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Abstract

The binomial formula, set by Isaac Newton, is of utmost importance and has
been extensively used in many different fields. This study aims at coming up
with alternative expressions to the Newton’s formula, as well as some othe results
that we can obtain from them. A proof of the Fermat’s conjecture seems to be
possible.



Chapter 1

Another way to write
Newton’s binomial expansion.

1.1 Purpose of this chapter.
Newton’s binomial expansion can be expressed differently. This new formula-
tion allows in turn to perform other calculations which will highlight certain
properties that the original formula may not be able to provide.

1.2 Another formula.
Let n ∈ N∗, and x ∈ R∗ and y ∈ R∗. In all that follows, we assume n ≥ 3. We
can write

(x+ y)
n − xn

(x+ y)− x
=

n−1∑
j=0

(x+ y)
n−1−j

xj =
(x+ y)

n − xn

y

and likewise

(x+ y)
n − yn

(x+ y)− y
=

n−1∑
j=0

(x+ y)
n−1−j

yj =
(x+ y)

n − yn

x

Let us add these two quantities

(x+ y)
n − xn

y
+

(x+ y)
n − yn

x
=

n−1∑
j=0

(x+ y)
n−1−j (

xj + yj
)

and we end up with the formula

(x+ y)
n+1 −

(
xn+1 + yn+1

)
= xy

n−1∑
j=0

(x+ y)
n−1−j (

xj + yj
)

which, for convenience’s sake, we write

(x+ y)
n − (xn + yn) = xy

n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)

(1.1)
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The Newton’s binomial expansion formula, that we recall here

(x+ y)
n
=

n∑
j=0

Cj
nx

n−jyj (1.2)

wherein
Cj

n =
n!

(n− j)!j!
(1.3)

allows to establish the equality

n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)
=

n−1∑
j=1

Cj
nx

n−j−1yj−1

or lastly
n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)
=

n−2∑
j=0

Cj+1
n xn−2−jyj

1.3 Study of the new formula.
Let us pose

An (x, y) =

n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)

(1.4)

Let us remark first that

n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)
=

p−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)

+

n−2∑
j=p−1

(x+ y)
n−2−j (

xj + yj
)

with p ∈ N∗ and p < n, or likewise

n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)
=

p−2∑
j=0

(x+ y)
(n−p)+(p−2−j) (

xj + yj
)

+

n−2∑
j=p−1

(x+ y)
n−2−(j−(p−1)+p−1)

(
xj−(p−1)+p−1 + yj−(p−1)+p−1

)
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and

n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)
=

(x+ y)
n−p

p−2∑
j=0

(x+ y)
p−2−j (

xj + yj
)

+

n−2−(p−1)∑
j=0

(x+ y)
n−2−(j+p−1) (

xj+p−1 + yj+p−1
)

and

n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)
=

(x+ y)
n−p

p−2∑
j=0

(x+ y)
p−2−j (

xj + yj
)

+

n−2−(p−1)∑
j=0

(x+ y)
n−p−1−j (

xj+p−1 + yj+p−1
)

and finally

An (x, y) = (x+ y)
n−p

Ap (x, y)

+

n−2−(p−1)∑
j=0

(x+ y)
n−p−1−j (

xj+p−1 + yj+p−1
)

Let us now consider the case wherein n = p+ 1, then

Ap+1 (x, y) = (x+ y)Ap (x, y) +

0∑
j=0

(x+ y)
−j (

xj+p−1 + yj+p−1
)

or likewise
Ap+1 (x, y) = (x+ y)Ap (x, y) +

(
xp−1 + yp−1

)
but

xp−1 + yp−1 = (x+ y)
p−1 − xyAp−1 (x, y)

and so

Ap+1 (x, y) = (x+ y)Ap (x, y) + (x+ y)
p−1 − xyAp−1 (x, y) (1.5)
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Let us concentrate now more specifically on An (x, y) and let us develop this
quantity from the formula 1.4 in page 2. Then

An (x, y) = 3 (x+ y)
n−2

+

n−4∑
j=0

(x+ y)
n−4−j (

xj+2 + yj+2
)

= 3 (x+ y)
n−2

+
(
x2 + y2

)n−4
+

n−5∑
j=0

(x+ y)
n−5−j (

xj+3 + yj+3
)

= 3 (x+ y)
n−2

+ (x+ y)
n−2 − 2xy (x+ y)

n−4
+

n−5∑
j=0

(x+ y)
n−5−j (

xj+3 + yj+3
)

= 4 (x+ y)
n−2 − 2xy (x+ y)

n−4
+

n−5∑
j=0

(x+ y)
n−5−j (

xj+3 + yj+3
)

As we continue our calculations in the same manner, we get

An (x, y) = 5 (x+ y)
n−2

− 5xy (x+ y)
n−4

+

n−6∑
j=0

(x+ y)
n−6−j (

xj+4 + yj+4
)

An (x, y) = 6 (x+ y)
n−2 − 9xy (x+ y)

n−4
+ 2x2y2 (x+ y)

n−6

+

n−7∑
j=0

(x+ y)
n−7−j (

xj+5 + yj+5
)

An (x, y) = 7 (x+ y)
n−2 − 14xy (x+ y)

n−4
+ 7x2y2 (x+ y)

n−6

+

n−8∑
j=0

(x+ y)
n−8−j (

xj+6 + yj+6
)

An (x, y) = 8 (x+ y)
n−2−20xy (x+ y)

n−4
+16x2y2 (x+ y)

n−6−2x3y3 (x+ y)
n−8

+

n−9∑
j=0

(x+ y)
n−9−j (

xj+7 + yj+7
)

An (x, y) = 9 (x+ y)
n−2−27xy (x+ y)

n−4
+30x2y2 (x+ y)

n−6−9x3y3 (x+ y)
n−8

+

n−10∑
j=0

(x+ y)
n−10−j (

xj+8 + yj+8
)

An (x, y) = 10 (x+ y)
n−2−35xy (x+ y)

n−4
+50x2y2 (x+ y)

n−6−25x3y3 (x+ y)
n−8

+ 2x4y4 (x+ y)
n−10

+

n−11∑
j=0

(x+ y)
n−11−j (

xj+9 + yj+9
)
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An (x, y) = 11 (x+ y)
n−2−44xy (x+ y)

n−4
+77x2y2 (x+ y)

n−6−55x3y3 (x+ y)
n−8

+ 11x4y4 (x+ y)
n−10

+

n−12∑
j=0

(x+ y)
n−12−j (

xj+10 + yj+10
)

It is of course possible to extend our calculations as far as we desire. As n is
taking on the values 3, 4, 5, 6,..., we can deduct the respective new developments
of A3 (x, y), A4 (x, y), A5 (x, y), A6 (x, y), etc...

Let us assume now that the following formulas hold for all natural integers
less than or equal to 2k and 2k + 1, wherein k ∈ N∗

A2k (x, y) =

k−1∑
j=0

Dj
2k (−1)

j
(xy)

j
(x+ y)

2(k−1−j) (1.6)

A2k+1 (x, y) = (x+ y)

k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−1−j) (1.7)

The coefficients Dj
2k and Dj

2k+1 are to be made explicit if possible (and will be
indeed further down in this study).

Let us go back to the equation 1.5 page 3 and rewrite in the form

A2k+2 (x, y) = (x+ y)A2k+1 (x, y) + (x+ y)
2k − xyA2k (x, y)

Let us develop now this relation

A2k+2 (x, y) = (x+ y)
2
k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

+ (x+ y)
2k

− xy

k−1∑
j=0

Dj
2k (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

⇐⇒

A2k+2 (x, y) = (x+ y)
2
k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

+ (x+ y)
2k

+

k−1∑
j=0

Dj
2k (−1)

j+1
(xy)

j+1
(x+ y)

2(k−1−j)
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Let us carry on with our calculations. We obtain in an equivalent manner

A2k+2 (x, y) =

k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−j)

+ (x+ y)
2k

+

k−1∑
j=0

Dj
2k (−1)

j+1
(xy)

j+1
(x+ y)

2(k−1−j)

⇐⇒

A2k+2 (x, y) =

k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−j)

+ (x+ y)
2k

+

k∑
j=1

Dj−1
2k (−1)

j
(xy)

j
(x+ y)

2(k−j)

⇐⇒

A2k+2 (x, y) =

k−1∑
j=1

(
Dj

2k+1 +Dj−1
2k

)
(−1)

j
(xy)

j
(x+ y)

2(k−j)

+D0
2k+1 (x+ y)

2k
+ (x+ y)

2k
+Dk−1

2k (xy)
k

and we can write

A2k+2 (x.y) =

k∑
j=0

Dj
2k+2 (−1)

j
(xy)

j
(x+ y)

2(k−j)

with
D0

2k+2 = D0
2k+1 + 1

Dk
2k+2 = Dk−1

2k

and
(∀j ∈ N) (1 ≤ j ≤ k − 1)

(
Dj

2k+2 = Dj
2k+1 +Dj−1

2k

)
Similarly, we have

A2k+3 (x, y) = (x+ y)A2k+2 (x, y) + (x+ y)
2k − xyA2k+1 (x, y)

Let us make it more explicit

A2k+3 (x, y) = (x+ y)

k∑
j=0

Dj
2k+2 (−1)

j
(xy)

j
(x+ y)

2(k−j)

+ (x+ y)
2k+1

− xy (x+ y)

k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−1−j)
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hence

A2k+3 (x, y) =

k∑
j=0

Dj
2k+2 (−1)

j
(xy)

j
(x+ y)

2(k−j)+1

+ (x+ y)
2k+1

+

k−1∑
j=0

Dj
2k+1 (−1)

j+1
(xy)

j+1
(x+ y)

2(k−1−j)+1

which is equivalent to

A2k+3 (x, y) = (x+ y)
2k+1

+

k∑
j=0

Dj
2k+2 (−1)

j
(xy)

j
(x+ y)

2(k−j)+1

+

k−1∑
j=1

Dj−1
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−j)+1

and also

A2k+3 (x, y) =
(
D0

2k+2 + 1
)
(x+ y)

2k+1

+

k∑
j=1

(
Dj

2k+2 +Dj−1
2k+1

)
(−1)

j
(xy)

j
(x+ y)

2(k−j)+1

and we can finally write

A2k+3 (x, y) = (x+ y)

k∑
j=0

Dj
2k+2 (−1)

j
(xy)

j
(x+ y)

2(k−j)

with
D0

2k+2 = D0
2k+1 + 1

and
(∀j ∈ N) (1 ≤ j ≤ k)

(
Dj

2k+3 = Dj
2k+2 +Dj−1

2k+1

)
This concludes our mathematical induction and we can write at last as a con-
clusion

(∀k ∈ N∗)

A2k =

k−1∑
j=0

Dj
2k (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

 (1.8)

with
D0

2k = D0
2k−1 + 1 ⇐⇒ D0

2k = 2k (1.9)

and
Dk−1

2k = Dk−2
2k−2 = · · · = D1

4 = 2 (1.10)
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and
(∀j ∈ N) (1 ≤ j ≤ k − 1)

(
Dj

2k = Dj
2k−1 +Dj−1

2k−2

)
(1.11)

and as well

(∀k ∈ N∗)

A2k+1 = (x+ y)

k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

 (1.12)

with
D0

2k+1 = D0
2k + 1 ⇐⇒ D0

2k = 2k + 1 (1.13)

and
(∀j ∈ N) (1 ≤ j ≤ k)

(
Dj

2k+1 = Dj
2k +Dj−1

2k−1

)
(1.14)

1.4 Values taken by the coefficients Dj
h wherein

(h ∈ N) and (h ≥ 3).
We have, as we just established it

(∀h ∈ N) (h ≥ 3)
(
D0

h = h
)

Let us now take j = 1. We have

D1
h = D1

h−1 +D0
h−2

We can then write

D1
h = D1

h−1 +D0
h−2

D1
h−1 = D1

h−2 +D0
h−3

· · ·
· · ·
· · ·
D1

5 = D1
4 +D0

3


=⇒ D1

h =

h−5∑
j=0

D0
h−2−j +D1

4

but
D0

h−2−j = h− 2− j

and, according to the relation 1.10 established in page 7

D1
4 = 2

hence we get

D1
h =

h−5∑
j=0

(h− 2− j) + 2 = ((h− 2) + (h− 3) + (h− 4) + · · ·+ 3) + 2

and therefore
2D1

h = h (h+ 3)

and finally

(∀h ∈ N∗) (h ≥ 3)

(
D1

h =
h (h− 3)

2

)
(1.15)
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Clearly
(∀h ∈ N∗) (h ≥ 3)

(
D1

h ∈ N
)

Making similar calculations, we find for every natural integer h ≥ 3

D2
h =

h (h− 4) (h− 5)

6
(1.16)

D3
h =

h (h− 5) (h− 6) (h− 7)

24
(1.17)

There as well
(∀h ∈ N∗) (h ≥ 3)

(
D2

h ∈ N
)

(∀h ∈ N∗) (h ≥ 3)
(
D3

h ∈ N
)

We then remark that the relations 1.11 and 1.14 established in page 8, as well
as those ((see relations 1.15, 1.16 and 1.17) established in pages 8 and 9 allow
us to affirm

(∀h ∈ N∗) (h ≥ 3)

(
∀j ∈

{
0, 1, · · · , h− 4

2

})(
Dj

h ∈ N
)

Let us assume now, h being chosen as even, and for all j ∈
{
0, 1, · · · , h−2

2

}
the

formula
Dj

h =
h (h− (j + 2))!

(j + 1)! (h− 2 (j + 1))!
(1.18)

true until rank h, for all even natural integer lower than or equal to h.

Let us assume as well that, for all j ∈
{
0, 1, · · · , h−4

2

}
, until rank h − 1, the

formula
Dj

h−1 =
(h− 1) ((h− 1)− (j + 2))!

(j + 1)! ((h− 1)− 2 (j + 1))!
(1.19)

is true. Then

Dj−1
h−1 =

(h− 1) (h− 1− (j + 1)!)

j! (h− 1− 2j)!
=

(h− 1) (h− (j + 2)!)

j! (h− 1− 2j)!

9



The relation 1.11 established in page 8 allows us to write

Dj
h+1 =

h (h− (j + 2))!

(j + 1)! (h− 2 (j + 1))!
+

(h− 1) (h− (j + 2))!

j! (h− 1− 2j)!

⇐⇒

Dj
h+1 =

(h− (j + 2))!

j!

(
h

(j + 1) (h− 2 (j + 1))!
+

(h− 1)

(h− 1− 2j)!

)
⇐⇒

Dj
h+1 =

(h− (j + 2))!

j!

(
h (h− 1− 2j) + (h− 1) (j + 1)

(h− 1− 2j)! (j + 1)

)
⇐⇒

Dj
h+1 =

(h− (j + 2))!

(j + 1)! (h− 1− 2j)!
(h (h− 1)− 2jh+ (h− 1) j + (h− 1))

⇐⇒

Dj
h+1 =

(h− (j + 2))!

(j + 1)! (h− 1− 2j)!

(
h2 − 1− (h+ 1) j

)
and finally

Dj
h+1 =

(h− (j + 2))!

(j + 1)! (h− 1− 2j)!
(h+ 1) (h− 1− j)

We can therefore write

Dj
h+1 =

(h+ 1) (h− (j + 1))!

(j + 1)! (h+ 1− 2 (j + 1))!
(1.20)

We could make similar calculations if we take h as odd

We verify that
(∀h ∈ N∗) (h ≥ 3)

(
D0

h = h
)

and, as we denote the ensemble of even natural integers as 2N

(∀h = 2k ∈ 2N∗) (h ≥ 4)
(
Dk−1

2k = 2
)

At the end of this mathematical induction, we have therefore established

(∀k ∈ N∗) (∀j ∈ {0, 1, 2, · · · , k − 1})(
Dj

2k+1 =
(2k + 1) (2k − (j + 1))!

(j + 1)! (2k + 1− 2 (j + 1))!

)
(
Dj

2(k+1) =
2 (k + 1) (2 (k + 1)− 1− (j + 1))!

(j + 1)! (2 (k + 1)− 2 (j + 1))!

)
(1.21)

Let us remark that for all natural integer h

h− 2 (j + 1) + (j + 1) = h− (j + 1)

We can then write

Dj
h =

h (h− (j + 1))!

(h− (j + 1)) (j + 1)! (h− 2 (j + 1))!

and also
Dj

h =
h

h− (j + 1)
Cj+1

h−(j+1)

10



1.5 Study on the coefficients Dj
hEtude sur les co-

efficients Dj
h.

For the following odd natural integers h = 2k + 1, we verify the relations

k = 1 ⇐⇒ h = 2k + 1 = 3

D0
3 = 3C0

0

k = 2 ⇐⇒ h = 2k + 1 = 5

D0
5 = 5C0

1

D1
5 = 5C1

1

k = 3 ⇐⇒ h = 2k + 1 = 7

D0
7 = 7C0

2

D1
7 = 7C1

2

D2
7 = 7C2

2

k = 4 ⇐⇒ h = 2k + 1 = 9

D0
9 = 9C0

3

D1
9 = 9C1

3

D2
9 = 9C2

3 + 3C0
0

D1
9 = 9C3

3

k = 5 ⇐⇒ h = 2k + 1 = 11

D0
11 = 11C0

4

D1
11 = 11C1

4

D2
11 = 11

(
C2

4 + C0
1

)
D3

11 = 11
(
C3

4 + C1
1

)
D4

11 = 11C4
4

k = 6 ⇐⇒ h = 2k + 1 = 13

D0
13 = 13C0

5

D1
13 = 13C1

5

D2
13 = 13

(
C2

5 + 2C0
2

)
D3

13 = 13
(
C3

5 + 2C1
2

)
D4

13 = 13
(
C4

5 + 2C2
2

)
D5

13 = 13C5
5
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k = 7 ⇐⇒ h = 2k + 1 = 15

D0
15 = 15C0

6

D1
15 = 15C1

6

D2
15 = 15

(
C2

6 + 3C0
3

)
D3

15 = 15
(
C3

6 + 3C1
3

)
D4

15 = 15
(
C4

6 + 3C2
3 + 3C0

0

)
D5

15 = 15
(
C5

6 + 3C3
3

)
D6

15 = 15C6
6

k = 8 ⇐⇒ h = 2k + 1 = 17

D0
17 = 17C0

7

D1
17 = 17C1

7

D2
17 = 17

(
C2

7 + 5C0
4

)
D3

17 = 17
(
C3

7 + 5C1
4

)
D4

17 = 17
(
C4

7 + 5C2
4 + C0

0

)
D5

17 = 17
(
C5

7 + 5C3
4 + C1

1

)
D6

17 = 17
(
C6

7 + 5C4
4

)
D7

17 = 17C7
7

k = 9 ⇐⇒ h = 2k + 1 = 19

D0
19 = 19C0

8

D1
19 = 19C1

8

D2
19 = 19

(
C2

8 + 7C0
5

)
D3

19 = 19
(
C3

8 + 7C1
5

)
D4

19 = 19
(
C4

8 + 7C2
5 + 3C0

2

)
D5

19 = 19
(
C5

8 + 7C3
5 + 3C1

2

)
D5

19 = 19
(
C6

8 + 7C4
5 + 2C2

2

)
D6

19 = 19
(
C7

8 + 7C5
5

)
D8

19 = 19C8
8
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k = 10 ⇐⇒ h = 2k + 1 = 21

D0
21 = 21C0

9

D1
21 = 21C1

9

D2
21 = 21

(
C2

9 + 19C0
6

)
D3

21 = 21
(
C3

9 + 19C1
6

)
D4

21 = 21
(
C4

9 + 19C2
6 + 14C0

3

)
D5

21 = 21
(
C5

9 + 19C3
6 + 14C1

3

)
D6

21 = 21
(
C6

9 + 19C4
6 + 14C2

3 + 3C0
0

)
D7

21 = 21
(
C7

9 + 19C5
6 + 14C3

3

)
D8

21 = 21
(
C7

9 + 19C6
6

)
D9

21 = 21C9
9

We are led to assume that for all odd natural integer 2k + 1, greater than or
equal to 3, each coefficient Dj

2k+1 can be expressed as follows

Dj
2k+1 =

⌊ k
3 ⌋∑

l=0

F l
2k+1C

j−2l
k−1−3l (1.22)

with
0 ≤ k − 1− 3l ≤ k − 1 (1.23)

and we will write by convention

(∀j) (j − 2l < 0)
(
Cj−2l

k−1−3l = 0
)

(1.24)

In order to demonstrate the validity of this formula for all natural integer k, we
are going to develop, to the extent possible, the coefficient F l

2k+1 against k and l

For any natural integer k, we verify the relations

D0
2k+1 = (2k + 1)C0

k−1

D1
2k+1 = (2k + 1)C1

k−1

We can always write, with k ≥ 4

D2
2k+1 = (2k + 1)C2

k−1 +
(
D2

2k+1 − (2k + 1)C2
k−1

)
C0

k−4

But, in accordance with the relations 1.3 and 1.21 established in pages 2 and 10

D2
2k+1 − (2k + 1)C2

k−1 = (2k + 1)

(
(2k − 3)!

3! (2k + 1− 6)!
− (k − 1)!

2! (k − 3)!

)
and similarly

D2
2k+1 − (2k + 1)C2

k−1 = (2k + 1)

(
(2k − 3)!

3! (2k − 5)!
− (k − 1)!

2! (k − 3)!

)

13



and

D2
2k+1 − (2k + 1)C2

k−1 = (2k + 1)

(
(2k − 3) (2k − 4)

3!
− (k − 1) (k − 2)

2!

)
and

D2
2k+1 − (2k + 1)C2

k−1 = (2k + 1)

(
(2k − 3) (k − 2)

3
− (k − 1) (k − 2)

2

)
and also

D2
2k+1 − (2k + 1)C2

k−1 = (2k + 1)

(
2 (2k − 3) (k − 2)− 3 (k − 1) (k − 2)

6

)
and finally

D2
2k+1 − (2k + 1)C2

k−1 =
(2k + 1) (k − 2) (k − 3)

6

Let us pose

F 1
2k+1 = D2

2k+1 − (2k + 1)C2
k−1 =

(2k + 1) (k − 2) (k − 3)

3!

In a similar way, we could find

D3
2k+1 = (2k + 1)

(
C3

k−1 + F 1
2k+1C

1
k−4

)
and

D4
2k+1 = (2k + 1)

(
C4

k−1 + F 1
2k+1C

2
k−4 + F 2

2k+1C
0
k−7

)
which gives us

F 2
2k+1 =

((
D4

2k+1 − (2k + 1)C4
k−1

)
−

(
D2

2k+1 − (2k + 1)C2
k−1

)
C2

k−4

)
Making similar calculations as the previous ones, and with coefficients Dj

2k+1

and Cl
k−j being made explicit, we find

F 2
2k+1 =

(2k + 1) (k − 3) (k − 4) (k − 5) (k − 6)

5!

We are therefore led to assume that, for all natural integer k ≥ 1, the equality

F l
2k+1 =

(2k + 1) (k − 1− l)!

(2l + 1)! (k − 1− 3l)!
(1.25)

is true, with the natural integer l such that

0 ≤ l ≤ ⌊k
3
⌋

Let us calculate the difference F l
2k+1 and F l

2k−1

F l
2k+1 − F l

2k−1 =
(2k + 1) (k − 1− l)!

(2l + 1)! (k − 1− 3l)!
− (2k − 1) (k − 2− l)!

(2l + 1)! (k − 2− 3l)!
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Then

F l
2k+1−F l

2k−1 =
(k − 2− l)!

(2l + 1)! (k − 2− 3l)!

(
(2k + 1) (k − 1− l)− (2k − 1) (k − 1− 3l)

(k − 1− 3l)

)
and

F l
2k+1−F l

2k−1 =
(k − 2− l)!

(2l + 1)! (k − 1− 3l)!
((2k + 1) (k − 1− l)− (2k − 1) (k − 1− 3l))

and also

F l
2k+1 − F l

2k−1 =
(k − 2− l)!

(2l + 1)! (k − 1− 3l)!
(2 (2l + 1) (k − 1))

and finally

F l
2k+1 − F l

2k−1 =
2 (k − 1) (k − 2− l)!

(2l)! (k − 1− 3l)!
(1.26)

Our hypothesis 1.22 stated in pages 13 leads us to use a mathematical induction
to show the existence of the relation

(∀k ∈ N∗) (k ≥ 1) (∀j ∈ N) (0 ≤ j ≤ k − 1)

Dj
2k+1 =

⌊ k
3 ⌋∑

l=0

F l
2k+1C

j−2l
k−1−3l


wherein each coefficient F l

2k+1 is expressed by the formula 1.25 established in
page 14.

Let us assume that, for all natural integer j ≤ k − 2, the relation

Dj
2k−1 =

⌊ k−1
3 ⌋∑

l=0

F l
2k−1C

j−2l
k−2−3l (1.27)

is true until the rank 2k − 1, with

F l
2k−1 =

(2k − 1) (k − 2− l)!

(2l + 1)! (k − 2− 3l)!

Let us calculate now the difference

Dj
2k−1 −Dj−1

2k−3 = Dj
2k−2

and also

Dj
2k−2 =

⌊ k−1
3 ⌋∑

l=0

F l
2k−1C

j−2l
k−2−3l −

⌊ k−2
3 ⌋∑

l=0

F l
2k−3C

j−2l−1
k−3−3l (1.28)

Then, we are faced with two cases.

1.5.1 Case 1: ⌊k−1
3
⌋ = ⌊k−2

3
⌋ = m

We have
⌊k − 1

3
⌋ = m ⇐⇒ k − 1 = 3m+ ρ > 3m

The only values that ρ can take a priori are 0, 1 and 2

15



1.5.1.1 ρ = 0

ρ = 0 =⇒ k − 1 = 3m

⇐⇒ k − 2 = 3m− 1 < 3m

1.5.1.2 ρ = 1

ρ = 1 =⇒ k − 1 = 3m+ 1

⇐⇒ k − 2 = 3m

1.5.1.3 ρ = 2

ρ = 2 =⇒ k − 1 = 3m+ 2

=⇒ k − 2 = 3m+ 1

Clearly, ρ cannot be equal to 0. We also notice that in this Case 1

2k + 1 ̸≡ 0 (3) (1.29)

Let us recall that(
Cj−2l

k−2−3l = Cj−2l−1
k−3−3l + Cj−2l

k−3−3l

)
⇐⇒

(
Cj−2l−1

k−3−3l = Cj−2l
k−2−3l − Cj−2l

k−3−3l

)
(1.30)

We then have (see the relation relation 1.28 established page 15)

Dj
2k−2 =

m∑
l=0

(
F l
2k−1C

j−2l
k−2−3l − F l

2k−3C
j−2l−1
k−3−3l

)
(1.31)

which is equivalent to

Dj
2k−2 =

m∑
l=0

(
F l
2k−1C

j−2l
k−2−3l − F l

2k−3

(
Cj−2l

k−2−3l − Cj−2l
k−3−2l

))
and

Dj
2k−2 =

m∑
l=0

((
F l
2k−1 − F l

2k−3

)
Cj−2l

k−2−3l + F l
2k−3C

j−2l
k−3−2l

)
with m = ⌊k−2

3 ⌋ = ⌊k−1
3 ⌋. In particular, among the natural integers 2k + 1

wherein k satisfies this property, we find all the prime integers strictly greater
to 3.

1.5.2 Case 2: ⌊k−1
3
⌋ = ⌊k−2

3
⌋+ 1 = m

We have
⌊k − 1

3
⌋ = m ⇐⇒ k − 1 = 3m+ ρ

As previously,
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1.5.2.1 ρ = 0

ρ = 0 =⇒ k − 1 = 3m

⇐⇒ k − 2 = 3m− 1

1.5.2.2 ρ = 1

ρ = 1 =⇒ k − 1 = 3m+ 1

⇐⇒ k − 2 = 3m

1.5.2.3 ρ = 2

ρ = 2 =⇒ k − 1 = 3m+ 2

⇐⇒ k − 2 = 3m+ 1

And in this case, ρ can only be equal to 0. We also notice

2k + 1 ≡ 0 ⇐⇒ k ≡ 1 (3)

⇐⇒ k − 1 ≡ 0 (3)

We then have (see the relation 1.28 established page 15)

Dj
2k−2 =

m∑
l=0

F l
2k−1C

j−2l
k−2−3l −

m−1∑
l=0

F l
2k−3C

j−2l−1
k−3−3l

= Fm
2k−1C

j−2(m+1)
k−2−3(m+1) +

m−1∑
l=0

F l
2k−1C

j−2l
k−2−3l −

m−1∑
l=0

F l
2k−3C

j−2l−1
k−3−3l

= Fm
2k−1C

j−2(m+1)
k−2−3(m+1) +

m−1∑
l=0

((
F l
2k−1 − F l

2k−3

)
Cj−2l

k−2−3l + F l
2k−3C

j−2l
k−3−3l

)
with m = ⌊k−1

3 ⌋ and m− 1 = ⌊k−2
3 ⌋

Let us return to Case 1 and let us take our hypothesis 1.27 stated page 15

m∑
l=0

F l
2k−3C

j−2l
k−3−3l = Dj

2k−3

then, in accordance with the relation relation 1.31 set out page 16

Dj
2k−2 −Dj

2k−3 = Dj−1
2k−4

and finally, we get the equality

Dj−1
2k−4 =

⌊ k−2
3 ⌋∑

l=0

F l
2k−4C

j−2l
k−2−3l (1.32)
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with, in accordance with the relation 1.26 established page 15

F l
2k−4 = F l

2k−1 − F l
2k−3

We still have to establish that the equality 1.32 in page 17 is true when k ≥ 4
describes N. We make sure first, by a simple calculation, that this equality
indeed holds when k takes successively the values 4, 5 and 6 · · · , when j takes
its values in its domain.

We then assume that this equality holds for any given natural integer less or
equal to 2k, for all j ≤ (k − 1), that is

Dj
2k =

⌊ k
3 ⌋∑

l=0

F l
2kC

j+1−2l
k−3l

We can now remark that the calculations made to get the formula of Dj
h=2k

depending on the coefficients F l
2k and the binomial coefficients Cj+1−2l

k−3l are
generalizable to any value of h in N. We just have to verify by mathemat-
ical induction the correctness of the formulation of the odd index coefficients
Dj

h=2k+1 to obtain a result that is valid, irrespective of the parity of this index h.

Let us go back to the initial hypothesis on the odd index coefficients (see our
hypothesis 1.27 stated page 15)and let us utilize what we just established. We
verify

Dj
2k+1 = Dj

2k +Dj−1
2k−1

with

Dj
2k =

⌊ k
3 ⌋∑

l=0

F l
2kC

j+1−2l
k−3l

and

Dj−1
2k−1 =

⌊ k−1
3 ⌋∑

l=0

F l
2k−1C

j−2l
k−2−3l

Further to the calculations we just made in pages 16 and 17, we have

Dj
2k =

⌊ k
3 ⌋=m∑
l=0

F l
2k−2C

j−2l
k−1−3l + F l

2k−1C
j−2l
k−2−3l

⇐⇒ Dj
2k =

⌊ k
3 ⌋=m∑
l=0

(
F l
2k+1 − F l

2k−1

)
Cj−2l

k−1−3l + F l
2k−1C

j−2l
k−2−3l

⇐⇒ Dj
2k =

⌊ k
3 ⌋=m∑
l=0

F l
2k+1C

j−2l
k−1−3l −

⌊ k
3 ⌋=m∑
l=0

F l
2k−1C

j−2l−1
k−1−3l

⇐⇒ Dj
2k = Dj

2k+1 −Dj−1
2k−1

This result is in agreement with the equality 1.14 established in page 8.
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As we know how to express the coefficients F l
2k−2 and F l

2k−1 against l and
k, we can now calculate F l

2k+1. We thus find

Dj
2k+1 =

⌊ k
3 ⌋∑

l=0

F l
2k+1C

j−2l
k−1−3l

with
F l
2k+1 =

(2k + 1) (k − 1− l)!

(2l + 1)! (k − 1− 3l)!

Our mathematical induction is therefore complete for every coefficient Dj
h, with

odd or even indices h.

Let us now summarize all the results we have obtained over the previous pages
(see equations 1.8 and 1.12 in pages 7 and 8)

(∀n ∈ N) (n ≥ 3)

(xn + yn) = xn + yn + xy

n−2∑
j=1

An (x, y)


with, for n = 2k (see equation 1.8 in page 7)

A2k (x, y) =

k−1∑
j=0

Dj
2k (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

and

(∀k ∈ N∗) (k > 1) (∀j ∈ N) (j ≤ k − 1)

Dj
2k =

⌊ k
3 ⌋∑

l=0

F l
2kC

j+1−2l
k−3l


and

F l
2k =

2k (k − 1− l)!

(2l)! (k − 3l)!

and for n = 2k + 1 (see equation 1.12 in page 8)

A2k+1 (x, y) = (x+ y)

k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

and

(∀k ∈ N∗) (∀j ∈ N) (j ≤ k − 1)

Dj
2k+1 =

⌊ k
3 ⌋∑

l=0

F l
2k+1C

j−2l
k−1−3l


and

F l
2k+1 =

(2k + 1) (k − 1− l)!

(2l + 1)! (k − 1− 3l)!

19



1.6 Study of A2k+1 (x, y) wherein k ∈ N∗.
We will show in this paragraph how we can further factorize the quantity
A2k+1 (x, y). Using the previous results, we can write

A2k+1 (x, y) = (x+ y)

k−1∑
j=0

⌊ k
3 ⌋∑

l=0

F l
2k+1C

j−2l
k−1−3l (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

We then have for each k, and for all j and all l

F l
2k+1C

j−2l
k−1−3l (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

= F l
2k+1C

j−2l
k−1−3l (−1)

j−2l+2l
(xy)

j−2l+2l
(x+ y)

2(k−1−3l+3l−(j−2l)−2l)

=
(
F l
2k+1C

j−2l
k−1−3l (−1)

j−2l
(xy)

j−2l
(x+ y)

2(k−1−3l−(j−2l))
)
(−1)

2l
(xy)

2l
(x+ y)

2l

We can therefore write A2k+1 (x.y) in the following manner

A2k+1 (x, y)

= (x+ y)

⌊ k
3 ⌋∑

l=0

F l
2k+1 (−1)

2l
(x+ y)

2l

k−1∑
j=0

Cj−2l
k−1−3l (−1)

j−2l
(xy)

j−2l
(x+ y)

2(k−1−3l−(j−2l))

If j varies from 0 to k − 1, then j − 2l varies from 0 to k − 1 − 2l, and as we
necessarily have

j − 2l ≤ k − 1− 3l

we get

A2k+1 (x, y)

= (x+ y)

⌊ k
3 ⌋∑

l=0

F l
2k+1 (−1)

2l
(x+ y)

2l
k−1−3l∑
j=0

Cj
k−1−3l (−1)

j
(xy)

j
(x+ y)

2(k−1−3l−j)

but

k−1−3l∑
j=0

Cj
k−1−3l (−1)

j
(xy)

j
(x+ y)

2(k−1−3l−j)

=
(
(x+ y)

2 − xy
)k−1−3l

=
(
x2 + xy + y2

)k−1−3l

and lastly

A2k+1 (x, y) = (x+ y)

⌊ k
3 ⌋∑

l=0

F l
2k+1 (−1)

2l
(x+ y)

2l (
x2 + xy + y2

)k−1−3l
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If, in addition, we assume that 2k + 1 is an odd natural integer strictly greater
than 3, and not a multiple of 3 then (see the equality 1.29 page 16)

k − 1 ̸≡ 0 (3)

and therefore k − 1 − 3l does not vanish for any value taken by l. As a result,
A2k+1 (x, y) is always divisible by

(
x2 + xy + y2

)
and we can write for every

natural integer n = 2k + 1 > 3.

A2k+1 (x, y) =

(x+ y)
(
x2 + xy + y2

) ⌊ k
3 ⌋∑

l=0

F l
2k+1 (−1)

2l
(x+ y)

2l (
x2 + xy + y2

)k−2−3l (1.33)

1.7 Various ways to express the Binomial expan-
sion.

We are getting now close to the end of this study, the purpose of which was
to express the Newton binomial expansion in other manners. As enounced (see
relation 1.2 in page 2) and later established (see relation 1.1 in page 1), we have

(x+ y)
n
=

n∑
j=0

Cj
nx

n−jyj

= xn + yn +

n−1∑
j=1

Cj
nx

n−jyj

= xn + yn + xy
n−2∑
j=0

Cj+1
n xn−2−jyj

= xn + yn + xy

n−2∑
j=0

(x+ y)
n−2−j (

xj + yj
)

Moreover, depending on whether the natural integer n is even or odd, the bino-
mial expansion can be equally expressed as follows

n = 2k pair

(x+ y)
2k

= x2k + y2k + xy

k−1∑
j=0

Dj
2k (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

with
Dj

2k =
2k (2k − 1− (j + 1))!

(j + 1)! (2k − 2 (j + 1))!

as established in page 7 (see equation 1.8).
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n = 2k + 1 impair

(x+ y)
2k+1

= x2k+1 + y2k+1 + xy (x+ y)

k−1∑
j=0

Dj
2k+1 (−1)

j
(xy)

j
(x+ y)

2(k−1−j)

with
Dj

2k+1 =
(2k + 1) (2k − (j + 1))!

(j + 1)! (2k + 1− 2 (j + 1))!

as established in page 8 (see equation 1.12).

n = 2k + 1 > 3 and n ̸≡ 0 (3)

(x+ y)
n
= xn + yn+

xy (x+ y)
(
x2 + xy + y2

) ⌊ k
3 ⌋∑

l=0

F l
2k+1 (−1)

2l
(x+ y)

2l (
x2 + xy + y2

)k−2−3l

(1.34)

with

F l
2k+1 =

(2k + 1) (k − 1− l)!

(2l + 1)! (k − 1− 3l)!
(1.35)

≡ 0 (n = 2k + 1)

as established in page 21 (see equation 1.33).

Let us notice that the set of the prime integer greater than 3 is a subset of
these natural integers n.

Outlining these results concludes this study. Let us now turn to the study
of the Fermat’s conjecture, which was proved by Andrew Wiles (1993/1995).
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Chapter 2

Study of Fermat’s Conjecture.

2.1 Subject of the chapter.
This conjecture was proved by Andrew Wiles between 1993 and 1995. However,
as it has been the case for other problems in the history of Mathematics, setting
up to explore other avenues that could lead to other demonstrations is not
without interest. This what we are going to try and show.

2.2 Reminder of the conjecture.
Let the equation

xn + yn = zn (2.1)

with n prime integer, n > 2 ∈ N∗.

Pierre de Fermat (1607-1665) stated that no three non zero natural integers
x ∈ N∗, y ∈ N∗ and z ∈ N∗ could satisfy the relation 2.1. We shall assume

0 < x < y < z

This leads us to write

x+ y ≡ z (n) ⇐⇒ x+ y = kn+ z (k ∈ N∗)

=⇒ x > kn (2.2)

Leaving aside the case wherein n = 3, we are going to be interested in all the
other cases wherein n > 3. It is possible, without loss of generality, to consider
only the cases wherein n is prime.

2.3 First point.
Let, if they exist, x ∈ N∗, y ∈ N∗ and z ∈ N∗ which satisfy the relation 2.1
(see on this page 23). Then, it is always possible to assume that x, y and z are
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pairwise coprime integers. We have

zn = xn + yn

= xn − (−1)
n
yn

= (x− (−1) y)

n−1∑
j=0

xn−1−j (−1)
j
yj

In the case wherein z ̸≡ 0 (n), (x− (−1) y) and
∑n−1

j=0 xn−1−j (−1)
j
yj are two

coprime quantities and we have

(∃h ∈ N∗) (x+ y = hn)

and
zn ≡ 0 =⇒ z ≡ 0 (h)

Finally, the relation 1.34 and the formula 1.35 stated in page 22 allow us to
write

((x+ y)− z)

n−1∑
j=0

(x+ y)
n−1−j

zj = nλxy (x+ y)
(
x2 + xy + y2

)
(2.3)

with λ ∈ N∗.

It is obvious that the natural integers x, y, (x+ y) and
(
x2 + xy + y2

)
are

pairwise coprime.

2.4 Second point.
Let n and p be two odd prime integers, distinct or not from each other. Let
us place ourselves in Z/pZ, the set of integers modulo p, equipped with the
addition and the multiplication. This set, equipped with these two laws, is a
commutative field and each and every of its element u has an inverse u−1. Let
us also consider x, y and z, solutions, if they exist, of the equation 2.1 page 23
as stated above (see section 2.2 page 23).

We first remark that x2+xy+y2 is always an odd natural integer. We can now
choose p such that

x2 + xy + y2 ≡ 0 (p) (2.4)

We then have
x2 + xy + y2 = (x+ y)

2 − xy

and so in Z/pZ
(x+ y)

2 ≡ xy (p)

Moreover, it is clear that if p ̸= n and if

(x+ y)− z ≡ 0 ⇐⇒ (x+ y) ≡ z (p) (2.5)

then
n−1∑
j=0

(x+ y)
n−1−j

zj ̸≡ 0 (p) (2.6)
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and reciprocally.

It is also clear that, given the assumptions made on x, y and z, we have

x ̸≡ 0 (p)

y ̸≡ 0 (p)

x+ y ̸≡ 0 (p) (2.7)
=⇒z ̸≡ 0 (p)

The three first inequalities are easy to establish. In the case of z

z ≡ 0 =⇒ zn ≡ 0 (p)

⇐⇒ xn + yn ≡ 0 (p)

⇐⇒ (x+ y)
n ≡ 0 (p)

⇐⇒ x+ y ≡ 0 (p)

But we just showed that
x+ y ̸≡ 0 (p)

and so
z ̸≡ 0 (p) (2.8)

2.5 Third point.
Let us consider first any odd prime integer p and Z/pZ the set of integer modulo
p, equipped with the addition and the multiplication. This set is a commutative
field and each and every of its element u has an inverse u−1.

Now, we have in Z/pZ

(x+ y)
n ≡ xn + yn (p)

≡ zn (p) (2.9)

Let us write

x2 + xy + y2 ≡ 0 =⇒ x+ y ≡ −y2x−1 (p)

=⇒ x+ y ≡ −x2y−1 (p)

then

(x+ y)
n − zn ≡ 0 =⇒ (−1)

n (
y2x−1

)n − zn ≡ 0 (p)

=⇒ (−1)
n (

x2y−1
)n − zn ≡ 0 (p)

and
(−1)

n
y2n ≡ xnzn ⇐⇒ (−1)

n
x2n ≡ ynzn (p)
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which allows us to write

z2n ≡ (−1)
n (

x2n + y2n
)

(p)

z2n ≡ xnyn (p)

x2n + xnyn + y2n ≡ 0 (p)

2.6 A proof of the conjecture.
We have (see relation 2.9 page 25)

(x+ y)
n

zn
≡ 1 (p)

Let us now remark

x+ y

z

n−1∑
j=0

(
x+ y

z

)j

≡
n−1∑
j=0

(
x+ y

z

)j+1

(p)

≡
n−1∑

j+1−1=0

(
x+ y

z

)j+1

(p)

≡
n∑

j=1

(
x+ y

z

)j

(p)

≡ 1 +

n−1∑
j=1

(
x+ y

z

)j

(p)

≡
n−1∑
j=0

(
x+ y

z

)j

(p)

and so, necessarilyx+ y

z

n−1∑
j=0

(
x+ y

z

)j

≡
n−1∑
j=0

(
x+ y

z

)j

(p)


⇐⇒ (

x+ y

z
≡ 1 (p)

)
Let us now consider the following two cases

2.6.1 x2 + xy + y2 ̸≡ 0 (n)

Let p be a prime integer distinct from n. Let us get back to the formula 1.34
en page 22 and let us write

(x+ y)
n − (xn + yn) ≡ 0 (p)

Clearly

(x+ y) ≡ z (p) =⇒
n−1∑
j=0

(x+ y)
j
zn−1−j ≡ nzn−1 ̸≡ 0 (p)
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and we must have
x2 + xy + y2 ≤ (x+ y)− z

but, whatever x, y and z positive numbers and greater than 1

(x+ y)− z > 0 =⇒ (x+ y)− z < x2 + xy + y2

and we end up with an impossibility.

2.6.2 x2 + xy + y2 ≡ 0 (n)

So let us assume
x2 + xy + y2 ≡ 0 (n)

It is of course possible that n is not the one and only prime divisor of x2+xy+y2.
Having chosen n greater than 3, we also recall our hypotheses 2.2 put forward
in page 23, which leads us to write

x2 + xy + y2 > n

It is obvious that x+ y ̸≡ 0 (n), otherwise, x ≡ 0 (n) and therefore y ≡ 0 (n),
which we ruled out (see the conclusions first point 2.3 en page 23).

Let us first assume that n is the only prime divisor of x2 + xy + y2 and let
us put

x2 + xy + y2 ≡ 0 (nk)

wherein k ∈ N∗ and k > 1 is the largest possible exponent. The relation 2.3
stated on page 24 allows us to write

(x+ y)
n − (xn + yn) = (x+ y)

n − zn

= ((x+ y)− z)

n−1∑
j=0

(x+ y)
n−1−j

zj

≡ 0 (nk+1)

Suppose
(x+ y)− z ≡ 0 (nk+1−r)

whereink + 1− r is there as well the largest possible exponent and wherein

(r ∈ N∗) (0 < r < k + 1)

Let ρ be the smaller of the two numbers k + 1− r and r. Then

n−1∑
j=0

(x+ y)
n−1−j

zj ≡ 0 ⇐⇒ n (x+ y)
n−1 ≡ nzn−1 ≡ 0 (nρ)

But, in agreement with the equality 2.7 on page 25

(x+ y) ̸≡ 0 (n) =⇒ (x+ y) ̸≡ 0 (nρ)

=⇒ (x+ y)
n−1 ̸≡ 0 (nρ)
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and likewise (see equality 2.8 page 25)

z ̸≡ 0 (n) =⇒ z ̸≡ 0 (nρ)

=⇒ zn−1 ̸≡ 0 (nρ)

and necessarily ρ = r = 1. And so

(x+ y)− z ≡ 0 (nk)

There therefore exists a non-zero natural integer λ1, not a multiple of n, such
that

(x+ y)− z = λ1n
k

and we must have
x2 + xy + y2 ≤ (x+ y)− z

If n is not the only prime divisor of x2 + xy + y2, then there exists at least one
non-zero prime integer p such that

x2 + xy + y2 ≡ 0 (p)

But, we have just established in section 2.6.1 page 26, that no prime divisor p
dividing x2+xy+y2 and distinct from n can divide

∑n−1
j=0 (x+ y)

n−1−j
zj , and

therefore only (x+ y)− z ≡ 0 (p), and there again

x2 + xy + y2 ≤ (x+ y)− z

but, whatever positive x, y and z are greater than 1

(x+ y)− z > 0 =⇒ (x+ y)− z < x2 + xy + y2

and we end up with an impossibilty in both cases.

The conjecture is thus proved for every prime integer n > 3.QED.
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