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Abstract

We will in this document assume that a charged particle (electron) is built up by (similar
to super string theory in a sense) of constellation of loops that has a very peculiar form of
interaction that is as simple as one can possible think of. That this model has a chance of
explaining the normal analytical treatment of charges in our macroscopic world is a bit if
a challenge to explain. We will assume that there is a limit for how much energy density
we can have and they will differ slightly between positive and negative charge meaning in
the end a difference between particle mass and anti particle mass. Especially we reproduce
the result that the electron and possitron differes and the resulting mass of the positron
is corect within measurement errors. We will also show that a stable system consists of
two almost similar loops or helical paths that have opposite sign. We will show that the
positive and negative charge is constant and the same. We will show how how mass can be
calculated and how we can calculate angular momentum which makes it possible to deduce
information on this model. We will also be able to conclude why α ≈ 1/137 and why this
is so and why not exactly 1/137 and why the specific value is 137. We will show why ~ is
a fundamental constant. We also indicate how to calculate Planc’s constant from knowing
that α is aproximately 1/137.

1 The main model assumptions

We will base our analysis of a basic object that is a stream of charge that has no mass and move
at the speed of light. It will also have the property that it only interacts if two infinitesimal line
segments are parallel and directed in the same direction and if we draw the tangent lines these
elements are located at the smallest distance to each other. We will assume for the specific case
the basic Coulomb’s law apply for these special segments. We will implicitly assume that each
particle is composed of objects that is a basic object that is overlaid in all possible directions and
that for two particles, there is always a a matched pair that can express the normal electrostatic
law so that we can reproduce the usual macroscopic interaction. We will assume that each loop
has a fixed amount of charge so that as we enlarge the loop, it will be less dense. In a sense it
is a closed system That can scale. We will assume that there is a energy density limit, one for
each sign of the charge that is almost the same.

2 Lorentz invariance

for two segments to be interacting they most be parallel. And in their reference frame. The
energy is,

q2/r
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As the speed of reference frame (defined through a limiting procedure) is the same independent
of if we move the system or not defining the interaction in this frame is hence Lorentz invariant.

The observant reader would realize that there are some issues with these objects. We will
consider the streams as a limit of a sequence of objects of the kind,

lim
n→∞,v→c

n∑
i=0

ea
δrai (t)=(i/n+vt)x̂√

n

Where we have n equally spaced normal mass less electron’s evenly distributed on [0,1] at t = 0
and they move with the speed of light along the x-axis. We will assume here that nearby electrons
are not interaction, but in stead if we take a parallel stream,

lim
n→∞,v→c

n∑
i=0

ea
δrbi (t)=(i/n+vt)x̂+hŷ√

n

As we will close them int0 loops, We will assume that each current loop has the same number
of charges and we will assume that this is an invariant of the world. Note that as we increase
the velocity they will contract and in order to get a nonzero charge density we need to spread
the charges out more and more in their reference frame. Hence when we define the interaction
in that frame, any two parallel segments need to be perfectly matched. Also in that frame the
next charge is infinitely large distance away so there is no self interaction and if they are offset
and not at the closest distance they will be infinitely far away. Also if the streams interact the
probability of two steams hitting each other is zero in a sense so we could hand wave away that
part as well (e.g. they sync so that they do not interact). So will assume that only rai , r

b
i are

interacting as normal electric charges and the rest does not. And we will demand the streams
to be parallel and likewise directed and also located so that it is in a sense closes as possible if
we consider the tangent lines of the streams. Hence in any geometrical constellation one need
to search for parallel tangents that are not offsets e.g. if you draw the tangents they need to
be parallel and the pairing need to be at the closest distance. As the interaction is done in the
rest reference system, one can always consider only the electrostatic interaction when exploring
a certain geometrical setup, which is similar to quantum electrodynamics that does also not have
internal magnetic terms. As we defined the energy in the rest frame we are free to also put a
limit there of the energy density. One for each charge.
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3 The Loop

vr r h′r

Consider 2 concentric loops stacked above each other forming a double cylindrical entity.
the charge in the inner loop is positive and the charge in the outer loop is negative (we will
consider a reversed version later). We will attache a constant charge density of the streams will
be constant, ea for negative and ab for positive. We will be a bit sloppy in the mathematical
rigor and consider that all interaction terms is a limit in L2 of their combination.

Loops of different charge sign will attract if they are concentric and have very little attraction
if not centered so we expect this selection of geometry to be stable. let rb = vr be the inner
radius and ra = r be the outer radius, then we will assume a scaling so that the effective charge
density in the outer cylinder to have the radian contribution constraint assuming ea to be the
charge density at the outer radius and eb the inner radius charge density, hence the constraint
is,

dxb dxb = rb dθ

dxa dxa = rb dθ

eradθ = (eara − ebrb)dθ = (ea − ebv)radθ = (ea − veb)rdθ.
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Or,
e = ea − veb

We shall consider scaling properties and hence it is natural to consider e = uea. The dual setup
is considering,

−e = bea − eb.
For this case we will considering e = ueb as a scaling. When we multiply two of these streams
we will consider the “square root” of a delta measure that is made stringent by the limiting
argument above. and hence will we use

eaebrarbdθ, e2
ar

2
adθ, e2

br
2
bdθ (1)

For the energy relation below. Also when we want to study the “energy density” we will mean
then that we need to study this effect on the paired rai , r

b
i . Then summing the effect on the unit

length will lead to taking these values.

eaea, e2
a, e2

b . (2)

To see that we will assume a normalized condition on the energy density at the singly scaled
pairing

You may say, this does not cut it. this makes the integrated e vary when you vary the radius,
and we will see that this changes. Now this is a correct observation and in a sense it works out
that way. But we will stack multiple such loops and form a torus with radius R. If you examine
two of these torus-es they only interact significantly if they is located in 2 parallel planes. And
there they interact only on a circle of the radius, say R and along this axis we will scale the
charge when we consider the torus as a surface else we will consider it as stacked circles the
effective charge on all those concentric loops will be e. This is a bit tricky to understand but it
is as it is in this model and the task is not to dismiss it, but see if there is any explainable power
in this model. Not to make a water tight theory as we first need to pass the first floor of the
theoretical castle.

Anyway, the charge condition is a scale invariant condition in order for the final charge to be
correct as argues. The attractive energy per radian of the loops are (where we use the special
Coulomb’s law and the observation 1)

Vldθ = k
eaebrarb
ra − rb

dθ = k
eaebvr

1− v
dθ

Note here that |1 − v| will be a term that has a scaling w.r.t. 2πR included, but this is hidden
in the analysis below. Similarly as we stack loops (or helix)) right on top of each other with a
pitch 〈 = hr we will see that the forces on one segments in one direction is

F = k
e2
∗r∗

(hr)2
(1 + 2−2 + 3−2 + . . .) = ζ(2)

ke2
∗

(h′r)2

Now this is a simplification e.g. if we connect it and turn it into a torus or helix, so we will
just assume that this part transforms as ζh/h

′, where we punt for now what ζh is. Hence if we
consider the force on both sides we get the energy by integrating h′r to,

Vh,∗dθ = 2ζh
ke2
∗r

2
∗

h′r
dθ.

So the total energy for one loop is,

E = (Vh,1 + Vh,2 + 2Vl)2π = 2πkr
(2ζh
h′

(e2
a + e2

bv
2)− 2

eaebv

|1− v|

)
.
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Using e = ea − veb in this expression for the energy, we note that we can search to find the
stationary point varying x = veb and keeping the rest constant, while also introducing the
obvious A,B to this leads to,

A(2e+ 2x+ 2x)−B(e+ 2x) = 0.

Or,
(2A−B)(2x+ e) = 0.

So,
x = veb = −e/2

This means that vev tend to go to zero unless,

2A−B = 0⇔ 2ζh
h′

=
1

|1− v|
. (3)

For which energy wise it can vary freely! To simplify the expression for the energy, let first
eb = uea. Let w = uv and note e = ea(1− w). Then,

E = 2πkre2
a

(2ζh
h′

(1 + w2)− 2
w

|1− v|

)
.

Or using 3,

E = 2πkre2
a

2ζh
h′

(1 + w2 − 2w).

Complete the square and we get,

E = 2πkr
2ζ(2)

h′
(ea(1− w))2 = 4πkr

ζ(2)

h′
e2. (4)

Note that this condition is invariant of how we combine the charges. To evaluate the energy
density and apply limits on them as the system want to scale down in order to minimize energy.
Assume the condition 2 for evaluating this limit.The charge densities at the loop a is,

ρa = ke2
a

(2ζh
h′
− u

1− v

)1

r
.

Or using 3,

ρa = ke2
a

2ζh
h′

(1− u)
1

r
. (5)

The density at loop b is,

ρb = ke2
a

(2ζh
h′
u2 − u

1− v

)1

r
.

Or again using 3,

ρa = ke2
a

2ζh
h′

(u2 − u)
1

r
. (6)

Hence if these two densities are at a positive and negative limit, we need to have (using 5 and 6)

ρa = ca, ρb = −cb

To simplify the analysis of this, use 3 and take,

C∗ = c∗ ∗ C = c∗
h′

2ζhke2
a

= c∗
|1− v|
ke2
a

.
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Then,

|1− u|
r

= Ca = caC, (7)

u
|1− u|
r

= Cb = cbC. (8)

Note that this result is independent how we combined the charges to e. Hence dividing 8 with 7,

eb/ea = u = Cb/Ca = cb/ca. (9)

The constraint 7 is,
|1− u|
r

= caC = ca
|1− v|
ke2
a

.

Or,
e2
a(|1− u|)

r
= ca

|1− v|
k

.

Hence,

|1− v| = ke2
a|1− u|
rca

. (10)

in the dual wew will consider here is simple taking the anti particle of the system. We will mark
this with D(·) and we get D(u) = ca/cb and D(ea) = eb and for this case,

|1−D(v)| = ke2
b |1−D(u)|
D(r)cb

=
kebea|1− u|)
D(r)cb

=
keaea|1− u|
D(r)ca

= |1− v| r

D(r)

We can also reformulate the condition for e, using 10 as,

e = ea(1− uv) = ea(1− u) + eau(1− v) = ea − eb +
kue2

a

rca
(ea − eb) = ∆

(
1 +

kebea
rca

)
(11)

where we used ∆ = ea − eb. The dual expression is then,

D(e) = −∆
(

1 +
kebea
D(r)cb

)
. (12)

So in order for e = −e′ we need,
D(r) = r/u. (13)

Hence
(1−D(v)) = −(1− v)u

And also D(h′) = h′u. We can solve for r in 11,

r =
kebea

ca

(
e
∆ − 1

) . (14)

But not only this, we also note that starting with,

e = ea|1− u|+ eau|1− v|

And using 7,

e = D
rca
ea

+ eau|1− v|,
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with,

D =
h′

2ζhk
.

Assuming h′, v, u constant we can minimize the energy by minimizing e to get,

ea =

√
Drca
u|1− v|

=

√
h′

2ζh
rca

ku|1− v|
=

√
rca
ku

. (15)

Hence from 7,
rca
ku
|1− u| = rca

|1− v|
k

.

Or,
|1− u| = u|1− v| (16)

Hence,

e = 2ea|1− u| = 2

√
rca
ku
|1− u|. (17)

Also,

e = 2
ea
ca
|ca − cb|. (18)

The constraint 3 implies,

h′ = |1− v|2ζh =
|1− u|2ζh

u
(19)

And D(h′) = h′u. Now the actual pitch is hr is then invariant. So the argument for equal charge
would that the most energetically favorable action when a negative and positive charge form is
an alignment and hence equal pitch, hence the negative and positive charge is constrained to be
the same and as we see below this also imply that the ~ must be the same. Anyway 19 and
squaring 17,

e2 = 4
rca
ku
|1− u|2. (20)

Special relativity means that we can deduce the masses per loop from 4 as,

E = mc2 = 4πkr
ζh
h′
e2 = 2π

kr

|1− v|
e2

Using 16, with this, we get,

mc2 =
2πkrue2

|1− u|
.

So,

m = η
2πkrue2

|1− u|c2
(21)

(we will discuss η soon). And hence the dual relationship,

D(m) =
m

u2
. (22)

Note that the unit is kg/m with η currently an unknown unit. However the loop is like a delta
measure and you can see it as the result of taking the limit with a scaled mass and thinner small
cylindrical shell. Hence,

η = 1 [m].

We will need that to not confuse the astute reader that checks the calculation by examining the
units. Hence m will have the unit [kg].
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3.1 Stacking into a torus

Previously we was working with a system where we stacked loops on top of each other to form a
cylindrical structure. Now instead we connect all loops so they form a torus. When we do this
we will consider the pitch defined by,

h′r = h2πRr.

E.g.
h′ = 2πRh.

From this we get the dual condition R′ = R. But the stacking of the loop is although possible
mathematically, hard to motivate for a stable structure. However if we transform the loops to
helical path’s along the helix with a velocity v we have indeed produced a system that stabilizes
as each path is non interacting. In the reference frame of the system, where we move with the
particles along the big circle we will still make a loop and the helix will interact repulsively with
a similar part one pitch away. As the number of pitches is the same, e.g. hr we realizes that we
have two radius’s of the torus. One in the system of the lab R and one in the rest frame R0. and
we have,

R =
R0

γ

We will evaluate the interaction in the rest frame. So we stack n′ of them and therefore,

nh′r = 2πR.

Or,

hr =
1

n

As the distance between the paths are different we realize that this can’t be exactly try as we
have a contraction in the closest R− r distance, hence we actually have,

nh′r = 2π(R− r) =
2πR

f
,

with,

f =
1

1− r/R
.

Hence,

hrf =
1

n
. (23)

The attractive energy will be as before as that is independent of any movements of the loops
orientation. The repulsion will however be active on only on two parts of the loops where they
interact. The energy will be the mean which is the same as using the center (R) distance.
However, the energy density that we use need to be analyzed at the R − r distance where
it is the most extreme. we will do so by doing the transformation c∗ → c∗/f . In this new
parameterisation. The unit of h is here [1/m].
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3.2 Scaling

Consider scaling. As the number of loops per torus is fixed, e.g. n′. Then we know that only
the loops will need to scale. hence we will get from 10, 14 and 4,

e→ xe (24)

r → r/x (25)

v → v, (26)

u→ u, (27)

h→ hx, (28)

rh→ rh, (29)

E → xE, (30)

m→ xm. (31)

This means that in order to maintain the same scaling we must have,

R→ R/x, (32)

R0 → R0/x, (33)

r/R→ R/r, (34)

f → f, (35)

rhf → rhf. (36)

Now as the helix will stretch with the R we see that,

Etot → Etot, (37)

mtot → mtot, (38)

etot → etot. (39)

3.3 Angular momentum

The per loop angular momentum is,

l = mγ(vh)vhR = mvhR0.

The question is how vh scales. If the length of the helix scales as R and hence the time it takes to
move one turn scales as R. But as the number so turns along the helix is invariant, we find that
the pitch distance also scales as R which leaves the velocity invariant. Hence vh is invariant of
the scaling and hence the total angular moment which is n′ such copies is invariant of the scale.

vh → vh, (40)

l→ l, (41)

ltot → ltot. (42)

If we let the length of the helix as L then vh satisfy (in the rest frame),

vh
c

=
2πR

L
=

2πR0/γ

L0γ
=

2πR0

L0
.
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Anyhow if we factor in the need to remove from the outer loop the same quantity from the inner
loop we get,

l = mvhR0|1− v|

ltot = n′l = n′mvhR0|1− v| = n′η
2πkrue2

|1− u|c2
c2πR0

L0
R0|1− v| = η

A0R0

L0

kue2

|1− u|c
|1− v|,

with A0 being the torus area e.g,
A0 = 2πr2πR0.

Using 16 we find,

ltot = η
A0R0

L0

ke2

c
.

In order for the charge to be properly (hopefully) managed we need,

A02πR0

L0
= n

E.g. we need to scale down the area in order to compensate for the extra space the helical path
takes. As we have n = 1

hr (forgetting about f) identical pitches and hence we conclude that
(using 16),

~ =

∫
ltot dθ = η

A02πR0

L0

kue2

|1− u|c
|1− v| = ηn′

ke2

c
= η

ke2

hrc
. (43)

Note that we here consider one helix turn per pitch, but, as discussed above, this can also be
any integer number of pitches hence we actually have the Bohr condition of angular momentum.

ltot = n~

We can solve for hr

hr = η
ke2

~c
= α ≈ 1

137
=

1

n

Which indicate why Wolfgang Pauli’s quest to search for why 1/α was almost a natural number
(137) may have a partial answer.

3.4 Defining the zeta factor

Consider N charges evenly distributed on a unit circle. Let’s study the forces on one single
charge. then they are locates on e2πk/N , k = 0, . . . N − 1. The force at k = 0 is then. Now we
would not like to cancel any of their contributions to action at hence we get

V (N) =

N∑
k=1

h′r

R

1

|e2πik/N − 1|
.

Now,
|e2πik/N − 1|2 = (e2πik/N − 1)(e−2πik/N − 1) = 2− 2 cos(2πk/N).

Hence we are left with,

V (N) =
1√
2

N∑
k=1

h′r

R

1√
1− cos(2πk/N)

.
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Using the trigonometric identity for the double cosine’s,

1− cos(2πk/N) = 1− cos2(πk/N) + sin2(πk/N) = 2 sin2(πk/N).

Hence

V (N) =
1

2

N∑
k=1

h′r

R

1

sin(πk/N)
.

So we will have,

ζh(N) = N

N∑
k=1

πα

sin(πk/N)
(44)

Now as
sin(πk/N) < πk/N

then, including that we have N charges, we get

ζh(N) > N

N∑
k=1

πα

πk/N
> N2α(ln(N)) (45)

hence
ζh(N) > N2α ln(N) (46)

A direct calculation with N = 137 gives,

ζh(N) ≈ N1382.5α. (47)

3.5 Numerology

The following expression is a quite good equation for the fine structure constant,

α

1 + α
1−(2π−1)2

=
1

137

We can explore this further and find another expression,

α

1 + α

1−
(

1− 2π

1− 4πα
1+ 2π

1− 4πα
1−2π/(1+2α)

)2

=
1

137

We could postulate from this,
α

1− α
x2−1

=
1

137
.

With x satisfying,

x = 1− 2π

1− 4πα
1+ 2π

1− 4πα
x

Of cause this is very numerological and are simply fined tuned with the help of trial and error.
Can we motivate this? Well, as the density is higher closer to the center it is there we find the
limiting energy density and this motivates,

hrf = αf =
1

137
,
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with

f =
R

R− r
=

1

1− r
R

.

So,
α

1− r
R

=
1

137
.

Using the found expression we could match this with the found expresison,

r

R
≈ α

(2π − 1)2 − 1
. (48)

But this is the same as,
r

R
=

rh

hR
=

α

hR
.

Hence we can identify,
x2 = hR+ 1.

Now x2 = 28.7778 means
hR = 27.7778

Or
αR = 27.7778r.

Or
R = 3807r.

Consider Lh = rh2πR0 the pitch distance and Lr = 2πr the distance of on helix turn in in the
loop direction. Then

vh/c =
Lh
L

=
Lh√

L2
h + L2

r

=
rh2πR0√

(2πr)2 + (rh2πR0)2
.

Rearenging we find

vr/c =
1√

1 + (1/(hR0))2
.

Solving for hR0 we get,

hR0 =
√
γ2 − 1.

Or using hr = α,

α
r

R0
=
√
γ2 − 1.

Now as R = R0γ we have,

hR = γ
√
γ2 − 1.

And by using hR ≈ 27.7778,
γ ≈ 5.3 (49)

As α is invariant of the duality, we conclude that as D(r) = r/u, we have

D(R) = R/u.

As D(R0) = R0 we get D(γ) = γu and hence,

D(γm) =
γm

u
. (50)
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3.6 On n′

Form 3 we see that h′ satisfies,

h′r = hr2πR = α2πR =
|1− u|2ζh

u
≈ |1− u|

u
nα ln(n).

Or
R = Cn ln(n),

Hence,
R ≈ C137 ln(137).

Which means,

r =
r

R
Cn ln(n).

But we also have from 15,
r = Ce2

a/n
2

Equating to,

e2
a = C ′

r

R
n ln(n) = n ln(n)

But as we have an approximate postulated expression from 48,

r

R
≈ α

1− (2π − 1)2
.

So,
e2
a ≈ C ′′αn ln(n) ≈ C ′′ ln(n)

This indicate why we have n = 137.

3.7 On mass

If we consider the total mass scale invariant we get (using n copies and 21),

me = γnm = ηnγ
2πkrue2

|1− u|c2
= ηnγ

α2πkue2

h|1− u|c2
. (51)

Using the electron mass equation 51 and the condition for h, 19,

me = ηnγα
2πkue2

|1−u|2ζh
u |1− u|c2

= ηnαγ
πke2

hζhc2

( u

|1− u|

)2

= ηnγα2 π~
ζhc

( u

|1− u|

)2

, (52)

plugging in 47, we find,

me ≈ ηγ
α

1382.5

π~
c

( u

|1− u|

)2

.

Taking (49), γ = 5.3 we find,
|1− u| ≈ ε = 5.83 · 10−9

Also note that we know that u = 1± ε. Hence from 50,

mpositron = D(m) = m/u = m/(1± ε) ≈ m(1± ε)

Taking the lower value of this we get the positron mass,

mpositron = 0.510 998 953 0 [Mev/c2].

Meassured is approximately, (hard to find a good reference for this value)

m∗positron = 0.510 998 951 9 [Mev/c2].
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3.7.1 A note on the experimental value used

These measurements have not been reproduced and originates from, the most precise measure-
ment of the positron mass to date that was conducted by the researchers at the Harvard-MIT
Center for Ultracold Atoms in collaboration with other institutions. In 2018, they used a tech-
nique called Penning trap mass spectrometry to measure the positron mass with high precision.
The experiment involved trapping individual positrons and antiprotons in a magnetic field and
measuring their oscillation frequencies. By comparing the oscillation frequencies of the trapped
particles, the researchers were able to determine the mass ratio of the positron to the antiproton
with exceptional accuracy. The result yielded a positron mass value of (1.000 000 038 06 ± 0.000
000 000 38) times the mass of an electron. Currently as we need to wait for more confirmatins
of the experiments from other groups, this information is not considered acknowledged. But it
is interesting that our model are able to conform to the result of that study.

3.8 An addition theorem of charge streams and a fundamental scaling
property

On the other hand if we overlay many of these geometrical structure and span a spherical sym-
metric object, the only interacting will be done with parallel torus structures if they are separated
(far away) and there will be one such pair for every direction. And hence the symmetric usual
Coulomb law naturally applies. Also as the hole constructions is defined as a limit between of
proper EM theoretical objects, we will understand that the magnetic field will properly appear
when we change reference frame. So in all we have managed to reproduced our macroscopic
understanding from these small building blocks.

Consider what will happen when we overlay two loops at a certain point. To maintain the
overall limit balance we need ca → xca, cb → xcb. To leave charge invariant we then need rca,rcb
to be invariant as seen by 7 and 8 to be constant. Thus mean r → r/x. This imply h→ hx and
v → v are invariant as R and the pitch is the same. Also,

E → Ex, or, m→ mx

Hence in the end, l → lx for the individual systems. This means that we can average naturally
the loops in the sphere and if add only loops pointing towards the upper half uniformly we realize
that by vector addition, the overall angular momentum becomes the famous,

lz = ~/2.
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