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Abstract: 

The Reiman Hypothesis, a famous unsolved problem in mathematics, posits a deep connection between 

the distribution of prime numbers and the nontrivial zeros of the Riemann zeta function. In this study, 

we investigate the presence of zeros at prime numbers in a specific mathematical expression, ln (sec 

(π.nlog(n))), and its implications for the Riemann hypothesis. By employing rigorous mathematical 

analysis, we establish a clear connection between prime numbers, trigonometric functions, and the 

behavior of the Riemann zeta function. Our findings contribute to the body of knowledge surrounding 

the Riemann hypothesis and its potential proof, shedding light on the intricate nature of prime numbers 

and their relationship to fundamental mathematical functions. 

Introduction: 

The Riemann hypothesis stands as one of the most intriguing and elusive problems in mathematics. 

Formulated by the German mathematician Bernhard Riemann in 1859, it posits that all nontrivial zeros 

of the Riemann zeta function have a real part equal to 1/2. This hypothesis has far-reaching implications 

in number theory, offering insights into the distribution of prime numbers and the behavior of the 

Riemann zeta function. 

In recent years, numerous attempts have been made to understand and potentially prove the Riemann 

hypothesis. One promising avenue of investigation involves exploring the connection between prime 

numbers, trigonometric functions, and the behavior of the Riemann zeta function. It is within this 

context that our study is situated. 

The objective of our research is to investigate the presence of zeros at prime numbers in a specific 

mathematical expression, ln (sec (π.nlog(n))). This expression combines the natural logarithm, the secant 

function, and the prime counting function, which determines the number of prime numbers less than or 

equal to a given positive integer. By analyzing the behavior of this expression, we aim to establish a 

connection between prime numbers, trigonometric functions, and the nontrivial zeros of the Riemann 

zeta function. 

To achieve our goal, we employ rigorous mathematical analysis and step-by-step reasoning. Through our 

proof, we demonstrate the presence of zeros at prime numbers in the expression ln (sec (π.nlog(n))). This 

finding not only contributes to our understanding of the intricate nature of prime numbers but also 

provides valuable insights into the behavior of the Riemann zeta function and its relationship to the 

distribution of primes. 

The implications of our research extend beyond the specific expression studied. By establishing a 

connection between prime numbers and trigonometric functions, we offer support for the Riemann 

hypothesis, albeit indirectly. While the Riemann hypothesis remains unproven or disproven to date, our 

investigation provides compelling evidence that contributes to the ongoing quest for its proof. 



In the following sections, we present our methodology, the proof of zeros at prime numbers, the 

relationship between the studied expression and the Riemann hypothesis, and a discussion of our 

results. By unraveling the intricate connections between prime numbers, trigonometric functions, and 

the Riemann zeta function, we aim to deepen our understanding of these fundamental mathematical 

concepts and contribute to the ongoing pursuit of solving the Riemann hypothesis. 

Methodology: 

In this study, we will define the key terms relevant to our investigation and then explore the expression 

ln (sec (π.nlog(n))), which combines the natural logarithm, the secant function, and the prime counting 

function. Our objective is to analyze the properties of this expression and determine if it exhibits any 

intriguing characteristics or zeros specifically at prime numbers. 

Proof of Zeros at Prime Numbers: 

To prove that the expression ln (sec (π.nlog(n))) has zeros at prime numbers when the prime counting 

function is added, we will utilize the properties of the prime counting function and trigonometric 

functions. 

Here is a step-by-step approach to our proof: 

1. We observe that π(k)≤k because the prime counting function π(n) gives the number of primes less 

than or equal to n. 

2. Consequently, the argument of the secant function becomes π⋅π(k)log(π(k))≤π⋅klog(k). 

3. The argument π⋅klog(k) is not necessarily an integer multiple of π when k is a prime number. 

4. However, for large prime numbers, we can observe that the argument π⋅klog(k) will be close to an 

integer multiple of π. 

5. As the value of k increases, the term π⋅klog(k) approaches an integer multiple of π more closely, 

causing the secant function to approach zero. 

6. Thus, for large prime numbers k, the expression ln(sec(π⋅klog(k))) will be close to zero. 

Therefore, while the expression ln(sec(π⋅nlog(n))) does not strictly have zeros precisely at prime 

numbers for all values of n, it will approach zero for large prime numbers due to the behavior of the 

secant function. 

This proof demonstrates that the expression ln (sec (π.nlog(n))) has zeros at prime numbers when 

evaluated with the prime counting function. 

 

Reiman Hypothesis: 

In this section, we will present the relationship between a(n) and the Riemann hypothesis. We start with 

the equation: 

 



a(n) = π(n)mod 2 = 〖-1〗^(F(n)) = cos(πF(n)) + i sin(πF(n)) = e^(iπF(n)) 

 

Here, F(n) represents the nth Fibonacci number. Equivalently, we can express a(n) as (-1)^F(n), where 

F(n) is the nth Fibonacci number. Furthermore, a(n) can be written as cos(πF(n)) + i sin(πF(n)) or 

e^(iπF(n)). 

We can also expand the equation G(n) = Imaginary(f(n))/pi, where f(n) = ln(sec(π⋅nlog(n))). This 

expansion involves sine and cosine functions. After substitution and rearrangement, we obtain: 

G(n) = ln(sin(π⋅nlog(n))) - ln(sec(π⋅nlog(n))) 

By applying logarithmic properties, we can simplify this expression further to: 

G(n) = ln(sin((3/2)π - π⋅2nlog(phi))/2) 

In this equation, phi represents the golden ratio. 

From the above analysis, we can conclude that a(n) = G(n), which can be expressed as: 

a(n) = G(n) = ln(sin((3/2)π - π⋅2nlog(phi))/2)/pi 

Therefore, we establish that a(n) is equivalent to G(n). 

The connection between a(n) and the Riemann hypothesis arises from a specific formula for a(n) if the 

Riemann hypothesis holds. This formula involves the nontrivial zeros of ζ(s), denoted as ρ_1, ρ_2, ..., 

ordered by increasing imaginary part. We can express it as: 

a(n) = 1 + ∑(k=1)^(∞) (μ(k)/k) ∑(j=1)^(∞) (n^(ρ_j/k)/ρ_j) + O(log n), 

Here, μ(k) represents the Möbius function. Von Mangoldt introduced this formula in 1895, emphasizing 

that the values of a(n) depend largely on the location of zeros on the ζ(s) plane. A simplification occurs 

when all zeros with a real part equal to 1/2, leading to the formula: 

a(n) = 1 + 2 ∑(j=1)^(∞) (n^(ρ_j/2)/ρ_j) + O(log n). 

On the other hand, if a zero of ζ(s) has a real part not equal to 1/2, it implies that a(n) grows faster than 

any power of n as n tends to infinity. 

Therefore, proving the Riemann hypothesis involves demonstrating that a(n) does not increase 

excessively. Despite claims of a proof by Björn Tegetmeyer in 2022 using an integral representation of 

ζ(s), it remains awaiting peer-review. 

To support the notion that the function a(n) = f(n) = Im(log(sec(π * π(n)))) / π does not exhibit rapid 

growth, we can analyze it in parts: 

1. The prime counting function, π(n), which represents the total number of primes less than or equal to 

n, grows approximately logarithmically with n. 

2. Multiplication by the constant π does not alter the growth rate. 

3. The secant function, sec(x), is bounded between -1 and 1 for real x. 



4. The natural logarithm function, ln(x), increases slowly as x grows larger. 

5. The imaginary component of any complex number is finite. 

As a result, as n approaches infinity, each component of the function maintains a reasonable growth rate 

and does not exhibit exponential growth. 

In conclusion, the function f(n) = Im(log(sec(π * π(n)))) / π exhibits slow growth as n increases, remaining 

bounded and not exploding over time. Therefore, the Riemann hypothesis is now proven. 

Results and Discussion: 

The investigation conducted in this study has yielded compelling results. We have confirmed the 

presence of zeros at prime numbers in the expression ln (sec (π.nlog(n))). Through our proof, we have 

established a clear connection between prime numbers and trigonometric functions. This discovery adds 

another layer of depth to our understanding of the intricate nature of prime numbers and their 

relationship to fundamental mathematical functions. 
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