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Abstract

Background/Objectives: The primary objective is to investigate a new theoretical
model approach about fundamental particles. Especially the electron and positron is con-
sidered. The model utilizing the concept of energy density limits and find an acceptable
interpretation of a speed of light reference frame. Due to it’s consistent nature this enable
us to implement these limits without breaking Lorentz’s invariance. This new model em-
ploys mass-less current loops at the speed of light, to construct a candidate for a stable,
self-contained system, which can be perceived as either an electron or positron, depending
on its configuration.

Methods: This is a pure theoretical work where all figures was generated by LaTeX
constructs to illustrate the concepts. However there are referenced measurement results that
are important for the discussion. The mathematics is on a basic level, although the paper
is dense with deductions and formulas. Only calculus and general mathematical maturity is
needed as well as knowledge about special relativity, electromagnetism and some basic atom
and particle physics.

Results: We evaluate the resultant angular momentum and derive a formula that aligns
with Bohr’s renowned assumption about angular momentum in his atomic model. This
method not only provides insights into the enigmatic number 137 in physics but also suggests
a potential discrepancy between the masses of the electron and positron, with a relative
error of 10 ppm in the measurement. This difference is too subtle for existing measurement
techniques.

Conclusions: The main result in this paper are a model that basis its approach using the
electromagnetic theory and deduces stable constellations, that resambles particles, within
this model. This theory does introduce the controversial prediction that the particle and
antiparticle mass differ using a deduction of a formula for the mass. It is also quite possible as
we quantize the difference, that this prediction can be clarified by forthcoming measurement
projects. Also we deduced a couple of soundness feature of the model, such as deriving the
Bohr’s condition for angular momentum in his atomic model and explain how this can be
used to deduce the actual measured angular momentum. Also the invariance of angular
momentum and charge is proven as a result of the model.

1 Introduction

We will mainly use the theory of electromagnetism in this paper, [6], and special relativity [1].
With this tools and a novel idea of introducing limits on what values an energy density can
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have, we find out that the mathematical consequences match many of the current theoretical
properties of the electron and positron. To obstacle to overcome in this model is manage object
we normally do not see in this theoretical realm as it is very challenging to implement limits
of this kind and still manage to keep important properties like Lorentz’s invariance. The main
idea is to try and define a reference system at the speed of light and explore the consequences of
putting the limits there. This insight seam to open up the gate for being able to explain how we
have particles in the first place as the models introduced are stable, finite and quantasized. Note
the peculiar fact the we so not use quantum mechanics [4] in this paper. This may put severe
questions about the content, but as argued, Bohr himself did not either use quantum mechanics
in his model and there nothing that stops that theory to take up the ideas here and incorporate
them.

2 Methods

2.1 The main model assumptions

We will ground our analysis in a fundamental object: a uniform stream of charge, devoid of mass,
that travels at the speed of light. This object’s distinguishing characteristic is its electrostatic
interaction exclusively within a reference frame moving at light speed; a mathematical construct
we will define below. Moreover, when tangent lines are drawn between such objects, they align
at the closest distance, with the connecting line being perpendicular to both points (a property
that remains invariant under Lorentz transformations). Specifically for this scenario, we’ll invoke
Coulomb’s law for these distinctive segments. We’ll also work under the implicit assumption that
each particle is composed of these foundational objects oriented in every conceivable direction.
While this isn’t a widely accepted natural law, it’s worth noting that intersections between
two such lines in our model are non-interactive. This allows us to overlay an ensemble of these
systems, forming a macroscopic structure with the intention of replicating the standard Coulomb
interaction. We propose that each loop maintains a consistent charge amount, implying that as
the loop enlarges, its charge density diminishes. In essence, we’re describing a scale-able, closed
system. Lastly, we’ll assume the existence of an energy density limit in this crafted reference
frame, with values that are nearly identical for each charge sign.

2.2 The reference frame at the speed of light

Given that the geometric condition prompting an interaction remains invariant under Lorentz
transformations, we’ll narrow our focus to two interacting points. For simplicity and without loss
of generality, we’ll assume both streams move linearly, sharing identical velocity and direction.
We’ll then arrange a sequence of charges in both systems to ensure perfect alignment. We can
also presume that only a length contraction in the direction normal to the streams is relevant in
the Lorentz transformation; any contraction in the stream direction becomes negligible as both
systems approach light speed and become effectively stationary. Since every reference frame in
the sequence adheres to Lorentz invariance, we can transform each frame to negate orthogonal
length contraction caused by the observer’s moving reference frame. This implies that even the
limiting interaction respects Lorentz invariance. Practically, this means that for any constellation
of these currents moving relative to the observer, one can adjust the geometry according to length
contraction, disregard the velocity, and apply the resulting distances directly into Coulomb’s law.
The two charge densities would then be determined using the universal total charge condition of
the current loop and its length.
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2.3 The charge stream model details

Let’s conceptualize the streams as the limit of a sequence of objects represented by:

lim
n→∞,v→c

n∑
i=0

ea
δrai (t)=( in+vt)x̂√

n

Here, we’re distributing n mass-less electrons evenly on the interval [0,1] at t = 0 and propelling
them at speed v along the x-axis. Let’s also consider the corresponding parallel stream:

lim
n→∞,v→c

n∑
i=0

ea
δrbi (t)=( in+vt)x̂+hŷ

√
n

It’s vital to note that every current loop possesses the same total charge, an assumption we
regard as a universal invariant. As velocity rises, length contraction occurs. To achieve a consis-
tent charge density in the observer’s reference frame, the charges must be increasingly dispersed
in it’s sequence of frames. Therefore, any two parallel segments in this frame must perfectly
correspond. In the same frame, adjacent charges are effectively an infinite distance apart, nul-
lifying self-interaction. Charges not at their closest possible distance appear infinitely distant.
Also, given two interacting streams, the likelihood they directly collide is essentially zero; we
could argue that they synchronize to prevent interactions. Should this not hold true, we’d wit-
ness a discontinuous law. Thus, we’ll consider only rai and rbi as conventional electric charges,
disregarding all others. We mandate that streams remain parallel, uniformly directed, and the
interaction points positioned as closely as possible. For any geometric arrangement, one must
seek parallel tangents that aren’t offset—meaning the tangents drawn must be parallel, and the
paired infinitesimal segments should be at their closest possible distance. Since interactions are
considered in the rest reference system, one can focus solely on the electrostatic interaction for
a particular geometric setup. This approach mirrors quantum electrodynamics, which also ex-
cludes internal magnetic terms in the standard Dirac equation [5] for entities like electrons in
a hydrogen atom. Having defined energy in the rest frame, we can also set a limit for energy
density—distinct for each type of charge.
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2.4 First step, the loop.

vr r h′r

Consider two concentric loops positioned one above the other, thereby forming a dual-
cylindrical structure. In the inner loop, the charge is positive, while in the outer loop, the
charge is negative (we will also study a reversed configuration later). We assume a constant
charge density for these streams: ea for the negative charge and eb for the positive charge. We
will not be strict in mathematical rigor; instead, we will consider all interaction terms as limits
in the L2 norm of their combinations. It’s important to note that the configuration of two con-
centric circles maximizes the number of interaction points. This characteristic, when considering
two loops of opposite signs constrained in a plane, is sufficient for our study.

Let rb = vr represent the inner radius and ra = r denote the outer radius. We will introduce a
scaling such that the effective charge density in the outer cylinder satisfies a radian contribution
constraint. Given that ea represents the charge density at the outer radius and eb denotes the
charge density at the inner radius, the constraint is as follows:

dxb dxb = rb dθ

dxa dxa = rb dθ
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Starting with the relationship between charge densities and radii, we have:

eradθ = (eara − ebrb)dθ
= (ea − ebv)radθ

= (ea − veb)rdθ. (1)

From which it directly follows that:
e = ea − veb. (2)

Given our interest in scaling properties, it is natural to express e in terms of ea as e = uea.
Alternatively, for the dual setup, we have:

− e = bea − eb. (3)

In this context, we’ll use e = ueb as the scaling.
When combining two of these streams, the interaction can be thought of as the “square

root” of a delta measure, which is clarified through the limiting argument discussed earlier. The
relevant terms are:

eaebrarbdθ, e2
ar

2
adθ, e2

br
2
bdθ. (4)

For the subsequent energy relations, when referring to the “energy density,” we are specifically
considering its effects on paired segments rai and rbi . Aggregating these effects over unit length
yields:

eaea, e2
a, e2

b . (5)

To understand this more concretely, we will assume a normalized condition on the energy
density for the singly scaled pairings.

In the next stage, we consider stacking multiple loops to form a torus with a radius R. It’s
worth noting that when two such tori are examined, they exhibit significant interactions only if
situated in two parallel planes. At these intersections, the interaction is limited to a circle of
radius R. When examining the torus as a surface along this axis, we scale the charge, while for
the other configurations, we consider it as stacked circles where the effective charge on all those
concentric loops is e. While this may seem non-intuitive, the intent of this model is not to offer
an airtight theory, but to investigate its explanatory power.

Considering the aforementioned, the scale invariance of the charge condition ensures the
resultant charge remains consistent. The attractive energy per radian of the loops, applying the
modified Coulomb’s law and referencing equation (4), is given by

Vldθ = k
eaebrarb
ra − rb

dθ = k
eaebvr

1− v
dθ. (6)

It’s important to note that the term |1− v| has a scaling relative to 2πR, though this is glossed
over in the analysis that follows.

When we stack loops directly atop one another with a pitch h̄ = h′r, the forces acting on one
segment in a given direction are

F = k
e2
∗r∗

(hr)2
(1 + 2−2 + 3−2 + . . .) = ζ(2)

ke2
∗

(h′r)2
. (7)

This is a simplification; the behavior changes if we form a torus or helix. We’ll therefore assume
the aforementioned force transforms as ζh/h

′, leaving the precise form of ζh for later consider-
ation. When calculating the force on both sides, the energy is found by integrating over h′r
as

Vh,∗dθ = 2ζh
ke2
∗r

2
∗

h′r
dθ. (8)
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Consequently, the total energy for one loop is

E = (Vh,1 + Vh,2 + 2Vl)2π = 2πkr
(2ζh
h′

(e2
a + e2

bv
2)− 2

eaebv

|1− v|

)
. (9)

Utilizing the relation e = ea − veb in the expression for energy, we aim to find the stationary
point by varying x = veb and holding other parameters constant. Introducing constants A and
B into the equation, we derive:

A(2e+ 4x)−B(e+ 2x) = 0. (10)

This can be simplified to:

(2A−B)(2x+ e) = 0 =⇒ x = veb = −e
2
. (11)

This implies that vev tends towards zero unless:

2A−B = 0⇔ 2ζh
h′

=
1

|1− v|
. (12)

Under this condition, vev can vary freely in terms of energy. To streamline our representation,
let’s use eb = uea and define w = uv. Taking into account e = ea(1− w), our energy expression
becomes:

E = 2πkre2
a

(2ζh
h′

(1 + w2)− 2
w

|1− v|

)
. (13)

By integrating the condition (12), we get:

E = 2πkre2
a

2ζh
h′

(1 + w2 − 2w). (14)

Completing the square, we obtain:

E = 2πkr
2ζ(2)

h′
(ea(1− w))2 = 4πkr

ζ(2)

h′
e2. (15)

Note that this condition is invariant of how we combine the charges. To evaluate the energy
density and apply limits on them, the system aims to scale down to minimize energy. Assuming
condition (5) for evaluating this limit, the charge densities at loop a are:

ρa = ke2
a

(2ζh
h′
− u

1− v

)1

r
. (16)

Utilizing (12), we have:

ρa = ke2
a

2ζh
h′

(1− u)
1

r
. (17)

For loop b, the density is:

ρb = ke2
a

(2ζh
h′
u2 − u

1− v

)1

r
. (18)

Again, using (12), we derive:
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ρb = ke2
a

2ζh
h′

(u2 − u)
1

r
. (19)

To ensure that these two densities are at a positive and negative limit, using (17) and (19),
we must have:

ρa = ca, (20)

ρb = −cb. (21)

To simplify this analysis, apply (12) and introduce:

C∗ = c∗ ∗ C = c∗
h′

2ζhke2
a

= c∗
|1− v|
ke2
a

. (22)

This leads to:

|1− u|
r

= Ca = caC, (23)

u
|1− u|
r

= Cb = cbC. (24)

It’s noteworthy that this result remains unchanged regardless of how the charges combine to
form e. Dividing (24) by (23), we get:

eb
ea

= u =
Cb
Ca

=
cb
ca
. (25)

Applying constraint (23), we obtain:

|1− u|
r

= caC = ca
|1− v|
ke2
a

. (26)

Reformulating, we derive:

|1− v| = ke2
a|1− u|
rca

. (27)

In the dual we consider here, we simply take the anti-particle of the system. We denote this
with D(·). We find D(u) = ca

cb
, D(ea) = −eb, and in this context:

|1−D(v)| = ke2
b |1−D(u)|
D(r)cb

=
kebea(1− u)

D(r)cb

=
ke2
a(1− u)

D(r)ca

= |1− v| r

D(r)
. (28)
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Utilizing (27), we can express the condition for e as:

e = ea(1− uv) = ea(1− u) + eau(1− v) = ∆

(
1 +

kebea
rca

)
, (29)

where we define ∆ = ea − eb.
The dual expression is:

D(e) = −∆

(
1 +

kebea
D(r)cb

)
. (30)

For e = −e′, it is necessary that:

D(r) =
r

u
. (31)

Therefore,

(1−D(v)) = −(1− v)u, (32)

and D(h′) = h′u. If we solve for r in (29), we get:

r =
kebea

ca
(
e
∆ − 1

) . (33)

Starting with,

e = ea|1− u|+ eau|1− v|, (34)

and using (23), we find:

e = D
rca
ea

+ eau|1− v|, (35)

where D = h′

2ζhk
.

Assuming h′, v, and u to be constant, by minimizing the energy with respect to e, we find:

ea =

√
Drca
u|1− v|

=

√
h′

2ζh
rca

ku|1− v|
=

√
rca
ku

. (36)

From (23), we have:

rca
ku
|1− u| = rca

|1− v|
k

. (37)

Rearranging, we get:

|1− u| = u|1− v|. (38)

Thus,

e = 2ea|1− u| = 2

√
rca
ku
|1− u|. (39)

Moreover,
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e = 2
ea
ca
|ca − cb|. (40)

The constraint (12) implies:

h′ = |1− v|2ζh =
|1− u|2ζh

u
. (41)

Furthermore, D(h′) = h′u. Given that the pitch h′r remains invariant, the justification for
having equal charge would be that the most energetically favorable configuration arises when a
negative and positive charge align, leading to an equal pitch. Consequently, the negative and
positive charge must be identical, and as we shall observe, this further implies that ~ remains
consistent. Using equation (41) and squaring equation (39), we get:

e2 = 4
rca
ku
|1− u|2. (42)

The principle of special relativity allows us to deduce the masses per loop from (15) as:

E = mc2

= 4πkr
ζh
h′
e2

= 2π
kr

|1− v|
e2.

Integrating (38), we derive:

mc2 =
2πkrue2

|1− u|
.

Thus, the equation for mass is:

m = η
2πkrue2

|1− u|c2
, (43)

and its dual relationship is:

D(m) =
m

u2
. (44)

It’s worth noting that the unit here is kg/m, with η being an unknown unit. However,
considering the loop as a delta measure, one can interpret it as the outcome of taking a limiting
value of a scaled mass within a thin cylindrical shell. Therefore, we can set:

η = 1 [m].

Such a clarification ensures that a discerning reader won’t encounter any confusion related
to units in their calculations. Hence, m will have the unit [kg].
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2.5 Stacking into a torus

Initially, our system comprised of loops stacked to create a cylindrical structure. Now, we shall
modify this arrangement to connect all loops, forming a torus. For this configuration, the pitch
is defined by:

h′r = h2πRr,

which leads to:

h′ = 2πRh.

From our previous discussion, the dual condition is given by R′ = R. While it’s possible
to stack the loops mathematically, creating a stable structure this way is challenging. A more
feasible approach would be to transform the loops into helical paths along the helix, each moving
with a velocity v. This configuration ensures stability. To see this we need to prove that the
attractive optimum is having the two helices in it is enough to realize that any small deformation
reduces the number of interaction points and hence the attractive part of the energy is reduced.
Assuming the different charge loop are very close this essentially fix the possible paths into this
geometrical constellation.

When considering the system’s reference frame (i.e., moving with the particles along the main
circular path), the structure still forms loops. Each helix repels another similar helix situated
one pitch away. Given that the number of pitches is consistent (denoted by h′r), there are
two distinct radii of the torus: R in the laboratory’s system and R0 in the rest frame. Their
relationship is given by:
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R =
R0

γ
. (45)

We’ll analyze the interactions in the rest frame. Stacking n of these helical paths, we obtain:

nh′r = 2πR. (46)

From which, the relation is:

h′r =
1

n
. (47)

Given the variable distances between paths, the above cannot be strictly true due to a con-
traction in the closer R− r distance. Thus, the correct relationship is:

nh′r = 2π(R− r) =
2πR

f
, (48)

where the factor f is defined as:

f =
1

1− r
R

. (49)

This leads us to:

hrf =
1

n
. (50)

The energy due to attraction remains unchanged, as it’s independent of the loops’ orienta-
tion. However, repulsion acts only at two points where the loops interact. This energy can be
represented as an average, equivalent to using the center distance R. However, we must assess
the energy density at the R − r distance, where it is most intense. This is achieved by the
transformation:

c∗ →
c∗
f
. (51)

In this context, the unit of h is given by [1/m].

2.6 Scaling

Consider the scaling properties of the system. Given that the number of loops per torus, denoted
by n′, remains fixed, only the loops will undergo scaling. Using relations from Equations 27, 33,
and 15, we can derive the following scaling relationships:

e→ xe, (52)

r → r

x
, (53)

v → v, (54)

u→ u, (55)

h→ hx, (56)

rh→ rh, (57)

E → xE, (58)

m→ xm. (59)
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To maintain the same scaling, we must also have:

R→ R

x
, (60)

R0 →
R0

x
, (61)

r

R
→ R

r
, (62)

f → f, (63)

rhf → rhf. (64)

Given that the helix stretches in proportion to R, the total values for energy, mass, and
charge remain unchanged:

Etot → Etot, (65)

mtot → mtot, (66)

etot → etot. (67)

2.7 Angular momentum

In a steady-state scenario, the torus will contain n pitches evenly distributed over its radius
R0. The charged paths are transported along the helix with a velocity vh, resulting in a length
contraction for the radius:

R =
R0

γ(vh)
. (68)

The angular momentum for each loop is:

l = mγ(vh)vhR = mvhR0. (69)

Considering the scaling of vh, we deduce the following relationships:

R0 → R0x, (70)

m→ m

x
, (71)

vh → vh, (72)

l→ l, (73)

ltot → ltot. (74)

If L denotes the length of the helix, then in its rest frame, vh is given by:

vh
c

=
2πR0

L0
. (75)

Taking into account the necessity of removing angular momentum from the outer loop equal
to that of the inner loop, we get:

l = mvhR0|1− v|. (76)

From Equations 75 and 43, this becomes:

l = η
A0R0

L0

kue2

|1− u|c
|1− v|, (77)
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where A0 represents the area of the torus:

A0 = 2πr2πR0. (78)

Using 38, we deduce:

l = η
A0R0

L0

ke2

c
. (79)

For the charge to be properly managed, we require:

A02πR0

L0
= 1. (80)

Given that n = 1
hr (disregarding f), and using 38, we derive the expression:

~ = η
ke2

hrc
. (81)

Although we’ve considered one helix turn per pitch, we could potentially have any integer m
factors to the number of pitches but after one loop the helix is shifted by a fraction of 1/m of
the smaller circle. This aligns with the Bohr condition of angular momentum:

ltot = m~. (82)

From this, we can solve for hr:

hr = η
ke2

~c
= α ≈ 1

137
=

1

n
. (83)

As we account for the maximal energy density to be closer to the inner part of the torus, we
can generalize the computation for the actual fine structure constant, α. This insight sheds light
on Wolfgang Pauli’s and many other physicists exploration regarding why 1

α closely approximates
a natural number, specifically 137, and the reason it doesn’t exactly match. In the discussion
below regarding this, we present a hypothetical formula that derives α from 1

137 . This approach
also provides a deduction for Planck’s constant, assuming we recognize that there are 137 pitches.

Finally there is an argument for why 137 is a prime. The reason is that if there was an integer
factor. We could as well get a similar setup using one of the integer fractions and an excited
Bohr condition for the angular momentum. Implying that the most energetically stable system
is something less that the original number. This is a bit of hand waving. But still an important
observation.

2.8 Defining the zeta factor

Consider N charges evenly distributed on a unit circle. To analyze the forces acting on a single
charge, note that the charges are located at positions e2πk/N for k = 0, . . . , N − 1. The force at
k = 0 is self-evident. In order to avoid canceling any of their contributions, the cumulative force
is given by

V (N) =

N∑
k=1

h′r

R

1

|e2πik/N − 1|
. (84)

Expanding the term in the denominator, we get

|e2πik/N − 1|2 = (e2πik/N − 1)(e−2πik/N − 1) (85)

= 2− 2 cos(2πk/N). (86)
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This simplifies our expression for V (N) to

V (N) =
1√
2

N∑
k=1

h′r

R

1√
1− cos(2πk/N)

. (87)

Using the trigonometric identity for the double cosine, we have

1− cos(2πk/N) = 2 sin2(πk/N). (88)

Which gives

V (N) =
1

2

N∑
k=1

h′r

R

1

sin(πk/N)
. (89)

From this, we derive

ζh(N) = N

N∑
k=1

πα

sin(πk/N)
. (90)

Given that
sin(πk/N) < πk/N, (91)

including the N charges, we obtain

ζh(N) > N2α ln(N). (92)

A direct calculation with N = 137 provides

ζh(137) ≈ 137× 1382.5α. (93)

2.9 Numerology

The following expression is an adequate approximation for the fine structure constant,

α

1 + α
1−(2π−1)2

=
1

137
. (94)

Further exploration yields another expression,

α

1 + α

1−

1− 2π

1− 4πα
1+ 2π

1− 4πα
1−2π/(1+2α)


2

=
1

137
. (95)

From this, we can postulate,
α

1− α
x2−1

=
1

137
, (96)

where x satisfies

x = 1− 2π

1− 4πα
1+ 2π

1− 4πα
x

. (97)
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While seemingly numerological and fine-tuned through trial and error, we might motivate this
by noting that as density is higher closer to the center, the limiting energy density is located
there. This gives rise to the relation,

hrf = αf =
1

137
, (98)

where

f =
R

R− r
=

1

1− r
R

. (99)

Thus,
α

1− r
R

=
1

137
. (100)

Matching with the earlier expression, we find

r

R
≈ α

(2π − 1)2 − 1
, (101)

which can also be expressed as

r

R
=

rh

hR
(102)

=
α

hR
. (103)

This allows us to identify
x2 = hR+ 1. (104)

Given that x2 = 28.7778, it implies
hR = 27.7778, (105)

which can be rewritten as
αR = 27.7778r =⇒ R = 3807r. (106)

Let Lh = rh2πR0 represent the pitch distance and Lr = 2πr denote the distance of one helix
turn in the loop direction. Then

vh
c

=
Lh√

L2
h + L2

r

=
rh2πR0√

(2πr)2 + (rh2πR0)2
. (107)

Rearranging, we deduce
vr
c

=
1√

1 + (1/(hR0))2
. (108)

Solving for hR0, we get

hR0 =
√
γ2 − 1. (109)

Considering hr = α,

α
r

R0
=
√
γ2 − 1. (110)

As R = R0γ, this implies

hR = γ
√
γ2 − 1. (111)

With hR ≈ 27.7778,
γ ≈ 5.3. (112)
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Since α is invariant under the duality, and D(r) = r
u , it follows that

D(R) =
R

u
. (113)

Given that D(R0) = R0, we have
D(γ) = γu, (114)

leading to

D(γm) =
γm

u
. (115)

2.10 On r

We need to have a measure of the size of the electron in order to judge how large r is and hence
also from this find n. This is not known, so we punt on this issue. However, we note that being
able to set up similar equations for quarks may mean that we can get a grip on ca, cb and from
this deduce the radius of, e.g., the proton. At the moment, we can only resolve car from Eq. 39,
and we will not, in this paper, shed light on this fundamental constant.

2.11 On mass

If we consider the total mass scale invariant, we obtain (using n copies and Eq. 43),

me = γnm = ηnγ
2πkrue2

|1− u|c2
= ηnγ

α2πkue2

h|1− u|c2
. (116)

Using the electron mass equation 116 and the condition for h, Eq. 41,

me = ηnγα
2πkue2

|1−u|2ζh
u |1− u|c2

= ηnαγ
πke2

hζhc2

(
u

|1− u|

)2

= ηnγα2 π~
ζhc

(
u

|1− u|

)2

, (117)

plugging in Eq. 93, we find,

me ≈ ηγ
α

1382.5

π~
c

(
u

|1− u|

)2

.

From Eq. 112, γ = 5.3 we deduce,

|1− u| ≈ ε = 5.83× 10−9.

Also note that u = 1± ε. From Eq. 115,

mpositron = D(m) =
m

u
=

m

1± ε
≈ m(1± ε).

Choosing the lower value, the positron mass is,

mpositron = 0.510 998 953 0 [Mev/c2].

Measurements approximate the value to,

m∗positron = 0.510 998 951 9 [Mev/c2].

Considering the references [2] and [3], we observe that the current measurement errors are
around 130 ppb and are not able to resolve the proposed mass difference at about 10 ppb. This
would undoubtedly require solid measurement results, as it represents such a revolutionary and
controversial finding. However, given the proximity, forthcoming measurements may address this
question, either falsifying the model proposed in this paper or challenging current assumptions
based on symmetry arguments.
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2.12 An addition theorem of charge streams and a fundamental scaling
property

On the other hand, if we overlay many of these geometric structures to span a spherically
symmetric object, interaction will occur solely between parallel torus structures when they are
sufficiently separated. There will be one such pair for every direction, implying that the standard
Coulomb law naturally applies due to symmetry. Since the entire construction is defined at the
limit between proper electromagnetic (EM) theoretical objects, it’s expected that the magnetic
field will properly manifest when we shift our reference frame. Therefore, we have successfully
reconstructed our macroscopic understanding using these elementary building blocks.

Now, consider the scenario when we overlay two loops at a specific point. To maintain the
overall limit balance, we require ca → xca and cb → xcb. For the charge to remain invariant, rca
and rcb need to be constant, as indicated by Eqs. 23 and 24. This implies r → r/x, leading to
h→ hx. Consequently, v remains invariant as both R and the pitch are unchanged. Furthermore,
we have

E → Ex and m→ mx.

As a result, for the individual systems, l → lx. This suggests that we can naturally average the
loops within the sphere. If we only add loops pointing towards the upper half uniformly, vector
addition reveals that the overall angular momentum becomes the well-known

lz =
~
2
.

3 Results

The following results is developed as a consequence of the model:

� A satisfying argument for why we have particles and the nature of them.

� A mass formula for the electron and positron leading to the prediction that the masses
differ.

� It is shown by quantifying the difference between them that currently this different is under
the radar of the measurement error, but still so large that it is not impossible, with new
experiments to find a difference hence falsifying or supporting this model approach.

� A formula for the angular momentum is derived and shown to match Bohr’s angular mo-
mentum assumption in his atomic model. We also indicate how this is not a contradiction
to known measurements of this quantity.

� The nature of why the inverse of the fine structure constant is close to 137 is explored and
with this model the prime number 137 is the number of pitches in a helix. We argue why
this is a prime and also what effect that makes the true measurement differ slightly.

4 Discussion

This approach has obviously some strong theoretical alignment as seen from the results section.
But still it is a very young idea and goes against the common idea that we must base these
kind of models deeply within the quantum mechanical framework. As Bohr used a more naive
idea of a model, this model may as well be naive, but still useful as an inspiration for further
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developments. One need to notice how strongly the model at the same time diverges from the
standard model. This, due to deep symmetry reasons, the masses of the electron and its anti
particle should be the same. Also this model has a very attractive property to be mathematically
relative simple to analyze, as shown in this paper. This fact may lead to a lot of progress, and
in the end results in great new inventions and practical applications.
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