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ABSTRACT

In this paper, we present a new sequence that converges to the Euler constant. We use the
Cramer’s rule to determine the best possible constants of this sequence.
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1. Introduction

In the theory of special function, an important thing is to consider the approximate
formulas of mathematical constants or special functions, and to determine their best
possible constants.

These approximate formulas are widely used in mathematics and engineering.

Many mathematicians have tried to find new types of approximate formulas and study their
related properties.

The Euler—Mascheroni constant y is given by

Y= lim[1+%+--~+l—lnnj:0.57721566490115328--'. (1.1)
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Recently, many researchers are preoccupied to improve rate of convergence of remarkable
sequences convergent towards v; see, for example, [1-4]. We list some main results:
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Dawei [5], using continued fraction approximation, provided faster sequence convergent to
vy as follows,
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You [6] provided new classes of convergent sequences for the Euler—Mascheroni constant
as follows
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In this paper, we provide a new class of sequence convergent to Euler-Mascheroni
constant.

2. Approximations for the Euler-Mascheroni constant

Here we give new classes of convergent sequence for the Euler-Mascheroni constant.
Lemma([7, 8]). If(x,),., is convergent to zero and there exists the limit

limn'(x, —x,,,)=L e[-0,+ o] (2.1)
with s>1, then
limn'"x, = L . (2.2)
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Using Lemma, we can see that the rate of convergence of the sequence(x,),., increases
together with the value s satisfying (2.1).
Theorem. For the Euler-Mascheroni constant, we have the following convergent sequence,
7/,’1‘:1+l+---+ /LS S R (2.3)
2 n—k-1 n—-k n-k+1 n
For any fixed k, we can obtain the sequence with the coefficients of which rate of
convergenceis n "(m<k+2

Proof. We need to find the value of the parameters a,,a,,---,a, €(—o0,+00) which

produces the best approximation of (2.3).



The method to measure the accuracy of the approximation is to say that the approximation
(2.3)is better as y* —y quicker converges to zero. Using (2.3), we have
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Developing in power series in 1/a, we have, from (2. 4)

Yo =Vn = Z(—— k+1”“+z (G +1y '"l)jx'". (2.5)
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From Lemma, we know that the convergent rate of the sequence (7)., is even higher

as the value s (s <k + 3 ) satistying (2.1).
We find the coefficients in (2.5) to satisfy (2.1).
These coefficients are a solution of systems of linear equations in matrix form as

D-A=B, (2.6)
where D, A, B are matrices given by
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The determinant of the coefficient matrix is
1'-0' 201" e (k1) =k
2 2 212 2 g2
detp| 0 2° -1 (k+1)" -k

1k+1 _0k+1 2k+1 _1k+1 (k+1)k+1 _kk+1



_jr2? (k+1)
1 2k+1 (k+l)k+l
11 21 . kl
2 2 ces 2 k+1
:(k+l)!.1“ 2 k =1:[i!.
lk 2k kk

Using the Cramer’s rule, we solve the systems of linear equations (2.6).

Since the determinant is nonzero, we can use the Cramer’s rule to find a solution.

We find the solution by substitution of the elements of the vector B for the j-th (j=1,2,...
k+1) column of D.
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Thus, the Cramer’s rule allows us to find a solution given by
D, M,
aH:E:l—k“ ,jzl,k+1. (27)
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For any fixed k£, we can obtain the sequence with the coefficients of which rate of
convergenceis n "(m<k+2).
The first few best possible constants can be found as follows:

o 1 .
@Wif k=0, a, = 5 then, the rate of convergence of (3’ — )., is n>.

o 1 :
() if £=0, a, # 5 then the rate of convergence of (y) —y),., is n'.

We repeat our approach to determine the coefficients a,,a,,a,,



In fact, we can easily compute by the Mathematica. For example, if k =4,
95 _ 951 552 73 1413

a ,a ,a, = ,a, = ,ad, =—,
288 7" 72077 72077 7207 1440

then the rate of convergence of (y! —y),., is n™®.

The proof of Theorem is thus completed.
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