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ABSTRACT 

In this paper, we present a new sequence that converges to the Euler constant. We use the 

Cramer’s rule to determine the best possible constants of this sequence. 

Keywords: Euler-Mascheroni constant, Rate of convergence, Cramer’s rule 

 

1. Introduction 

In the theory of special function, an important thing is to consider the approximate 

formulas of mathematical constants or special functions, and to determine their best 

possible constants. 

These approximate formulas are widely used in mathematics and engineering. 

Many mathematicians have tried to find new types of approximate formulas and study their 

related properties. 

The Euler–Mascheroni constant γ is given by 
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Recently, many researchers are preoccupied to improve rate of convergence of remarkable 
sequences convergent towards γ; see, for example, [1-4]. We list some main results: 
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Dawei [5], using continued fraction approximation, provided faster sequence convergent to 

γ as follows, 
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You [6] provided new classes of convergent sequences for the Euler–Mascheroni constant 

as follows 
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where 

L,
896

1
,

290304

151
,

160

1
,

5760

143
,

24

1
,

24

1
,

2

1
7654321  aaaaaaa . 

In this paper, we provide a new class of sequence convergent to Euler-Mascheroni 

constant. 

 

2. Approximations for the Euler-Mascheroni constant 

Here we give new classes of convergent sequence for the Euler-Mascheroni constant. 

Lemma([7, 8]). If 1)( nnx is convergent to zero and there exists the limit 
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Using Lemma, we can see that the rate of convergence of the sequence 1)( nnx increases 

together with the value s satisfying (2.1). 

Theorem. For the Euler-Mascheroni constant, we have the following convergent sequence, 
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For any fixed k , we can obtain the sequence with the coefficients of which rate of 

convergence is m
n
 ( 2 km ). 

Proof. We need to find the value of the parameters ),(,,, 10 kaaa L which 

produces the best approximation of (2.3). 



The method to measure the accuracy of the approximation is to say that the approximation 

(2.3) is better as  k

n
 quicker converges to zero. Using (2.3), we have 
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Developing in power series in 1/n, we have, from (2.4) 
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From Lemma, we know that the convergent rate of the sequence 1)( n

k

n  is even higher 

as the value s ( 3 ks ) satisfying (2.1). 

We find the coefficients in (2.5) to satisfy (2.1). 

These coefficients are a solution of systems of linear equations in matrix form as 

,BAD                              (2.6) 

where BAD ,,  are matrices given by 
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The determinant of the coefficient matrix is 
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Using the Cramer’s rule, we solve the systems of linear equations (2.6). 
Since the determinant is nonzero, we can use the Cramer’s rule to find a solution. 

We find the solution by substitution of the elements of the vector B for the j-th (j=1,2,…, 
k+1) column of D. 
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where jM are matrices given by 
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Thus, the Cramer’s rule allows us to find a solution given by 
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For any fixed k, we can obtain the sequence with the coefficients of which rate of 

convergence is m
n
 ( 2 km ).  

The first few best possible constants can be found as follows: 

(i) if ,
2
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We repeat our approach to determine the coefficients L,,, 210 aaa .  



In fact, we can easily compute by the Mathematica. For example, if ,4k  
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then the rate of convergence of 
1

4 )(  nn   is 6n . 

The proof of Theorem is thus completed. 
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