.5 Third point.

Let us consider first any odd prime integer p and Z/pZ the set of integer modulo

p, equipped with the addition and the multiplication. This set is a commutative

field and each and every of its element v has an inverse u~".

Now, we have in Z/pZ

(z+y)" =2"+y" (p)

Let us write

Prry+yi=0=z+y=-y’z' (p
=azt+y=-ay' (p)

then

and



which allows us to write

2= (-1)" (" +9*")  (p)

2" =a"y"  (p)

2.6 A proof of the conjecture.

We have (see relation 2.9 page 25)
(z+y)"
ZTL

Let us now remark

pry S (aty) N (2T
4 0 z 0 z P

J

Il
g
L
I
o
N
&
Lo |+
N
N———
<~
+
—
—

j+1-1
N ($+y ! )
= p, P
Jj=1

AN
=1

+§ ( . > (p)

Jj=1

+y)’

and so, necessarily

Let us now consider the following two cases

2.6.1 z2+ay+y?#0 (n)

Let p be a prime integer distinct from n. Let us get back to the formula 1.34
en page 22 and let us write

(x+y)" —@"+y")=0 (p)
Clearly

n—1

@ty =z ()= (@+y) """ =n"""#£0 (p)
=0
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and we must have
Pray+yt <(z+y) -z

but, whatever z, y and z positive numbers and greater than 1

(x+y)—2>0= (x+y)—z<2®+ay+y°

and we end up with an impossibility.

2.6.2 22+zy+1y*=0 (n)

So let us assume
P ray+y =0 (n)

It is of course possible that n is not the one and only prime divisor of 2 +zy+12.
Having chosen n greater than 3, we also recall our hypotheses 2.2 put forward
in page 23, which leads us to write

2 + Yy + y2 >n
It is obvious that z +y # 0 (n), otherwise, x = 0 (n) and therefore y =0 (n),

which we ruled out (see the conclusions first point 2.3 en page 23).

Let us first assume that n is the only prime divisor of 22 + zy + y? and let
us put
2 tay+y?=0 (n")

wherein £ € N* and k£ > 1 is the largest possible exponent. The relation 2.3
stated on page 24 allows us to write

(z+y)" —@"+y") =(x+y)" —2"

n—1
(z+y) —2) Z (x+y)" 72
7=0

=0 (nkH)

Suppose
(x+y)—2z=0 (n*H177)

whereink + 1 — 7 is there as well the largest possible exponent and wherein
(reN ) (0<r<k+1)

Let p be the smaller of the two numbers k& + 1 — r and r. Then

|
—

n

(z+y)" " =0=n(z+y)" =0t =0 (nf)

<.
Il
o

But, in agreement with the equality 2.7 on page 25

(z+y)#0 (n)= (x+y)#0 (n)
= (z+y)" " £0 (n)
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and likewise (see equality 2.8 page 25)

zZ0 (n)=2#0 (n)
— "1 £0  (n?)

and necessarily p = r = 1. And so
(x+y)—2=0 (n")

There therefore exists a non-zero natural integer A1, not a multiple of n, such
that
(x+y)— 2= \n"

and we must have
P ray+yt <(z+y) -z

If n is not the only prime divisor of 22 + zy + 32, then there exists at least one
non-zero prime integer p such that
P ray+y =0 (p)

But, we have just established in section 2.6.1 page 26, that no prime divisor p
dividing 2 + zy +y? and distinct from n can divide Z?:_(} (z+1y)"" "7 29, and
therefore only (x +y) — 2 =0 (p), and there again

@ +ay+y? < (v +y) -2
but, whatever positive x, y and z are greater than 1

(z+y)—2>0= (z+y)— 2z <z +zy+y?

and we end up with an impossibilty in both cases.

The conjecture is thus proved for every prime integer n > 3.QED.
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