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Abstract

A novel definition for making memory in quantum computing based on the Bloch
sphere is proposed. (1) We discuss memory of functions. We store the property of a
function f itself by means of the unitary operation Uy. Therefore, we write function
data on the Bloch sphere. In addition, we recall the property of the function f by
means of the same unitary operation U as the above. That is, we read data from the
Bloch sphere. We discuss that we can read/write small amount of data on the Bloch
sphere when we consider the function as data. (2) We discuss memory of values. We
store an arbitrary natural number relating to a phase ¢ (real number) itself by means
of the unitary operation Uy. Therefore, we write value data on the Bloch sphere. Also
in addition, we recall the natural number relating to the phase ¢ by means of the same
unitary operation Uy as the above. That is, we read data from the Bloch sphere. We
discuss that we can read/write infinite data on the Bloch sphere when we consider an
arbitrary natural number relating to the phase factor of a quantum state as data. It
may be much likely that, from the property of quantum physics, the Bloch sphere is a
high-speed memory system in quantum computing at least in an algorithm level.



1 Introduction

Quantum mechanics (cf. [1, 2, 3, 4, 5, 6, 7]) is a physical theory in order to explain the
microscopic behaviors of the nature. Articles of research for constructing theoretical
quantum algorithms [8] may be mentioned as follows: In 1985, the Deutsch algorithm
was introduced and constructed for the function property problem [9, 10, 11]. Recently,
Deutsch’s algorithm is generalized [12] by determining arbitrary one-variable boolean
functions f: {0,1} — {0,1}. In 1993, the Bernstein—Vazirani algorithm was proposed
for identifying linear functions [13, 14]. More recently, the Bernstein—Vazirani algo-
rithm generalized is investigated [15, 16]. And solving Bernstein and Vazirani’s prob-
lem with the 2-bit permutation function is discussed by Chen, Chang, and Hsueh [17].
In 1994, Simon’s algorithm [18] and Shor’s algorithm [19] were discussed for period
finding of periodic functions. In 1996, Grover [20] provided an algorithm for unordered
object finding and the motivation for exploring the computational possibilities offered
by quantum mechanics.

In 2020, a parallel computation for all of the combinations of values in variables
of a logical function was proposed by Nagata and Nakamura [21]. In 2023, Ossorio-
Castillo, Pastor-Diaz, and Tornero expressed in the introduction in Ref. [22] the result
by Nagata and Nakamura [21] such that Deutsch’s problem is generalized by deter-
mining arbitrary two-variable boolean functions f : {0,1}? — {0,1}. By virtue of
the result proposed in Ref. [21], in 2021, the concrete quantum circuits for addition of
any two numbers were proposed by Nakamura and Nagata [23]. In preparing all the
augmentations for addition, we can expand any operation in mathematics. Therefore,
the quantum computer can solve all the four basic operations of arithmetic, addition,
subtraction, multiplication, and division. Further it can be said that this quantum
computer naturally operates not only arithmetic but also logic in terms of boolean
logic. As a result, the theory presented in [21, 23] can build a true quantum-gated
computer that is driven and operated by all software (all programs) used on existing
electronic computers. We expect its application for the numerical computation. We
lead to implementing commercial quantum-gated computers.

The concept of “Memory” is very important for discussing computer science in
general. This situation is the same as studying quantum computing. What is the
definition of memory in quantum computers? It is different from the one in classical
computers because a quantum computer is different from a classical computer. Memory
proposed here is like DRAM (Dynamic Random Access Memory) that is a type of
semiconductor memory.

In this paper, a novel definition for making memory in quantum computing based
on the Bloch sphere is proposed. Ultimately speaking, all of the quantum algorithms
rely on a high-speed memory system on the Bloch sphere. Clearly, the Bloch sphere is
a place in which quantum states are stored theoretically steadily. Thus, we can steadily
read /write data on the Bloch sphere through a quantum state itself. In short, from
the property of quantum physics, the Bloch sphere is much likely to be a high-speed
memory system.

Why do we use Deutsch’s algorithm in order to define memory in quantum com-
puters? Memory is usually a one-variable type and Deutsch’s algorithm is suitable for



the purpose for defining memory in quantum computers because Deutsch’s algorithm
treats one-variable functions. So, we use mainly Deutsch’s algorithm in this paper.

2 Review of the basic structure of quantum com-
puting

Superposition and phase kickback are fundamental features of many quantum algo-
rithms [7]. They allow quantum computers to evaluate simultaneously the values of a
function f(z) for many different x. Suppose

f:4{0,1} — {0,1} (2.1)

is a logical function with a one-bit domain and range. Such a function assuming
values in the set {7, F'} is called a logical function. A convenient way of computing
the function on a quantum computer is of considering a two-qubit quantum computer
that starts with the state |x,y), where  and y are variables for the function f. The
abbreviation |z,y) stands for |z) ® |y).

We denote a transformation Uy defined by the map

Uslz,y) = |z, y © f(z)). (2.2)

The transformation Uy is called to be the quantum oracle, where @ indicates addition
modulo 2

3 Review of Deutsch’s algorithm

Deutsch’s algorithm is originally deterministic by one query whether the given function
f : Zy — Zs is constant or balanced. The function is called to be constant if f(0) =
f(1). The function is called to be balanced if f(0) # f(1). Let us review Deutsch’s
formula as follows:

Usl0)([0) = 11))/v2 = [0)([0 @ £(0)) — [1 & F(0)))/v2
{( 1D/O[0)([0) = [1))/VZ i £(0) =0, 1)
(~1[0)(J0) 1))/ if f(0)=1.

Us(10) - [1)/V2 = 10 ® £(1)) - [1@ f(1)))/v2
{( D/O(0) — [1)/v2 i f(1) =0, 32)
(~DIOL)(J0) — [1)/v2 i f(1) =

This is the phase kickback formation.

Let us introduce the Bloch sphere. We consider a quantum state lying in the z-axis
and a quantum state lying in the z-axis. Deutsch’s formula does not use a quantum
state lying in the y-axis. f(0) and f(1) appear in the global phase factor, but we
cannot obtain both of them at the same time.



We define the following notations:

V2 V2

We may define the initial state |1g)4 as follows. The subscript “d” means Deutsch’s
algorithm.

(3.3)

1
[%0)d )=)e + EHH—M = [H)al=)er  altoltho)a = 1. (3.4)

1
=—|0
ﬁl
Let us introduce a parameter j(= 0,1,2,3) that distinguishes the logical function
one another. Applying Uy, (j = 0,1,2,3) to [1o)a, Uy,|¥0)a = |¥1);a, therefore leaves
us with one of four cases:
1 1
fol¥o)a = [¥1)oa \/5! =) \/§| ) =)a = +)el—)

iff fo(0) =0, fo(1) = 0. (3.5)

1

Up[Yo)a = [1)1a = 7

) =)e D=)e = |=)el—)a

1|0
V2

iff f1(0) =0, fi(1) =1. (3.6)
1 1
Up,[¥0)a = [¢1)24 = —E\OH—M + ﬁ!lﬂ—% = —|=)e| =)z
iff f2(0) =1, f2(1) = 0. (3.7)
1 1
Up,[t0)a = [¥1)3q4 = ——2|0>|—>x - E|1>|_>a¢ = —|+)z| =)z
iff f3(0) =1, f3(1) = 1. (3.8)

Even though, we have (3.5)—(3.8), we do not obtain simultaneously both f(0) and f(1)
by measuring the resulting state.

By measuring |t1) 4, we cannot determine simultaneously all the two values of f;(z)
for all . But, we can determine if the given function is constant or balanced. This
is very interesting indeed: the quantum algorithm gives us the ability to determine
a property of f;(x). This is faster than that of its classical apparatus which would
require at least two evaluations.

4 Review of Deutsch’s algorithm generalized

The discussion is based on Nagata and Nakamura [12]. We generalize Deutsch’s algo-
rithm using a quantum state lying in the xy-plane. Deutsch’s algorithm generalized
determines simultaneously all the mappings of the given function by one query. In
what follows, we consider the Bloch sphere, especially, we consider a pure state lying

4



on the surface of the Bloch sphere. From Deutsch’s formula and the mapping Uy, we
arrive at the following formulas:

U¢|0)(cos g\O) + €' sin g]l)) = |0)(cos g\() @ f(0)) + €' sing|1 @ £(0)))

~[10)(cos 2]0) + e sin 2]1)) if f(0) =0,
_{I0>(cos§|1>+ei¢sing|0)) i f(0) = (4.1)

Uf|1>(COSH—I|0> + e sin%\l}) = ]1)(0059—1]0 @ f(1)) + & sin%l|1 @ f(1)))

~ J 1) (co 9—| >+ei¢'sin9/\1>) it £(1)
_{|1>( 9—| ) + e sin & \0)) if f(1): (4.2)

To simplify, we suppose the quantum state lying in just the y-axis. Thus let (0, ¢) be
(m/2,7/2) and let (¢, ¢') be (7/2,7/2) in giving

| @ O0)(0) +i)/VE i F(0) =0,
Uf'”('o”"”)/ﬁ‘{(z)f 0y (0) —il)/vE it FO) =1 D)
| @ OL0) +i)/VE i F(1) =0,
U0} 43t/ ﬁ_{mf Do) —d)/vE i =1 Y
We define the following notations:
oy, = @Dy 10 i) (4.5)

R V2

We define the initial state |1g) as follows, using an imaginary number i. Here, we
use a quantum phase effect, which is a quantum phenomenon.

1
[%0) = \/—\0>!+>y + ﬁ\lﬂﬂy = [F)al )y, (doltho) = 1. (4.6)

Applying Uy, (j = 0,1,2,3) to |[1ho), Uy, |tho) = |¢1);, therefore leaves us with one of
four cases:

Uplto) = 1o = %|o>\+>y " %mm

it fo(0) =0, fo(1) = 0. (4.7)
1 1

U, [tho) = 1)1 = ﬁ|0>|+>y +Zﬁ|1>|_>y

iff f1(0) =0, fi(1) =1. (4.8)

Uplio) = [a)e = i f|o>| by +%|1>|+>y
iff f2(0) =1, fo(1) = 0. (4.9)



Upslio) = [1)s = ¢%|o>r—>y +z’%|1>\—>y

it f3(0) =1, f3(1) = 1. (4.10)

If we have (4.7)—(4.10), we have simultaneously both f(0) and f(1) by measuring the
resulting state.

By measuring |¢1),, we may determine simultaneously all the two mappings of f;(z)
for all z. This is very interesting indeed: the quantum algorithm gives us the ability to
determine a perfect property of f;(x), namely, f;(z) itself. This is faster than that of
its classical apparatus which would require at least 22 evaluations. However, the four
states are not completely orthogonal to one another. Therefore, we have some error
probability when we distinguish the four states one another [24, 25]. Nevertheless, we
are able to eliminate the error probability into zero as shown below.

5 Deutsch’s algorithm generalized and based on or-
thogonal states

We present Deutsch’s algorithm generalized and based on orthogonal states. We pro-
pose the initial state as follows:

[Y0)a ® [Y0) = [+)al =)o @ [+)al+)y- (5.1)

Applying Uy, @ Uy, (j = 0,1,2,3) to [0)a ® |¢0), Uy, @ Uy, [100)a ® |0) = [¥1)ja @ Y1),
therefore leaves us with one of four cases:

U, @ Ugy[10)a @ |%0) = [¥1)0a @ [t1)0 = |+)z| =)z ® (%|0>|+>y + %|1>|+>y)
i fo0) = 0, fo(1) = 0. (5.2)
Up,  Up o) ® [90) = [t)14 ® [$1)1 = | e~V @ <%|o>|+>y +z%|1>|—>y>
i £1(0) = 0, fu(1) = 1. (5.3)

Up, @ Up, |tho)a ® [tPo) = |th1)2a @ |1h1)2 = —[=)z|—)a ® (i%\())!—)y + %\U!ﬂy)

iff f5(0) =1, f2(1) = 0. (5.4)

Up, @ Up[0)a @ |tho) = [1)3a @ [¢1)s = —[+)al =)o ® (i%m)!—)y + Z'%UH—M)
iff f3(0) =1, f5(1) = 1. (5.5)

If we have the relations above (5.2)—(5.5), we have simultaneously both f(0) and f(1)
by measuring the resulting state. The four states are completely orthogonal to one



another. Therefore, we have zero error probability when we distinguish the four states
one another.

By measuring [¢1);4®|11);, we may determine simultaneously all the two mappings
of f;(z) for all z. This is very interesting indeed: the quantum algorithm gives us the
ability to determine a perfect property of f;(z), namely, f;(z) itself. This is faster than
that of its classical apparatus which would require at least 22 evaluations.

The algorithm is as follows:

1. Select a function f; and do not know any mappings of it, that is,
£5(0) =7, £5(1) =2, (5.6)
2. Operate Uf] ® Uf] to W0>d ® ‘”(/)0> iIl glVlIlg |¢1>jd ® |¢1>j'

3. Measure the resulting state |1;);4®|11); and obtain the values of all the mappings
concerning the function f;.

4. This is faster than that of its classical apparatus which would require at least 22
evaluations.

6 Definition for making memory in quantum com-
puting

In order to operate quantum computers, the concept of Memory which stores states of
qubits, must be defined here. One unit of memory corresponds to one memory location
where one state is stored. The address of the unit is specified by its own variable name
that is used as the state enclosed by “Cket sign”. For example, |2) means some state x,
and z is also the name of the variable here. So, the unit is addressed for variable z, but
the value of this variable z is |x) using the format “| )” based on a classical computer’s
programming sense. However, there is something wondering how the z is still like a
variable. This is no choice because so long as handling states in quantum computing
and this is enough! In case of registers that exist at the “into” and “out of” sides of
quantum oracles, the first, the second, etc. qubits are regarded as the variables.

Here, we propose a novel definition for making memory in all of the quantum algo-
rithms based on the Bloch sphere. Ultimately speaking, all of the quantum algorithms
rely on a high-speed memory system on the Bloch sphere. Clearly, the Bloch sphere is
a place in which quantum states are stored theoretically steadily. Thus, we can steadily
read /write data on the Bloch sphere through a quantum state itself. In short, from
the property of quantum physics, the Bloch sphere is a high-speed memory system
for any quantum algorithm. Figure 1 represents the overview of memory in quantum
computers based on the Bloch sphere.

7 Memory of functions in Deutsch’s algorithm

Deutsch’s algorithm is a process to store resulting states, where resulting states are
data concerning the kind (constant or balanced) of a logical function.
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Quantum Memory System

We write data when we store data on the Bloch sphere.

A
N

We read data when we recall data from the Bloch sphere.

Figure 1: Overview of memory in quantum computers based on the Bloch sphere

e We write data when we store data on the Bloch sphere.
e We read data when we recall data from the Bloch sphere.

We operate some kind of the unitary operation and store the resulting state as data.
We write the kind of a logical function by using the unitary operation on the Bloch
sphere. That is, we write data on the Bloch sphere in the z-axis. In addition, we
operate the same unitary operation as the above and recall the resulting state. We
read the kind of the logical function by using the same unitary operation from the
Bloch sphere. That is, we read data from the Bloch sphere in the z-axis again. The
goal is that we read/write the kind of the logical function which we select first. It
may be much likely that, from the property of quantum physics, the Bloch sphere is a
high-speed memory system in Deutsch’s algorithm.
Suppose that

f:{0,1} — {0,1} (7.1)

is a logical function. Our aim is of storing the kind of the logical function, e.g., f(0) #
f(1). We can select one of the four possible functions because of the combinations of
the values. We introduce a parameter j(= 0, 1,2,3) for distinguishing among these
functions one another.



Let us discuss memory of functions in Deutsch’s algorithm. We introduce the
transformation Uy defined by the map

Uslz)|k) = [2) |k @ f(z)). (7.2)

In fact, from the map Uy, we can define the following formulas:

Us|0)(|0) —[1))/v2

— H0)(j0® £(0)) — [1 & £(0)))/V2

_ J=D@0)(j0) = 11))/v2 i f(0) =0, (7.3)
(~1)f@0)(j0) — |1))/v2 if f(0) = 1. '

Us|1)(0) — [1))/v2

= +D)(l0® f(1) - 1o f(1))/V2

=0y oy — 1) /v2 it f(1) =0, (7.4)

~ DY) - )/VE i 1) =1, |

Observe that
(Up)? ) k) = |o)|k @ 2f (x)) = |a)|k). (7.5)

Therefore, the map Uy is a unitary operation. This is the key of memory of functions
in Deutsch’s algorithm. Here, we define the initial state as follows:

1 1
vo)a = ﬁ|0>’_>x + EHH—M = [+l =)z a(tholtho)a = 1. (7.6)

Later, we see that the kind of the logical function is stored into the resulting state.
This stage means we write data on the Bloch sphere. At the beginning of memory of
functions in Deutsch’s algorithm, we apply Uy, (j = 0,1,2,3) to the initial state |¢y),
Uy, |t0) = |%1)ja, then the resulting state is one of four cases:

Useltboba = l1)oa = %|o>|—>x 4 %|1>|—>z = [4)al )
i fo(0) = 0, fo(1) = 0. (7.7)

Up ltho)a = )10 = %|o>|—>w - %|1>|—>z = Vel )
it £(0)=0,£,(1) = L. (78)

Uplto)a = l1)ea = —%|o>|—>m T %|1>|—>x = )al )

iff f2(0) =1, f2(1) = 0. (7.9)
1 1

Ups|0)a = [th1)3a = —ﬁ|0>|—>z - E|1>|_>a¢ = —|+)z =)z

it f3(0) =1, f3(1) = 1. (7.10)



We apply the same unitary operation Uy, as the above to the resulting state [t)1);q
and recall the kind of the function f; by going back to the initial state |¢)g) from the
resulting state |t1),q.

By recalling the resulting state |t1),4 from the Bloch sphere, we can read the kind of
the logical function depending on the parameter j. Interestingly, memory of functions
in Deutsch’s algorithm gives us the ability to recall a property of f;(x), namely, f;(z)
is constant or balanced. This stage means we read data from the Bloch sphere.

With the above, memory of functions in Deutsch’s algorithm is as follows:

1. Select the kind of a function f; which is constant (f;(0) = f;(1)) or balanced
(£5(0) # f;(1)).

2. Select the unitary operator Uy, along with the selected function f;.

3. Apply Uy, to the initial state [ty) and store the kind of the function into the
resulting state |¢1) ;4.

4. This stage means we write data on the Bloch sphere.
5. Select the same unitary operator Uy, as the above.

6. Apply Uy, to the resulting state |¢1);q and recall the kind of the function f; by
going back to the initial state |1)y) from the resulting state |1)1)q.

7. This stage means we read data from the Bloch sphere.

This is faster than that of its classical apparatus which would require at least two
evaluations. It may be much likely that, from the property of quantum physics, the
Bloch sphere is a high-speed memory system for Deutsch’s algorithm.

8 Memory of functions in Deutsch’s algorithm gen-
eralized

Deutsch’s algorithm generalized is a process to store resulting states, where resulting
states are data concerning all of the combinations of values in variables of a logical
function. We operate one of four kinds of the unitary operations and store the resulting
state. We write one of four kinds of a logical function by using the unitary operation
on the Bloch sphere. That is, we write data on the Bloch sphere in the xy-plane. In
addition, we operate the same unitary operation as the above and recall the resulting
state. We read the same kind of the logical function by using the same unitary operation
on the Bloch sphere. That is, we read data from the Bloch sphere in the xy-plane again.
The goal is that we read/write one of four kinds of the logical function which we select
first. It may be much likely that, from the property of quantum physics, the Bloch
sphere is a high-speed memory system in Deutsch’s algorithm generalized.
Suppose that

£:40,1} — {0,1} (8.1)
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is a logical function. Our aim is of storing both the two values of the logical function,
e.g.,

f(0)=0,f(1) =1, (8.2)
that is, f(z) itself.

Let us discuss memory of functions in Deutsch’s algorithm generalized. We intro-
duce the transformation Uy defined by the map

Uslz)|k) = [2) |k @ f(z)). (8.3)

In fact, from the map Uy, we can define the following formulas:

@OI0)(0) +IL)VE i £0) =0,
DO+ = {<z>f<°>\o><ro>—z'rl>>/ﬁ i so=1. Y
@O0 +IL)VE i F(1) =0,
s = OO I Ty 69
Observe that
WP = [k ©27(0) = o) ). 6

Therefore, the map Uy is a unitary operation. This is the key of memory of functions
in Deutsch’s algorithm generalized. Here, we define the initial state as follows:

|%0) = M)y + Ny = [F)al )y, (tholtho) = 1. (8.7)

—=|0 —=|1
\/_ \/_

Later, we see that both the values for f; is stored into the resulting state. This stage
means we write data on the Bloch sphere. At the beginning of memory of functions
in Deutsch’s algorithm generalized, we apply Uy, (j = 0,1,2,3) to the initial state |y),
Uy, [to) = |31);, then the resulting state is one of four cases:

Uplio) = [ir)o = %rowy + %mm

iff fo(0) =0, fo(1) = 0. (8.8)
Up o) = )1 = f|o>r+>y+%|1>|—>y
i £1(0) = 0, (1) = L (.9)

Uplio) = [a)e = i f|o>| by +%|1>|+>y
i f2(0) = 1, fo(1) = 0. (8.10)
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Upslio) = [1)s = ¢%|o>r—>y +z’%|1>\—>y

it f3(0) =1, f3(1) = 1. (8.11)

In (8.8)—(8.11), the operations on the mapping look fine to us because the process here
is based upon the phase that was obtained from the kickback formation. Therefore,
the issue of orthogonality is not so essential here as we consider the phase of each state
to be guaranteed.

In addition, we apply Uy, to the resulting state |¢1); and recall both the two values
of the function f; by going back to the initial state |¢p) from the resulting state |11);.

By recalling the resulting state [i;);, we can evaluate simultaneously both the
two values of f;(z) for all z(= 0,1). Interestingly, memory of functions in Deutsch’s
algorithm generalized gives us the ability to recall a perfect property of f;(x), namely,
fj(zx) itself. This stage means we read data from the Bloch sphere.

With the above, memory of functions in Deutsch’s algorithm generalized is as fol-
lows:

1. Select the kind of a function f; which is a logical function.
2. Select the unitary operator Uy, along with the selected function f;.

3. Apply Uy, to 1) and store both the two values of the function f; into the
resulting state |t1);.

4. This stage means we write data on the Bloch sphere.
5. Select the same unitary operator Uy, as the above.

6. Apply Uy, to the resulting state [¢1); and recall both the two values of the
function f; by going back to the initial state |1y) from the resulting state |i1);.

7. This stage means we read data from the Bloch sphere.

This is faster than that of its classical apparatus which would require at least 22
evaluations. It may be much likely that the Bloch sphere is a high-speed memory
system for Deutsch’s algorithm generalized.

9 Memory of functions in Deutsch’s algorithm gen-
eralized and based on orthogonal states

We discuss memory of functions in Deutsch’s algorithm generalized and based on or-
thogonal states. We propose the following initial state:

[%0)a @ [¢0) = [H)zl=)a ® [H)al+)y- (9-1)
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Applying Uy, @ Uy, (j = 0,1,2,3) to [¢0)a ® |¢0), Uy, @ Uy, [100)a ® |0) = [¥1)ja @ [1)

therefore leaves us with one of four cases:

Upp ® U ltho)a ® [0} = [d1)oa @ [$1)0 = |+)a] =)o ® %w %mmy)
i £5(0) = 0, fo(1) = 0. (9.2)

M)y +

Up,  Up o) ® [90) = [t)1a ® [d1)1 = | eV @ <%|o>|+>y +z%|1>|—>y>
i £1(0) = 0, fu(1) = 1. (9.3)

Up, ® Up[tho)a ® [tho) = [1)2a ® [¥h1)2 = —[—)a| —)e ® (i%\())!—)y + %\D!ﬂy)
iff f5(0) =1, f2(1) = 0. (9.4)

Ut, ® Up[t0)a @ [tho) = [1)3a ® [¥1)3 = —[+)al =)o ® (i%\oﬂ—)y + Z'%“H—M)
iff f3(0) =1, f3(1) = 1. (9.5)

If we have the relations above (9.2)-(9.5), we have simultaneously both f;(0) and f;(1)
by measuring the resulting state. The four states are completely orthogonal to one
another. Therefore, we have zero error probability when we distinguish the four states
one another. This stage means we write data on the Bloch sphere.

In addition, we apply Uy, ® Uy, to the resulting state [t)1);4 ® [11); and recall both
the two values of the function f; by going back to the initial state |¢o)q ® |1o) from the
resulting state |11);q ® |11);. This stage means we read data from the Bloch sphere.

With the above, memory of functions in Deutsch’s algorithm generalized and based
on orthogonal states is as follows:

1. Select the kind of a function f; which is a logical function.
2. Select the unitary operator Uy, ® Uy, along with the selected function f;.

3. Apply Uy, ® Uy, to |1o)q ® |1o) and store both the two values of the function f;
into the resulting state [11);q4 ® [1)1);.

4. This stage means we write data on the Bloch sphere.
5. Select the same unitary operator Uy, ® Uy, as the above.

6. Apply Uy, ® Uy, to the resulting state [11);4® |¢1); and recall both the two values
of the function f; by going back to the initial state |¢9)q® |to) from the resulting

state |¢1)ja @ [¢1);-
7. This stage means we read data from the Bloch sphere.

This is faster than that of its classical apparatus which would require at least 22
evaluations. It may be much likely that the Bloch sphere is a high-speed memory
system for Deutsch’s algorithm generalized and based on orthogonal states.
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10 Memory of values in Deutsch’s algorithm gen-
eralized

We propose memory of values in Deutsch’s algorithm generalized by using all quantum
states lying in the zy-plane. In what follows, we consider the Bloch sphere, especially,
we consider a pure state lying on the surface of the Bloch sphere. From Deutsch’s
formula and the mapping Uy, we arrive at the following formulas:

U¢|0)(cos g\O) + €' sin%]l}) = ]0>(COSQ\O @ f(0)) +e* sing\l ® £(0)))

:{|0>(Cosg|0>+ei¢>sing|1)) if f(()):

10)(cos 2|1) + e sin 20)) if f(0) = (10.1)

Uf]1>(cos%/]0> + e sin%\l)) = ]1}(0080—]0 @ f(1)) + & sin%]l @ f(1)))

{|1>( ’|o>+ei¢>’sm9’|1>) if (1) =0,

1) (cos Z]1) + ' sin £[0)) if f(1) = 1. (10.2)

To simplify, we suppose a quantum state lying in the zy-plain. So let (6, @) be (7/2, ¢)
and let (0, ¢’) be (7/2,¢) in giving

ot ()7 ®]0)(10) + e?[1))/vV2 if f(0) =0,
Ur10)(/0) + |1>)/\/_ {(e%¢)f(0)|0>(|0> + e—1¢|1>)/\/§ if f(0)=1. (10.3)
ot () W[L)(j0) +e?[1))/v2 if f(1) =0,
Url1)(]0) + |1>)/\/_ {(eW)f(l)\l)(]O) + e—“ﬁ]l})/\/i if f(1)=1 (10.4)
We define the following notation:
_|0) +€”[1)
[+)e = — 7 (10.5)

We define the initial state |t)p) as follows, using an imaginary number . Here, we
use a quantum phase effect, which is a quantum phenomenon.

[%0) = )6 = [F)al+)o: (Woltho) = 1. (10.6)

\/—!0>\+>¢+ \/—\1>

Applying Uy, (7 = 0,1,2,3) to [¢o), Uy, [1bo) = [t1);, therefore leaves us with one of
four cases:

wwwww:%wm+%ww
iff f(0) =0, fo(1) = 0. (10.7)

WM%W%Z%WHWWWMHW
iff £1(0) =0, fi(1) = 1. (10.8)

14



zww=mw#§wwu+%mm¢
iff f2(0) =1, fo(1) = 0. (10.9)

IM%PWMZW%WHw+ﬁ%MHw
i £3(0) = 1, f3(1) = 1. (10.10)

In (10.7)—(10.10), the operations on the mapping look fine to us because the process
here is based upon the phase that was obtained from the kickback formation. Therefore,
the issue of orthogonality is not so essential here as we consider the phase of each state
to be guaranteed.

In addition, we apply Uy, to the resulting state [¢); and recall both the two val-
ues of the function f; by going back to the initial state |1)y) from the resulting state
|91);. This stage means we read data from the Bloch sphere. By storing and recall-
ing resulting states (10.7)—(10.10), we can read/write an arbitrary natural number in
{0,1,2,3,4,5, ..., 00} as data as shown below.

Suppose we are using ¢ € [0, 27) constructing both the initial state and the resulting
state. The possible value of ¢/27 is in [0,1). Let us depicture ¢/27 in the decimal
system as follows:

¢/2m = 0.a1ay...apr = a1/10 + ag/10% + ... + ap;/10M, (10.11)

where aq, as, as, ..., aps are natural numbers and 0 < a; < 9,0 < ay <9,...,0 < ay <9.
There may exist a bit-string b = (by...by) such that

a1/10 + az/10% + ... + apr/10M = by /2 + by /2% + ... + by /2V, (10.12)

where M, N are natural numbers. This is a transformation into the binary system
from the decimal system. Introduce a function g(b) that transforms a bit-string into a
natural number. Choose the function g such that, for the bit-string b = (b;...by),

g(b) = b2V L+ 52" + by (10.13)
We let M, N be +o0o. Then, we define a mapping
[0,1) — {0,1,2,3,4,5, ..., +00}. (10.14)

For example, if we are using 0.625(= ¢/27) in the decimal system, then a; = 6,a2 =
2,a3 = 5. We have by = 1,b, = 0,b3 = 1 by the transformation into the binary system
from the decimal system. Thus, the bit-string is b = (101) and we obtain g(b) = 5.
In this example, we can read/write five, in the decimal system, as data. So, we can
read /write infinite data on the Bloch sphere by using the phase factor of a quantum
state.
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11 Conclusions

In conclusions, we have reviewed Deutsch’s algorithm. We have also reviewed Deutsch’s
algorithm generalized. Deutsch’s algorithm generalized has determined simultaneously
all the mappings of the given function by one query. We have discussed Deutsch’s
algorithm generalized and based on orthogonal states. As a main discussion, we have
proposed a novel definition for making memory in all of the quantum algorithms based
on the Bloch sphere. Ultimately speaking, all of the quantum algorithms have relied
on a high-speed memory system on the Bloch sphere. Clearly, the Bloch sphere has
been a place in which quantum states are stored theoretically steadily. Thus, we can
steadily have written data on the Bloch sphere through a quantum state itself. We
can steadily have read data from the Bloch sphere through a quantum state itself. In
short, from the property of quantum physics, the Bloch sphere has been a high-speed
memory system for any Deutsch’s algorithm at least in an algorithm level. We have
discussed the fact that we can read/write infinite data on the Bloch sphere by using
the phase factor of a quantum state.
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